物理学报 Acta Physica Sinica

深红色 $Mg_{1+y}Al_{2-x}O_4:xMn^{4+}, yMg^{2+}$ 荧光粉的合成与发光性质 彭玲玲 曹仕秀 赵聪 刘碧桃 韩涛 李凤 黎小敏

Preparation of $Mg_{1+y}AI_{2-x}O_4:xMn^{4+}$, yMg^{2+} deep red phosphor and their optical properties

Peng Ling-Ling Cao Shi-Xiu Zhao Cong Liu Bi-Tao Han Tao Li Feng Li Xiao-Min

引用信息 Citation: Acta Physica Sinica, 67, 187801 (2018) DOI: 10.7498/aps.67.20180778 在线阅读 View online: http://dx.doi.org/10.7498/aps.67.20180778 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I18

您可能感兴趣的其他文章 Articles you may be interested in

CaAlSiN₃:Eu²⁺ 红色荧光粉的常压氮化制备及发光性能

CaAlSiN₃:Eu²⁺ red phosphors synthesized by atmospheric nitrogen and their luminescence properties 物理学报.2016, 65(20): 207801 http://dx.doi.org/10.7498/aps.65.207801

Eu³⁺ 掺杂 CaMoO₄ 微米荧光粉发光性质的研究

Luminescence properties of Eu³⁺ doped CaMoO₄ micron phosphors 物理学报.2015, 64(10): 107803 http://dx.doi.org/10.7498/aps.64.107803

 $Ca_2Si(O_{4-x}N_x):Eu^{2+}$ 绿色荧光粉的制备及其发光性能

Preparation and luminescent properties of $Ca_2Si(O_{4-x}N_x)$: Eu²⁺ green-emitting phosphors 物理学报.2014, 63(19): 197801 http://dx.doi.org/10.7498/aps.63.197801

用锥光纤微球研究 Er³⁺/Yb³⁺ 共掺氟氧玻璃陶瓷的发光特性

Luminescent properties of Er³⁺/Yb³⁺ co-doped oxyfluoride glass ceramic microsphere with the tapered fiber-microsphere coupling system 物理学报.2014, 63(12): 127802 http://dx.doi.org/10.7498/aps.63.127802

自组装银膜增强8-羟基喹啉铝(Alq3)光致发光的实验和理论研究

Experimental and theoretical study of tris-(8-hydroxyquinoline) aluminum (Alq₃) photoluminescence enhanced by self-assembled silver films

物理学报.2014, 63(8): 087802 http://dx.doi.org/10.7498/aps.63.087802

深红色 $Mg_{1+y}Al_{2-x}O_4:xMn^{4+}, yMg^{2+}$ 荧光粉的 合成与发光性质*

彭玲玲† 曹仕秀 赵聪 刘碧桃 韩涛 李凤 黎小敏

(重庆文理学院新材料技术研究院,重庆 402160)

(2018年4月23日收到;2018年6月20日收到修改稿)

采用高温固相法在空气气氛中合成了新型 $Mg_{1+y}Al_{2-x}O_4:xMn^{4+}$, yMg^{2+} 深红色荧光粉.利用 X 射线 衍射仪、扫描电子显微镜和荧光光谱仪表征荧光粉的晶体结构和形貌,并分析了发光性质,讨论了掺杂不同浓度 Mn^{4+} 和过量 Mg^{2+} 对样品发光强度的影响.结果表明,在 300 nm 波长激发下样品发射 652 nm 波长的红 光, 归因于 Mn^{4+} 的 2E_g — $^4A_{2g}$ 跃迁, Mn^{4+} 的最佳掺杂浓度为0.14%.采用 Blasse 公式计算了 $Mn^{4+}-Mn^{4+}$ 之间能量传递的临界距离,讨论了可能的能量传递过程和引起浓度淬灭的原因,采用 Tanabe-Sugano 能级图 从理论上计算和分析了 Mn^{4+} 的 d^3 电子构型的晶体场强度大小.过量 Mg^{2+} 可以提高荧光粉的发光强度,同时导致了荧光寿命的缩短,荧光衰减曲线呈单指数变化.探讨了过量 Mg^{2+} 增强发光强度的机理,阐述了深红 色荧光粉 $MgAl_2O_4:Mn^{4+}$ 发光效率提高的原因.

