物理学报 Acta Physica Sinica

表面弹性对含可溶性活性剂垂直液膜排液的影响

叶学民 李明兰 张湘珊 李春曦

Effect of surface elasticity on drainage process of vertical liquid film with soluble surfactant

Ye Xue-Min Li Ming-Lan Zhang Xiang-Shan Li Chun-Xi

引用信息 Citation: Acta Physica Sinica, 67, 214703 (2018) DOI: 10.7498/aps.67.20181020 在线阅读 View online: http://dx.doi.org/10.7498/aps.67.20181020 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I21

您可能感兴趣的其他文章 Articles you may be interested in

自润湿流体液滴的热毛细迁移特性

Thermocapillary migration characteristics of self-rewetting drop 物理学报.2018, 67(18): 184704 http://dx.doi.org/10.7498/aps.67.20180660

液滴在不同润湿性表面上蒸发时的动力学特性

Dynamics of evaporating drop on heated surfaces with different wettabilities 物理学报.2018, 67(11): 114702 http://dx.doi.org/10.7498/aps.67.20180159

纳米通道内气体剪切流动的分子动力学模拟

Molecular dynamics simulations of surface effects on Couette gas flows in nanochannels 物理学报.2018, 67(8): 084701 http://dx.doi.org/10.7498/aps.67.20172706

水滴撞击结冰过程的分子动力学模拟

Molecular dynamics simulation of freezing process of water droplets impinging on cold surface 物理学报.2018, 67(5): 054702 http://dx.doi.org/10.7498/aps.67.20172174

非对称纳米通道内流体流动与传热的分子动力学

Molecular dynamics simulation of fluid flow and heat transfer in an asymmetric nanochannel 物理学报.2017, 66(20): 204704 http://dx.doi.org/10.7498/aps.66.204704

表面弹性对含可溶性活性剂垂直液膜排液的影响*

叶学民 李明兰 张湘珊 李春曦

(华北电力大学,电站设备状态监测与控制教育部重点实验室,保定 071003)

(2018年5月25日收到;2018年7月3日收到修改稿)

针对含可溶性活性剂的垂直液膜排液过程,在考虑表面弹性作用的基础上,采用润滑理论建立了液膜厚度、表面速度、表面和内部活性剂浓度的演化方程组,通过数值计算分析了表面弹性和活性剂溶解度耦合作用下的液膜演化特征.结果表明:表面弹性是影响可溶性活性剂垂直液膜排液过程中必不可少的因素.排液初期,随表面弹性增加,液膜初始厚度增大,表面更趋于刚性化.随排液进行,弹性不同的液膜呈现不同的典型排液特征:当弹性较小时,液膜上部表面张力高,下部表面张力低,产生正向的马兰戈尼效应,与重力作用相抗衡.当弹性较大时,膜上部表面张力低,下部表面张力高,产生逆向的马兰戈尼效应,促使液膜排液加速,更易发生失稳.活性剂溶解度通过控制液膜表面的活性剂分子吸附量,进而影响表面弹性:当活性剂溶解度较大时,液膜厚度较小,很快发生破断;随溶解度降低,液膜稳定性增加,初始表面弹性也随之增大,并随液膜变薄逐渐接近极限膨胀弹性值.

关键词: 垂直液膜, 可溶性活性剂, 表面弹性, 溶解度, 排液过程 PACS: 47.61.-k, 47.85.mf, 47.61.Fg, 47.55.dk DOI: 10.7498/aps.67.20181020

1引言

表面活性剂广泛应用于包括镀膜、磁流体、新 生儿呼吸窘迫综合症表面活性剂替代疗法、泡沫浮 选等工业和生物医学领域^[1-4].其分子由亲水的头 部与疏水的尾部组成,该结构决定了活性剂更倾向 于吸附在液体表面形成活性剂分子单层^[5].研究 表明,由于活性剂分子的结构和特性,液滴或液膜 中加入活性剂将改变表面张力,从而改变其表面弹 性^[6].

Gibbs 弹性定义为 $E = d\gamma/d(\ln A)$,表征对外部干扰的"抵抗"能力.对于不溶性表面活性剂,可忽略液膜表面和内部的活性剂吸附和解吸附现象^[7].当表面发生扰动时,一定量的活性剂分子分布在更大的面积,此时由表面活性剂质量守恒 $A\Gamma = c$ 可得 $d(\ln A) = -d(\ln \Gamma)$,则表面弹性随表面张力与活性剂浓度而变化,其定义式

为 $E = -d\gamma/d(\ln\Gamma)$,为马兰戈尼(Marangoni)弹 性^[5]. 自 Mysels^[8]的开创性工作以来,多名学者对 含不溶性活性剂的垂直液膜排液进行了研究^[9,10]. Schwartz和Roy^[11]在考虑不溶性表面活性剂的情 形下,结合润滑理论建立了两端固定的垂直液膜排 液模型,重现了实验中液膜排液过程的诸多特征, 如液膜形状和黑膜的出现等. Seiwert 等^[12] 通过建 立垂直液膜排液的定常偏微分方程组分析了表面 弹性对提拉液膜厚度的影响,发现随表面弹性与表 面张力的比值 E/γ 增大, 提拉膜厚度增加, 并最终 达到恒定值,此时液膜厚度与Frankel定律一致.前 期本课题组先后研究了分离压和表面黏度对垂直 液膜排液过程的影响,指出分离压与表面黏度均可 增加液膜的稳定性^[13],且表面弹性在排液过程中 也有较大影响.其后在考虑分离压作用的基础上, 应用润滑理论建立了含不溶性活性剂液膜的排液 模型,并分析表面弹性对液膜稳定性的影响[14], 提出排液初期增加表面弹性可提高液膜厚度,

* 国家自然科学基金 (批准号: 11202079) 和中央高校基本科研业务费 (批准号: 13MS97) 资助的课题.

© 2018 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: leechunxi@163.com

降低表面速度和促使液体逆流从而减缓排液过程.

对于垂直液膜排液过程,可溶性活性剂较不溶 性活性剂的应用更广泛[15]. 当活性剂浓度低于临 界胶束浓度(critical micelle concentration, CMC) 时,活性剂分子以单体形式存在于液膜表面和内 部,且二者间存在吸附和解吸附现象.已有研究表 明,活性剂的溶解度和吸附系数均对系统稳定性有 重要影响^[1]. 在数值模拟方面, Lin等^[16]应用广义 的Frumkin模型结合非线性耦合演化方程组对可 溶性表面活性剂液膜稳定性进行研究,表明随吸 附系数 K^{s} 及内部Peclet数的增加,表面活性剂的 溶解度提高,致使膜系统变得不稳定. Yiantsios 和 Higgins^[15]在分析可溶性活性剂薄膜的马兰戈尼 不稳定机制时,指出当活性剂溶解度较高时系统稳 定性变差. 而实验方面由于活性剂溶解度数据不易 测得,因此验证不同溶解度的活性剂液膜稳定性较 难. 史东等^[17]研究阴/阳离子表面活性剂复配体系 的物化性能时,发现当活性剂溶液出现网络结构的 棒状胶束、絮团或沉淀时即达到溶解的饱和值.罗 娟等^[18] 对聚电解质复合物溶解性的研究表明, 随 碳链长度增加,表面活性剂在水中的溶解度呈下降 趋势.而Bergeron^[19]认为活性剂碳链增加,CMC 值会降低,即活性剂CMC值在一般情形下与溶解 度具有一致性.

由于不同溶解度影响活性剂在液膜表面的吸 附量,因此对于弹性的定义更为复杂,目前已提出 多种见解. Monroy 等^[20] 认为受液体内部膨胀和 扩散效应的强耦合作用,表面膨胀模量在可溶性 活性剂溶液中起重要作用,并用激励毛细波技术 (excited capillary waves technique)测得阳离子表 面活性剂溶液的膨胀黏弹性,发现膨胀黏弹性随 表面活性剂链长和内部浓度的增加而提高. 当压 缩频率较低时,表面与内部活性剂总能达到平衡; 频率较高时,接近不溶性活性剂情形. Lucassen 和Tempel^[21]首次提出膨胀弹性与振荡频率和活 性剂浓度的表达式: $\varepsilon(\omega, c) = \varepsilon_0 \frac{1+\Omega}{1+2\Omega+2\Omega^2}$, $\Omega = \sqrt{\frac{D}{2\omega}} \frac{\partial c}{\partial \Gamma}, \ \ \,$ 式中 ε_0 为振荡频率较高时的膨胀 弹性,此时表面活性剂表现为不溶性质. Santini 等^[22]采用两种不同振荡液滴张力计测量了较大范 围的频率值对非离子表面活性剂溶液的膨胀黏弹 性的影响,表明低频时内部活性剂浓度越高,活性 剂吸附量越大,将显著降低表面张力梯度,则表面

弹性越小. 高频时弹性随表面吸附量增加而提高, 与 Beneventi 等^[23] 观点一致.