关键词:发光二极管,深红色荧光粉,MgAl₂O₄,光学性质 PACS: 78.55.-m

DOI: 10.7498/aps.67.20180778

1引言

自光发光二极管 (light emitting diode, LED) 具有环保、节能、体积小和寿命长等优点,用蓝光芯 片激发黄色荧光粉 Y₃Al₅O₁₂:Ce³⁺(YAG:Ce³⁺)制 备的双基色的白光 LED 灯是目前的主流技术^[1,2], 该技术的优点是转换效率高且成本低,但其缺点是 LED 灯显色指数 (color rendering index, CRI)低、 相关色温 (correlated color temperature, CCT)高. 为了改善双基色的白光 LED 灯存在的不足,三基 色的白光 LED 灯也被广泛地研究和制备,如用紫 外或近紫外芯片激发红、蓝、绿三种混合荧光粉. 这种三基色的白光 LED 灯可以通过红色或橙色荧 光粉的加入量来调节 CCT 和 CRI,满足人们的需 要^[3-5].但是这些红色荧光粉大部分是以三价稀土 离子为发光中心,在紫外和蓝光区域主要是比较尖 的吸收峰,这使得其应用范围受到限制^[6-8],因此 急需寻找新型的红色荧光粉. Mn 具有丰富的价态 和良好的光学性能, Mn⁴⁺的3d³电子结构倾向于 六配位八面体环境, Mn⁴⁺在六配位主体中能呈现 有效的红光发射且易被近紫外和蓝光激发^[9,10].已 引起人们广泛关注. Mn⁴⁺ 激活的氟化物是一种深 红色发射荧光材料[11,12], 广泛作为多基色节能荧 光光源的深红色组分, 以提高CRI. 但其遇水易潮 解,导致其稳定性能较差而无法用到白光LED中, 因此近年来用Mn⁴⁺激活的新型氧化物深红色发 射材料的研究受到研究者们的广泛关注[13,14].在 六配位情况下, Mn⁴⁺ 的半径(0.0533 nm) 和 Al³⁺ 的半径(0.0535 nm)相似,因此氧密堆形成六配位 环境的铝酸盐基质被认为是研究 Mn⁴⁺ 发光的合 适基质[15,16]. 尖晶石型铝酸盐呈O原子立方密堆 结构, Al原子都处于氧八面体环境中, 这类结构

* 国家自然科学基金(批准号: 51302330)、重庆市前沿与应用基础研究计划(批准号: cstc2015jcyjA50013, cstc2016shmszx20002, cstc2017jcyjA1821)、重庆市教委科学技术研究项目(批准号: KJ1501132, KJ1711272)和重庆市中青年骨干教师项目资助的课题. † 通信作者. E-mail: pengll08@126.com

© 2018 中国物理学会 Chinese Physical Society

的铝酸盐为研究 Mn⁴⁺ 激活的光学材料提供了合适的基质,但尚无 Mn⁴⁺ 掺杂尖晶石型铝酸盐的报道.因此,本文首先采用高温固相法制备了深红色 Mg_{1+y}Al_{2-x}O₄:xMn⁴⁺, yMg²⁺(MAO) 荧光粉,并研究了 Mn⁴⁺ 在尖晶石型铝酸盐 MgAl₂O₄结构中的发光性质; 然后依据铝酸盐结构的特征对 Mn⁴⁺的光谱性质做了简单的研究与讨论,添加过量 Mg²⁺ 增强了荧光粉的发射强度,并对发光增强原因进行了探索.本文研究结果为白光 LED 用红色 荧光粉的制备及光谱分析提供参考.

2 实 验

采用高温固相法制备样品,原料为MgCO₃ (AR),Al₂O₃,MnO₂ (AR).首先,根据化学计量比 称取以上原料,在玛瑙研钵中混合研磨均匀;然后, 在空气气氛下,1400°C烧结6h后随炉冷却,研磨 后得到MAO (x = 0.06% - 0.26%, y = 0 - 0.2%) 系列样品.

采用 DX 型X射线衍射仪 (XRD, 辐射源为Cu 靶 K_{α}, 40 kV, 40 mA, $\lambda = 0.15406$ nm, 扫描速度 为8°/min, 步长 0.02°, 扫描范围 10°—80°) 测定样 品的晶体结构.采用 Quanta 250 扫描电子显微镜 (美国 FEI 公司) 观察样品的颗粒形貌、粒径.采用 日立 F-7000 型荧光分光光度计测试样品的激发光 谱和发射光谱.采用 FLS-920T 光谱仪测试样品的 荧光寿命.采用 Cary5000 型吸收光谱仪测试样品 的反射光谱.