Georgieva 等^[24] 通过测量表面张力变化研究 表面膨胀弹性,提出活性剂为不溶性分子时,Gibbs 弹性为 $E_{\rm G} = -d\gamma/d(\ln\Gamma)$;当活性剂可溶时,用 Gibbs 吸附方程可计算表面活性剂浓度与内部浓度 的关系: $\Gamma = -\frac{d\gamma}{RTd(\ln c)}$. Wang和Yong^[25,26] 利 用薄膜压力平衡 (thin film pressure balance)技术 研究液膜排液稳定性时定义了可溶性活性剂溶液 的表面弹性为 $E = \frac{4RT\Gamma^2}{c(H+2d\Gamma/dc)}$,式中R为气 体常数,T为绝对温度,H为液膜厚度. Lucassen-Reynders 等^[7] 在测量与Gibbs弹性接近的表面膨 胀模量时,提出 $E_{\rm G}$ 与极限膨胀弹性 ε_0 (不溶性活性 剂弹性)关系式为 $E_{\rm G} = \frac{2\varepsilon_0}{1+(h/2)(dc/d\Gamma)}$,且认 为活性剂浓度较低时, $E_{\rm G}$ 接近 ε_0 , $dc/d\Gamma$ 可变为 c/Γ , ε_0 随表面活性剂的种类和浓度不同发生改变.

此外, Karakashev 和 Ivanova^[27] 对比了含离 子与非离子型活性剂的薄液膜排液速率,指出表 面弹性对表面速度的影响较大,控制液膜表面的 流动性可促使液膜刚性化. Champougny 等^[28]用 Langmuir 槽法测量了不同浓度(均高于CMC)的 C12E6活性剂溶液的表面弹性,表明随活性剂浓度 增加,弹性值降低,对应的提拉液膜初始厚度也随 之减小. Seiwert和Cantat^[29]假定膜厚方向活性 剂浓度均匀且表面和内部活性剂浓度相互平衡, 在忽略重力情形下,建立了关于液膜厚度、表面 速度和表面及内部活性剂浓度的定常偏微分方程 组,分析了活性剂特性对提拉液膜厚度的影响及与 Frankel 定律的差别. 发现 α ($\alpha = r_{\rm m} c_{\rm CMC} / \Gamma_{\rm CMC}$) 较大时,活性剂溶解度提高,内部活性剂浓度变得 不可忽略, 表面张力变化较小, 此时可认为表面弹 性E较小,液膜厚度偏离Frankel定律较多.

综上所述,表面弹性和溶解度是影响可溶性活 性剂液膜排液过程极其重要的因素,但由于活性剂 分子在液膜表面与内部的扩散能力以及不同溶解 度活性剂在液膜表面的吸附量对表面张力梯度影 响较大,使得表面弹性对排液的影响在理论上研究 较为复杂.前人研究多集中在实验方面,尚缺乏理 论上的深刻认识.且对含可溶性活性剂液膜的研究 多为固体基底的液膜,而非悬垂液膜的排液过程. 为此,本文在考虑液膜含可溶性活性剂的基础上, 建立垂直液膜排液模型,分析表面弹性和溶解度对 排液过程的作用,揭示垂直液膜排液过程的内在机 理,进而丰富泡沫稳定性的理论研究.

2 理论模型

图 1 为顶端固定, 底端与活性剂溶液池相连的 垂直液膜流动示意图. 可溶性表面活性剂分布在整 个液膜, 假设液体为不可压缩流体, 忽略表面蒸发 对排液过程的影响. 液膜初始厚度为 $y = \pm h(x, t)$, 且关于y = 0对称, 因此只需考虑 $y \ge 0$ 一侧液膜演 化过程即可.