3 结果与讨论

MgAl₂O₄ 为尖晶石结构(见图1),属于立方 晶系,空间群是*Fd*3*m*[227]. 在该结构中O占据 (1/4, 1/4, 1/4)格位,Wyckoff位置32e;部分Al占 据(1/2, 1/2, 1/2)格位,Wyckoff位置16d;Mg占据 (1/8, 1/8, 1/8)格位,Wyckoff位置8a.初级晶胞中, O原子按立方密堆排列,Mg原子占据1/8的四面体 间隙,Al原子占据1/2八面体间隙.一个O原子与 三个Al原子和一个Mg原子相连,三个[AlO₆]八面 体与一个[MgO₄]四面体共顶相连,每两个[AlO₆] 八面体共棱相连.

图 2 为 MAO 样品掺杂不同浓度 Mn⁴⁺ 和过量 Mg²⁺ 的 XRD 图谱. 在 1400 °C 烧结 6 h 后得到的

粉体的XRD与MgAl₂O₄的标准卡(JCPDS#21-1152) 一致,表明所有样品中只有MgAl₂O₄纯 相,这是因为Mn⁴⁺的掺杂量比较小,仅有0.14%, 因此掺杂后对基质晶体结构没有产生影响,而 且Al³⁺和Mn⁴⁺半径相差不大,分别为0.53 Å和 0.58 Å. Mn⁴⁺在[AlO₆]八面体中占据Al³⁺的位置, 当Mn⁴⁺替代Al³⁺时,没有造成较大的晶格变形.

图1 MgAl₂O₄ 尖晶石的结构

Fig. 1. Structure of spinel MgAl₂O₄.

图 2 过量 Mg^{2+} 和不同浓度 Mn^{4+} 掺杂 $MgAl_2O_4$ 的 XRD 图谱

Fig. 2. XRD patterns of MgAl_2O_4 with different concentration $\rm Mn^{4+}$ and excess $\rm Mg^{2+}.$

图 3 显示了 MgAl₂O₄:Mn⁴⁺ 荧光粉的 SEM 照 片,从图中可以观察到样品形貌主要是片状结构, 颗粒表面光滑,粒径大小在 1—3 μm 之间.

图 4 为单掺杂 Mn^{4+} 和 0.1% Mg^{2+} 的 $MgAl_2O_4$ 样品的反射光谱图 (图中 CT 表示电荷迁移带).从 图 4 可以看出,样品在 200—600 nm 有三个明显的 反射峰, 250—320 nm 明显的反射峰是由 Mn^{4+} - O^{2-} 电荷迁移带引起的, 320—380 nm 处较弱的吸 收峰归因于 Mn^{4+} 的 $^{4}A_{2g}$ — $^{4}T_{2g}$ 跃迁, 450 nm 处 较宽的吸收峰也归因于此类跃迁. Mg²⁺过量之 后, 三个位置的反射峰强度明显降低, 这说明过量 的 Mg²⁺ 有利于降低 MgAl₂O₄:Mn⁴⁺ 对入射光的 反射, 从而增加了光吸收, 提升了荧光粉对入射光 响应的强度.

图 3 在空气中 1400 °C 烧结 6 h 荧光粉 MgAl₂O₄:Mn⁴⁺ 的 SEM 照片

Fig. 3. SEM image of MgAl₂O₄:Mn⁴⁺ phosphors annealed at 1400 $^{\circ}$ C for 6 h in air.

图 4 MgAl₂O₄:0.14%Mn⁴⁺和MgAl₂O₄:0.14%Mn⁴⁺, 0.1Mg²⁺荧光粉的反射光谱图

Fig. 4. Reflection spectra of $\rm MgAl_2O_4:0.14\%Mn^{4+}$ and $\rm MgAl_2O_4:0.14\%Mn^{4+},\,0.1Mg^{2+}$ phosphors.

图 5 所示为不同浓度 Mn⁴⁺ 掺杂的 MgAl₂O₄ 系列样品的激发和发射光谱图 (图中 λ_{ex} 为激 发波长, λ_{em} 为监控波长). 由图 5 所示激发光 谱可以看出,样品的激发带主要位于 290,368 和 438 nm,分别对应于 Mn⁴⁺-O²⁻ 电荷迁移带 和 Mn⁴⁺ 的⁴A_{2g}—⁴T_{2g} 电子跃迁,这些激发光谱 表明 MgAl₂O₄:Mn⁴⁺ 荧光粉可以被紫外 (310— 380 nm)、近紫外 (380— 420 nm)和蓝光 (420— 480 nm)的芯片激发. 从图 5 还可以看出,在 300 nm 波长激发下,样品发射峰位于 652 nm,由于 Mn⁴⁺ 半径与 Al³⁺ 半径十分接近, Mn⁴⁺ 进入基质 的 Al^{3+} 晶格位置.根据 $MgAl_2O_4$ 的晶相, Al^{3+} 与周围 O 原子是八面体六配位环境,因此 Mn^{4+} 与周围 O^{2-} 也形成六配位环境.

从图5还可以看出,样品的发射峰强度随着 Mn⁴⁺浓度的增加先提高,这是因为Mn⁴⁺取代 Al³⁺时,首先是单独的离子取代形成孤立的Mn⁴⁺ 发光中心, 所以发光强度提高. 而当Mn⁴⁺的浓 度再增加时(超过0.14%), 电荷匹配不平衡程度 增加,为了补偿电荷平衡,在MAO结构中Mn⁴⁺ 会通过俘获间隙位置的O²⁻而形成Mn⁴⁺-Mn⁴⁺- O^{2-} 离子簇^[17],取代相邻位置的Al³⁺-Al³⁺离子 对(如图7所示),这在一定程度上降低了孤立的 Mn⁴⁺ 数量,同时 Mn⁴⁺-Mn⁴⁺ 之间的交互作用引 起的无辐射跃迁也增加,从而明显降低 Mn⁴⁺ 的发 光效率,引起浓度猝灭.从图5的插图可以看出, MgAl₂O₄:Mn⁴⁺ 红色荧光粉颜色在无紫外光照时 显示灰白色,在365 nm波长的紫外光灯照射下呈 现明显鲜红色. 在室温 300 nm 波长激发下其相应 的色坐标值为(0.7256, 0.2854).

图 5 MgAl₂O₄:0.14%Mn⁴⁺ 荧光粉的激发与发射光谱图 (插图 为 MgAl₂O₄:0.14%Mn⁴⁺ 荧光粉在白天 (左) 和紫外灯 (右) 下 的照片)

Fig. 5. Photoluminescence-excitation (PLE) and photoluminescence (PL) spectra of $MgAl_2O_4:0.14\%Mn^{4+}$ phosphors (Inset: photographs of phosphors under day light lamp (left) and 365 nm ultraviolet lamp (right)).

离子间的能量传递主要有电多极相互作用和 交换相互作用两大类型,电多极相互作用的有效距 离比交换相互作用的有效距离更长.在电多极相互 作用的情况下,能量传递可以发生在相隔距离为几 纳米的离子之间,而交换相互作用的有效作用距离 只有几个埃.引起浓度淬灭的原因可通过计算能 量传递的临界距离来估计,即浓度猝灭发生时发光 中心之间的平均距离. 假设 Mn⁴⁺ 全部存在于基质 晶格 MgAl₂O₄ 中, 当掺杂的临界浓度为0.14% 时, Mn⁴⁺ 之间能量传递的临界距离可以通过 Blasse 公 式计算:

$$R_{\rm c} \approx 2R = 2 \left(\frac{3V}{4\pi X_{\rm c} N}\right)^{\frac{1}{3}},\tag{1}$$

式中 R_c 为对应临界距离,R为相邻两个 Mn^{4+} 之间 的距离,V为晶胞体积, X_c 为浓度淬灭点,N为单 位晶胞中掺杂离子可占据的位置数.通过实验分析 得到 V, X_c 和N(528.12Å³, 0.0014 mol, 2), 计算得 到在尖晶石结构 $MgAl_2O_4$ 中能量传递临界距离为 52.15Å,因此能量传递过程可能为交叉弛豫,引起 浓度淬灭的原因是电多级交互作用.