图1 垂直液膜排液过程示意图

Fig. 1. Schematic diagram of a vertical film drainage.

2.1 控制方程

控制方程包括连续性方程和运动方程:

 $\rho(u_t + uu_x + wu_y)$

$$u_x + w_y = 0, \tag{1}$$

$$= -p_x + \mu(u_{xx} + u_{yy}) + \rho g, \qquad (2)$$

$$\rho(w_t + uw_x + ww_y)$$

$$= -p_y + \mu(w_{xx} + w_{yy}), \tag{3}$$

式中*ρ*, *p*, *μ*, *g*分别为液体的密度、压力、动力黏度 和重力加速度;下角标代表对该变量求偏导(下同).

边界条件为

$$y = 0, \quad u_y = w = 0.$$
 (4)

在自由界面 y = h(x,t) 处,满足动力学边界条件和应力平衡边界条件:

$$w = h_t + h_x u,\tag{5}$$

$$\boldsymbol{n} \cdot \boldsymbol{T} \cdot \boldsymbol{n} = 2H\gamma + 2H(\kappa^{s} + \mu^{s})\nabla \cdot \boldsymbol{v}^{s}, \quad (6)$$

$$\boldsymbol{n} \cdot \boldsymbol{T} \cdot \boldsymbol{\tau} = \gamma_x^{\mathrm{s}} \boldsymbol{\tau} + (\kappa^{\mathrm{s}} + \mu^{\mathrm{s}}) \boldsymbol{\tau} \cdot \nabla^2 \cdot \boldsymbol{v}^{\mathrm{s}}, \quad (7)$$

式中, $n n \tau \beta$ 别为液膜表面处的单位法向矢量和切向矢量; T为应力张量, 其一般形式为 $T = -pI + \mu(\nabla v + \nabla v^{\tau})$, 其中I为单位张量; 上标s代表液膜表面; $H n \gamma \beta$ 别代表液膜表面曲率 和张力; v = (u, w); $\kappa^{s} n \mu^{s} \beta$ 别代表液膜表面膨 胀黏度和剪切黏度; $\nabla n \nabla^{2} \beta$ 别代表哈密尔顿算 子和拉普拉斯算子.

为简化模型, 假定表面张力与活性剂浓度为线 性关系^[28], 即

$$\gamma = \gamma_0 + \partial_\Gamma \gamma (\Gamma - \Gamma_0), \qquad (8)$$

式中 $\partial_{\Gamma\gamma}$ 为表面张力随活性剂浓度变化曲线的斜率, γ_0 为初始表面张力, Γ_0 为初始活性剂浓度.定 义表面弹性 $E = -\Gamma_0 \partial_{\Gamma\gamma}$,则(8)式可变为

$$\gamma = \gamma_0 - E\left(\frac{\Gamma - \Gamma_0}{\Gamma_0}\right). \tag{9}$$

因考虑可溶性活性剂且浓度远低于CMC,则 表面弹性与极限膨胀弹性 ε 关系为^[5-7]

$$E = \frac{\varepsilon}{1 + (h/2)(c/\Gamma)},\tag{10}$$

表面和内部活性剂浓度的控制方程为

$$\Gamma_t + (\Gamma u_x^{\rm s}) = D^{\rm s} \Gamma_{xx} + J_{\Gamma c}, \qquad (11)$$

$$c_t + uc_x + wc_y = D^{\mathrm{b}}(c_{xx} + c_{yy}),$$
 (12)

$$J_{\Gamma c} = k_1 c^{\rm s} - k_2 \Gamma, \tag{13}$$

式中 Γ 和c分别为液膜表面和内部活性剂浓度, $J_{\Gamma c}$ 为吸附通量, k_1 和 k_2 分别为吸附率和解吸附 率, D^{s} 和 D^{b} 为表面和内部扩散系数, c^{s} 为运动到 表面处的内部活性剂分子浓度.