图6为加入过量Mg²⁺后MgAl₂O₄:Mn⁴⁺系 列样品的激发和发射光谱图,激发光谱图表明 样品的激发带位于 290, 368 和 438 nm, 分别对应于 Mn⁴⁺-O²⁻ 电荷迁移带及Mn⁴⁺的自旋禁戒和自旋 允许⁴A_{2g}—⁴T_{2g}电子跃迁. 由图6可知,样品发射 600—700 nm 的红色光, 对应于 Mn⁴⁺ 的最低激发 $x^{2}E_{2}$ 能级到基本⁴A₂的跃迁,一般而言,当Mn⁴⁺ 位于八面体中心时,由于3d3电子的振动模式不同, 其发射是由几个明显的尖锐R线和斯托克斯(反斯 托克斯)伴峰组成;而在本文实验结果中,样品的 发射峰是明显不对称的宽带峰,这在其他 Mn⁴⁺ 掺 杂的铝酸盐中也很少见^[18],这是因为MgAl₂O₄尖 晶石结构中, Mg/Al 仅为1/2, 远远小于其他 Mn⁴⁺ 掺杂的氧化物^[19,20],所以在Mn⁴⁺和Al³⁺占据八 面体位置时,八面体角落的位置占据概率会被相邻 的原子格位所影响, Mg²⁺-O²⁻和Al³⁺-O²⁻之间 的交叉弛豫会相互影响,相应的原子重叠概率会增 加,导致了其化学键强度和电子云重排效应的增 加,因此出现了较宽的带状发射峰,与其他报道类 似^[18].

从以上分析结果可知, 单掺 Mn⁴⁺ 时其浓度越高, 形成的 Mn⁴⁺-Mn⁴⁺ 离子对越多, 电荷匹配越不 平衡, 而 Mn⁴⁺ 的发光都是来源于孤立的 Mn⁴⁺.为 了降低过多的 Mn⁴⁺-Mn⁴⁺ 离子对引起的电荷不匹 配并且不引入杂质, 尝试了通过添加过量 Mg²⁺ 的 方式降低电荷不匹配和增加孤立的 Mn⁴⁺ 发光中 心, 发射光谱图(图6)表明该方法取得了较好的效 果, 样品的发射峰强度随着 Mg²⁺ 含量的增加而提 高, 当 Mg²⁺ 的浓度达到 0.175% 时, 发光强度最高, 然后出现了降低.

图 6 MgAl₂O₄:0.14%Mn⁴⁺, yMg²⁺ (y = 0— 0.2%) 荧光粉的激发与发射光谱图

Fig. 6. Photoluminescence-excitation and photoluminescence spectra of MgAl₂O₄:0.14%Mn⁴⁺, yMg^{2+} (y = 0-0.2%) phosphors.

图 7 为单掺杂 Mn^{4+} 和含过量 Mg^{2+} 时 Mn^{4+} -Mn⁴⁺ 离子对的形成过程和电荷补偿机理图,加 入过量 Mg^{2+} 后,多余的 Mg^{2+} 倾向于占据 Al^{3+} 位 置从而形成了 $Mn^{4+}-Mg^{2+}$ 离子对,降低了高浓 度 Mn^{4+} 下 MAO 结构内部的电荷不平衡并减少 了 $Mn^{4+}-Mn^{4+}$ 离子对引起的无辐射交叉弛豫,使 得 $Mn^{4+}-Mn^{4+}$ 转化为孤立的 Mn^{4+} ,提高了发光 效率,而当加入过多的 Mg^{2+} 后,存在 $Mn^{4+}-Mg^{2+}$ 离子对和 $Mn^{4+}-Mn^{4+}-O^{2-}$ 离子簇之间的竞争 [17], 因此存在 Mg^{2+} 的最佳量 (0.175%).

图7 掺杂 Mg²⁺ 后 Mn⁴⁺-Mn⁴⁺ 离子对转化成孤立 Mn⁴⁺ 的示意图

Fig. 7. Schematic of $Mn^{4+}-Mn^{4+}$ ion pairs transformed into isolated Mn^{4+} with charge compensation by doping Mg^{2+} ions.

 Mn^{4+} 在八面体配位环境中的能级通过 Tanabe-Sugano能级图表示(见图8),采用 Mn^{4+} 的 $^{4}A_{2g}$ — $^{4}T_{2g}$ (22831 cm⁻¹ (438 nm)) 跃迁和能 隙值*E*计算 Mn^{4+} 的晶体场强度 D_{q} 为

$$10D_{\rm q} = E({}^{4}A_{2\rm g} - {}^{4}T_{2\rm g}).$$
 (2)

图 8 Mn⁴⁺的 Tanabe-Sugano 能级图及 MAO 的发光 过程

Fig. 8. Tanabe-Sugano energy level diagram of Mn^{4+} in the octahedron and the emission process of MAO.

由于 ${}^{4}A_{2g}$ — ${}^{4}T_{1g}$ (33483 cm⁻¹ (290 nm))和 ${}^{4}A_{2g}$ — ${}^{4}T_{2g}$ 激发峰的位置相差10652 cm⁻¹, Racah 参数 *B*可以通过下式计算:

$$\frac{D_{\rm q}}{B} = \frac{15(\xi - 8)}{\xi^2 - 10\xi}.$$
(3)

参数ξ依据各个跃迁峰的位置采用下式得到

$$\xi = \frac{E({}^{4}A_{2g} - {}^{4}T_{1g}) - E({}^{4}A_{2g} - {}^{4}T_{2g})}{D_{q}}.$$
 (4)

根据发射峰的位置, Racah 参数C依据 Mn^{4+} 的 $^{2}E_{g}$ — $^{4}A_{2g}$ 跃迁即发射光谱的位置(652 nm, 15337 cm⁻¹)通过下式得到

$$\frac{E({}^{2}\mathrm{E_{g}}-{}^{4}\mathrm{A_{2g}})}{B} - 7.9 = \frac{3.05C}{B} - \frac{1.8B}{D_{q}}.$$
 (5)

最后,得到MgAl₂O₄:Mn⁴⁺基质中 D_{q} , B和C 的数值分别为2283 cm⁻¹, 1312 cm⁻¹, 22073 cm⁻¹, D_a/B 为1.74小于2.2说明Mn⁴⁺在MgAl₂O₄基质 中处于较弱的晶体场环境. 根据Tanabe-Sugano 能级图, d³电子构型中²E。能级是独立于晶体场 的,其能量随晶体场强度的变化并没有明显的改 变^[16]. Mn⁴⁺的发射主要依赖于电子云重排效应, 而电子云重排效应高度依赖于Mn⁴⁺和配体间波 函数重叠. Mn⁴⁺在MgAl₂O₄尖晶石中的发光过 程如下: Mn⁴⁺的自由离子态位于基态⁴F, ⁴F基 态一般发生能级劈裂成基态⁴A₂及激发态⁴T₁和 ${}^{4}T_{2}, {}^{4}A_{2}$ — ${}^{4}T_{2} \pi {}^{4}A_{2}$ — ${}^{4}T_{1}$ 电子跃迁是自旋允许 的跃迁, 而⁴A₂—²T₂ 跃迁相对较弱, 因此, 激发态 中Mn⁴⁺的电子跃迁均归属于允许的跃迁,650 nm 处的发射对应于Mn⁴⁺的最低激发态²E₂能级到 基态⁴A₂的跃迁.除此之外,在具有3d³电子结构

Mn⁴⁺的八面体场中,其自旋允许的跃迁还有非常 强的O²⁻-Mn⁴⁺的配体到金属的电荷转移跃迁,该 跃迁与图4中的电荷迁移带相符合.

图 9 为室温下 MAO 样品的衰减曲线, 监控波 长为 652 nm, 激发波长为 300 nm, 荧光衰减时间 *t* 通过下式拟合:

$$\frac{I_t}{I_0} = e^{(-t/\tau)} + A_1, \tag{6}$$

式中 I_t 为t时刻的荧光强度; I_0 为初始荧光强度; τ 为衰减时间; A_1 为常数.计算得到MAO荧光粉的 衰减曲线呈单指数形式, Mg^{2+} 不过量和过量情况 下的衰减时间分别为0.672和0.604 ms,证明了过 量的 Mg^{2+} 可降低 Mn^{4+} 之间的无辐射跃迁.