2.2 无量纲化

采用如下无量纲变换式,上标"[^]"表示无量纲 变量:

$$(x, y, h) = l(\hat{x}, \delta\hat{y}, \delta\hat{h}), \quad (u, w) = U(\hat{u}, \delta\hat{w}),$$

$$t = \frac{l}{U}\hat{t}, \quad p = \frac{\mu U}{\delta^2 l}\hat{p}, \quad \Gamma = \Gamma_0\hat{\Gamma}, \quad \gamma = \gamma_0\hat{\gamma},$$

$$(E, \varepsilon) = \frac{\mu U}{\delta}(\hat{E}, \hat{\varepsilon}), \quad (\kappa^{\rm s} + \mu^{\rm s}) = \frac{\mu U/h_0}{U/l^2}\hat{S},$$

$$c = \frac{\Gamma_0}{\beta h_0}\hat{c} = \frac{k_2\Gamma_0}{k_1}\hat{c}, \quad K^{\rm s} = \frac{k_2l}{U}, \quad (14)$$

式中, $\delta = h_0/l \ll 1$, 满足润滑理论; h_0 为初始液 膜厚度; l 为动态弯月面长度; D 为弯月面半径, 且 满足 $l = (h_0 D^2)^{1/3}$; β 为难溶性系数, $\beta \to 0$, 活 性剂高度可溶, $\beta \to \infty$, 接近不溶状态; 特征速度 $U = \rho g h_0^2 / \mu$.

将 (14) 式代入 (1)—(13) 式中进行无量纲化, 结合润滑理论略去二阶小量.由连续性方程和运动 方程可得

$$\hat{u}_{\hat{x}} + \hat{w}_{\hat{y}} = 0, \tag{15}$$

$$0 = -\hat{p}_{\hat{x}} + \hat{u}_{\hat{y}\hat{y}} + 1, \tag{16}$$

$$0 = -\hat{p}_{\hat{y}}.\tag{17}$$

由运动学边界条件和应力平衡边界条件可得

$$\hat{w} = \hat{h}_{\hat{t}} + \hat{h}_{\hat{x}}\hat{u},\tag{18}$$

$$-\hat{p} = \hat{h}_{\hat{x}\hat{x}},\tag{19}$$

$$\hat{u}_{\hat{y}} = -\hat{E}\hat{\Gamma}_{\hat{x}} + \hat{S}\hat{u}_{\hat{x}\hat{x}}.$$
(20)

由可溶性活性剂表面弹性和极限膨胀弹性关系 式可得

$$\hat{E} = \frac{\hat{\varepsilon}}{1 + (\hat{h}/2)(\hat{c}/\beta\hat{\Gamma})}.$$
(21)

由表面和内部活性剂浓度可得

$$\hat{\Gamma}_{\hat{t}} + (\hat{\Gamma}\hat{u})_{\hat{x}} = \frac{1}{Pe}\hat{\Gamma}_{\hat{x}\hat{x}} + K^{\rm s}(\hat{c} - \hat{\Gamma}), \qquad (22)$$

$$\hat{c}_{\hat{t}} + \hat{u}\hat{c}_{\hat{x}} + \hat{w}\hat{c}_{\hat{y}} = \frac{1}{Pe^{\mathbf{b}}} \left(\hat{c}_{\hat{x}\hat{x}} + \frac{1}{\delta^2} \hat{c}_{\hat{y}\hat{y}} \right).$$
(23)

对内部活性剂浓度,假设活性剂在垂直流动方向上扩散速度很快^[30],即该方向浓度几乎无变化,可将*c*分解为平均量*c*₁和很小扰动量*c*₂,采用截面平均法,可得

$$\hat{c}_{1\hat{t}} + \hat{u}\hat{c}_{1\hat{x}} = \frac{1}{\hat{h}Pe^{\mathbf{b}}} (\hat{h}_{\hat{x}}\hat{c}_{1\hat{x}} + \hat{h}\hat{c}_{0\hat{x}\hat{x}}) - \frac{\beta}{h}(\hat{c}_{1} - \hat{\Gamma}).$$
(24)