4 结 论

本文利用高温固相法在空气气氛中合成了尖 晶石型MAO深红色荧光粉.在300 nm波长激发 下,其主发射峰位是652 nm波长为中心的带状峰, 对应于Mn⁴⁺的²E_g—⁴A_{2g}跃迁.样品的激发带主 要位于290,368和438 nm,分别对应于Mn⁴⁺-O²⁻ 电荷迁移带和Mn⁴⁺的⁴A_{2g}—⁴T_{2g}电子跃迁,这些 激发光谱表明MgAl₂O₄:Mn⁴⁺荧光粉可以被紫外、 近紫外和蓝光的芯片所激发.采用Blasse公式计算 并证明了能量传递过程是交叉弛豫,过量的Mg²⁺ 可提高荧光粉的发光强度,同时降低荧光寿命.采 用晶体场理论证明了Mn⁴⁺处于弱晶体场环境.讨 论了过量的Mg²⁺对样品发光强度的影响.结果 表明:加入过量的Mg²⁺后形成的Mn⁴⁺-Mg²⁺离 子对使得Mn⁴⁺-Mn⁴⁺离子对转化为孤立的Mn⁴⁺, 降低了MgAl₂O₄结构内部的电荷不平衡,并减少 了 Mn⁴⁺-Mn⁴⁺离子对引起的无辐射交叉弛豫,从 而有效提高了荧光粉 MAO 的发光强度,该新型 荧光粉对于解决目前 LED 红粉的缺乏和 Mn⁴⁺ 为 发光中心荧光材料的发光机理提供了一种借鉴和 参考.

参考文献

- Wang L, Zhang X, Hao Z, Luo Y, Zhang L, Zhong R, Zhang J 2012 J. Electrochem. Soc. 159 F68
- [2] Yeh C W, Chen W T, Liu R S, Hu S F, Sheu H S, Chen J M, Hintzen H T 2012 J. Am. Chem. Soc. 134 14108
- [3] Wang Y R, Liu X H, Niu P F, Jing L D, Zhao W R 2017 *J. Lumin.* 184 1
- [4] Pust P, Weiler V, Hecht C, Tücks A, Wochnik A S, Henß A K, Wiechert D, Scheu C, Schmidt P J, Schnick W 2014 Nat. Mater. 13 891
- [5] Pavitra E, Raju G S R, Yu J S 2014 J. Alloys Compd. 592 157
- [6] Wang L L, Noh H M, Moon B K, Park S H, Kim K H, Shi J S, Jeong J H 2015 J. Phys. Chem. C 119 15517
- [7] Xu X H, Zhang W F, Yang D C, Lu W, Qiu J B, Yu S F 2016 Adv. Mater. 28 8045

- [8] Zhao C, Meng Q Y, Sun W J 2015 Acta Phys. Sin. 64 107803 (in Chinese) [赵聪, 孟庆裕, 孙文军 2015 物理学报 64 107803]
- [9] Brik M G, Srivastava A M 2013 J. Lumin. 133 69
- [10] Du M H 2015 J. Lumin. 157 69
- [11] Shao Q Y, Wang L, Song L, Dong Y, Liang C, He J H, Jiang J Q 2017 J. Alloys Compd. 695 221
- [12] Lee M J, Song Y H, Song Y L, Han G S, Jung H S, Yoon D H 2015 *Mater. Lett.* **141** 27
- [13] Medić M M, Brik M G, Dražić G, Antić Ž M, Lojpur V M, Dramićanin M D 2015 J. Phys. Chem. C 119 724
- [14] Fu A J, Zhou C Y, Chen Q, Lu Z Z, Huang T J, Wang H, Zhou L Y 2017 Ceram. Int. 43 6353
- [15] Xu W, Chen D Q, Yuan S, Zhou Y, Li S C 2017 Chem. Eng. J. 317 854
- [16] Wang B, Lin H, Xu J, Chen H, Wang Y 2014 ACS Appl. Mater. Inter 6 22905
- [17] Pan Y X, Liu G K 2011 J. Lumin. 131 465
- [18] Cao R P, Luo W J, Xu H D, Luo Z Y, Hu Q L, Fu T, Peng D D 2016 Opt. Mater. 53 169
- [19] Xu Y D, Wang D, Wang L, Ding N, Shi M, Zhong J G, Qi S 2013 J. Alloys Compd. 550 226
- [20] Wang B, Lin H, Huang F, Xu J, Chen H, Lin Z B, Wang Y S 2016 Chem. Mater. 28 3515

Preparation of $Mg_{1+y}Al_{2-x}O_4:xMn^{4+}$, yMg^{2+} deep red phosphor and their optical properties^{*}

Peng Ling-Ling[†] Cao Shi-Xiu Zhao Cong Liu Bi-Tao Han Tao Li Feng Li Xiao-Min

(Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China) (Received 23 April 2018; revised manuscript received 20 June 2018)

Abstract

Exploration of efficient deep red phosphor based on non-rare-earth ion activated oxide is of great practical value in the field of phosphors converted white light-emitting diode lighting. A spinel $Mg_{1+y}Al_{2-x}O_4:xMn^{4+}, yMg^{2+}$ phosphor with deep red emission is synthesized by a solid-state reaction route. The crystal structure and morphology are characterized by powder X-ray diffraction and scanning electron microscopy. The luminescent performance is characterized by fluorescence spectrophotometer and fluorescence decay curves. The results demonstrate that the synthesized phosphor shows that two excited spectrum bands centered at 290 nm and 438 nm cover a broad spectral region from 220 nm to 500 nm due to the $Mn^{4+}-O^{2-}$ charge transfer band and the ${}^{4}A_{2-}{}^{4}T_{1}$ and ${}^{4}T_{2}$ transitions of Mn^{4+} ions. Upon excitation at 300 nm, a strong, narrow red emission band is observed between 600 and 700 nm peaked at 652 nm as a result of the spin-forbidden ${}^{2}E_{g}$ - ${}^{4}A_{2g}$ electron transition of Mn⁴⁺. The corresponding chromaticity coordinate is (0.7256, 0.2854). Additionally, the concentration quenching of Mn^{4+} in the MgAl₂O₄ host is evaluated in detail, which indicates that the optimum doping concentration of Mn^{4+} is experimentally determined to be 0.14 mol%. The critical distance is calculated to be 52.15 Å according to the Blasse equation, which elucidates that the concentration quenching mechanism is consequently very likely to be induced by the multipole-multipole interaction. The crystal field strength (D_q) and the Racah parameters (B and C) are estimated to evaluate the nephelauxetic effect of Mn^{4+} suffered in MgAl₂O₄:Mn⁴⁺ host lattice. Luminous mechanism is explained by Tanabe-Sugano energy level diagram of Mn^{4+} ion. The ratio of Dq/Bequals 1.74, indicating that Mn^{4+} ions experience a weak crystal field in the MgAl₂O₄ host and emission peak energy of ${}^{2}E_{g}-{}^{4}A_{2g}$ transition is dependent on the nephelauxetic effect. The red emission intensity of $Mg_{1+y}Al_{2-x}O_4:xMn^{4+}$, yMg^{2+} increases on account of excess Mg^{2+} which would compensate for the local charge balance surrounding Mn^{4+} ions, furthermore, lead the $Mn^{4+}-Mn^{4+}$ pairs connected with interstitial O^{2-} to transform into isolated Mn^{4+} ions, and thus eliminating energy transfer and enhancing the luminescence efficiency effectively. The decay times of two time-dependent curves of $Mg_{1+y}Al_{2-x}O_4:xMn^{4+}$, yMg^{2+} are 0.672 ms and 0.604 ms, and each entire decay curve could be well-fitted to single-exponential, confirming that there is only a single Mn^{4+} ion luminescence center. The decay time of Mn^{4+} luminescence is prolonged with the increase of Mg^{2+} content, indicating that excitation energy transfer and non-radiative relaxation between Mn^{4+} - Mn^{4+} pairs decrease, the reason is that photoexcitation energy can be temporarily stored in the trapping centers induced by excess positive charges. These results imply that Mn^{4+} doped $Mg_{1+y}Al_{2-x}O_4:xMn^{4+}$, yMg^{2+} is a promising candidate of deep-red phosphors for near-UV and blue light emitting diodes. These findings in the paper would be beneficial not only to developing a low-cost and safe strategy to produce high-efficient Mn^{4+} activated luminescent materials for white light emitting diodes, but also to providing a new insight into improving the photoluminescence properties of Mn⁴⁺.

Keywords: light emitting diode, deep red phosphor, MgAl₂O₄, optical properties PACS: 78.55.-m DOI: 10.7498/aps.67.20180778

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 51302330), the Chongqing Natural Science Foundation, China (Grant Nos. cstc2015jcyjA50013, cstc2016shmszx20002, cstc2017jcyjA1821), the Science and Technology Research Foundation of the Education Commission of Chongqing City, China (Grant Nos. KJ1501132, KJ1711272), and the Funding Scheme for Youth Backbone Teachers of Universities in Chongqing, China.

[†] Corresponding author. E-mail: pengll08@126.com