经推导可得液膜厚度 \hat{h} ,液膜表面速度 \hat{u} ,表面活性 剂浓度 $\hat{\Gamma}$ 和内部活性剂浓度 \hat{c}_1 的偏微分演化方程 组为(为描述方便,省略上标"[^]"和下角标"1"):

$$h_t + \left[\frac{hu^s}{2} + \frac{1}{12}h^3(h_{xxx} + 1)\right]_x = 0, \qquad (25)$$

$$Su_{xx}^{s} - \frac{\varepsilon}{1 + (h/2)(c/\beta\Gamma)}\Gamma_{x} + \frac{1}{2}(h_{xxx} + 1)h$$
$$- \frac{u^{s}}{2} = 0$$
(26)

$$-\frac{1}{h} = 0, \tag{26}$$

$$\Gamma_t + (\Gamma u^{\mathrm{s}})_x = \frac{1}{Pe} \Gamma_{xx} + K^{\mathrm{s}}(c - \Gamma), \qquad (27)$$

$$c_{t} + \left[\frac{1}{12}(h_{xxx} + 1)h^{2} + \frac{u}{2}\right]c_{x}$$
$$= \frac{1}{hPe^{b}}(h_{x}c_{x} + hc_{xx}) - \frac{\beta}{h}(c - \Gamma), \qquad (28)$$

式中 ε 和 β 分别代表表面弹性和溶解度的影响,即 排液过程将受上述因素的影响或控制.将(25)式去 掉非定常项 h_t 和重力项 $(1/12h^3)_x$,(26)式中去掉 重力项1/2h后,并将 β 设置为无穷大,吸附系数 K^s 设置为0,即可简化成Seiwert等^[12]所给不溶性活 性剂垂直液膜排液模型.若只将 β 设置为无穷大, 吸附系数 K^s 设置为0,也可简化为本课题组前期提 出的不溶性活性剂垂直液膜排液模型^[14].(27)式 中 $K^s(c - \Gamma)$ 为无量纲活性剂吸附通量,下文中用 $J_{\Gamma c}$ 表示.

2.3 边界条件

液膜顶端(x = 0)固定在框架上,液膜厚度恒定,且无液体流动,

$$h(0,t) = 1, \quad u^{s}(0,t) = 0.$$
 (29)

液膜底端 (x = L) 与液池相连接, 并形成弯月面, 由 Young-Laplace 方程^[31]可知, 该处液膜厚度的一阶及二阶导数满足

$$h_x(L,t) = 10,$$

$$h_{xx}(L,t) = \{2[\delta^{-1} - h_x(1 + \delta^2 h_x^2)^{-1/2}] \times (1 + \delta^2 h_x^2)^3\}^{1/2}.$$
 (30)

顶端无表面活性剂流动,

$$\Gamma_x(0,t) = c_x(0,t) = 0.$$
 (31)

2.4 初始条件

液膜厚度和活性剂浓度初始条件为

$$h(x,0) = g_0 + (g_1 - g_0)x/L, 0 \le x \le L,$$
(32)

$$\Gamma(x,0) = c(x,0) = m_0 + (m_1 - m_0)x/L,$$

$$0 \le x \le L,$$
(33)

式中 $m_0 = 0.5, m_1 = 1.0.$

3 数值模拟

采用 FreeFem 程序求解演化方程组(25)—(28)式,根据液膜流动尺度选取0 < x < 37.5 的一维区域,在满足精度和效率的前提下,将计算域划分为100个均匀网格参照文献[9,28,32],文中所取参数和范围如表1所列,下文模拟中无量纲参数的选取均以此为基础.

有量纲参数	符号	典型值或范围	无量纲参数	定义	取值	
动态弯月面长度	l	0.036 mm (0.01—0.5 mm) 小量 $\delta = h_0/l$		$\delta = h_0/l$	0.028	
初始液膜厚度	h_0	$1~\mu m~(0{}100~\mu m)$	内部 Pelect 数	$Pe^{\rm b} = Ul/D^{\rm b}$	0.03—300	
极限膨胀弹性	ε	0—1000 mN/m	极限膨胀弹性	$\hat{\varepsilon} = \varepsilon \delta / (\mu U)$	0—3000	
动力黏度	μ	$10 \text{ mPa} \cdot \text{s}$	难溶性系数	$\beta = k_1/(k_2h_0)$	0.1 - 100	
流速	U	$0.77~{\rm mm/s}~(0.24{}1.8~{\rm mm/s})$	吸附系数	$K^{\rm s} = k_2 l/U$	0.01 - 100	

表 1 典型尺度及无量纲参数范围 Table 1. Typical scale and dimensionless parameters in experiments.

4 模拟结果与分析

本文考虑表面弹性对可溶性活性剂垂直液膜 排液过程的影响,且(21)式表明表面弹性由液膜厚 度、极限膨胀弹性、溶解度和浓度控制.由此,溶解 度和极限膨胀弹性在垂直液膜排液过程中的耦合 作用不可或缺,下文首先对不同溶解度的液膜进行 分析,然后再考虑一般溶解度时极限膨胀弹性对排 液的影响.

4.1 溶解度对垂直液膜排液的影响

本节首先给出难溶性系数 $\beta = 20$,吸附系数 $K^{s} = 1$,极限膨胀弹性 $\varepsilon = 10$,表面和内部 Pelect 数分别取 Pe = 100, $Pe^{b} = 100$ 的液膜排液演化特 征. 然后分析 β 取不同值时溶解度对液膜排液影 响,如无特殊说明其余参数保持不变.

图 2 为难溶性系数 $\beta = 20$,吸附系数 $K^s = 1$ 时 (活性剂溶解度较低,表面与内部活性剂浓度较 快达到平衡)的垂直液膜排液特征.排液初期,由 于重力作用较大,液膜迅速变薄(图 2 (a)),并产生 4 个排液特征区: 1)液膜顶端固定在固体线框,且 满足 Young-Laplace 方程^[31],由此产生一弯月面; 2)中间区域液膜较平滑,曲率几乎为零; 3)在液 膜底端,液体在重力、表面张力及毛细抽吸等相 互作用下发生振荡而产生毛细波^[33]; 4)与液池 相连处同样形成一弯月面.此时表面速度较大 (图 2 (b)),流体带动表面活性剂流向底端(图 2 (c) 和图 2 (d)). t = 1时,活性剂在液膜表面的底部囤 积,并在 x = 30以下发生活性剂解吸附现象,而上 部由于活性剂浓度降低,液膜内部活性剂吸附到表 面,促使液膜表面和内部活性剂浓度再次达到平衡 (图2(e)). 活性剂重新分布致使液膜上部表面张力 大,下部表面张力小,由此产生与重力相反的马兰 戈尼效应. 随演化进行,马兰戈尼效应逐渐增强, 表面速度不断降低,并在t = 10时出现表面速度停 滞点(图2(b)). 停滞点下部,马兰戈尼效应强于重 力作用,表面速度为负值,出现逆流现象,停滞点上 部重力仍占主要作用. 而在t = 100时,几乎整个液 膜表面速度均为负值. Langevin^[6]指出对于含可 溶性表面活性剂的液膜排液过程,较薄液膜比较厚 液膜的弹性更大,这与图2(f)中的特征一致.

为进一步研究具有不同溶解度的表面活性剂 的液膜演化特征,图3和图4显示了 $\beta = 1, 10, 20$ 时在典型时刻下的液膜厚度和表面速度. $\beta = 1$ 时, 活性剂溶解度较高,液膜排液最快; $\beta = 10和20$ 时,液膜更易发生逆流,液膜存续时间较长.图5为 $\beta = 1, 10, 20$ 时表面弹性随时间的变化,液膜排液 初期($t \leq 1$),表面弹性几乎保持不变,活性剂溶解 度越低,初始表面弹性值越大.随排液进行,弹性 均逐渐增大并最终无限接近极限膨胀弹性值 ε .由 上述可知, β 值增加,活性剂溶解度降低,初始表面 弹性和液膜厚度随之增大,表面速度降低,液膜稳 定性提高.

Saulnier 等^[34]选用两种非离子表面活性剂 C₁₂E₆和β-C₁₂G₂进行垂直液膜排液实验,并验 证 两种活性剂溶液产生的薄膜稳定性. 结 果表明,在毛细数为10⁻⁶—10⁻⁴范围内,两种 活性剂薄膜排液时间相差无几,但破裂前 C₁₂E₆薄膜厚度为80 nm,β-C₁₂G₂薄膜厚度为 20 nm. Angarska等^[35]同样研究了C₁₂E₆和β-C₁₂G₂不同比例时混合溶液产生泡沫膜的稳定 性,表明在1 CMC浓度,薄膜半径为0.05 mm限 定范围内,β-C₁₂G₂: C₁₂E₆ = 50:1 配比时的泡沫

图 2 液膜排液特征 (a) 液膜厚度; (b) 表面速度; (c) 表面活性剂浓度; (d) 内部活性剂浓度; (e) 吸附通量; (f) 表面弹性 Fig. 2. Characteristics of film drainage: (a) Film thickness; (b) surface velocity; (c) surfactant concentration at the surface; (d) surfactant concentration in the film; (e) the adsorption-desorption flux; (f) surface elasticity.

Fig. 3. Film thickness at the early and late stages of evolution at different β values.

214703-6

变薄速率 α (ln $h = \ln h_0 - \alpha t$)为0.036 m/s, 而 β -C₁₂G₂: C₁₂E₆ = 1:1时变薄速率为0.028 m/s. 由表²可知C₁₂E₆和 β -C₁₂G₂的难溶度数据分别 为0.1和0.0018 m, 即 $C_{12}E_6$ 较 β - $C_{12}G_2$ 更难溶于 水,两实验均证实含 $C_{12}E_6$ 的薄膜比含 β - $C_{12}G_2$ 的 更稳定. 另外, Santini等^[22]通过实验证实了含 β - $C_{12}G_2$ 比含 $C_{10}E_4$ 的泡沫膜更稳定,即活性剂溶 解度降低,系统稳定性提高. Bergeron^[19]用开放 型探针和HBM型传感器测得阳离子表面活性剂 $C_nTAB, n = 10, 12, 14$ 时 CMC 值分别为70, 20, 4 mmol/L,通过测得的表面张力和活性剂浓度关 系计算表面弹性分别为45, 47, 61 mN/m,并测量 其对应的分离压. 结果表明碳链长度增加有利于提 高系统稳定性,活性剂 CMC 与溶解度具有良好的 一致性^[17,18,36,37],进一步证实了随活性剂溶解度 降低,初始表面弹性增大、系统稳定性提高,并与本 文所得结论一致.

活性剂	$\Gamma\infty$ /mol·m ⁻²	$\begin{array}{c} \mbox{Adsorption} \\ \mbox{coefficient} \\ \mbox{\zeta/m^3 \cdot mol^{-1} \cdot s^{-1}} \end{array}$	Adsorption rate constant $k_1 = \zeta \Gamma \infty / \text{m·s}^{-1}$	Desorption coefficient $k_2 = \alpha/s^{-1}$	表面活性 $lpha/\zeta/{ m mol}\cdot{ m m}^{-3}$	计算所得 难溶度 数据/m	文献
$C_{12}E_4$	4.66×10^{-6}	30	14×10^{-5}	1056×10^{-5}		0.013^{*}	Kumar 等 [<mark>38</mark>]
$\mathrm{C}_{12}\mathrm{E}_{6}$	3.48×10^{-6}	4.0	1.4×10^{-5}	14.0×10^{-5}		0.1^{*}	
$\mathrm{C}_{12}\mathrm{E}_8$	2.67×10^{-6}	12	3.2×10^{-5}	29×10^{-5}		0.11^{*}	
$\mathrm{C}_{10}\mathrm{E}_8$	$\begin{array}{c} 1.804\times10^{-10}\\ \mathrm{mol/cm^2} \end{array}$	4.2×10^6 cm ³ /(mol·s)		5.5×10^{-4}		0.0138^{*}	Hsu 等 ^[39]
$\mathrm{C}_{10}\mathrm{E}_4$	3.85×10^{-6}				3.57×10^{-3}	$0.00107^{\#}$	Santini 等 [<mark>22</mark>]
β -C ₁₂ G ₂	$5 imes 10^{-6}$				2.78×10^{-3}	$0.0018^{\#}$	

表 2 某些非离子活性剂的吸附速率参数 Table 2. Adsorption rate parameters of some nonionic surfactants.

注: *表示数据由 k_1/k_2 计算得到; #表示数据由 $\Gamma \infty/(\alpha/\zeta)$ 计算得到.

4.2 极限膨胀弹性对垂直液膜排液影响

本节首先给出难溶性系数 $\beta = 1$,吸附系数 $K^{s} = 1$,极限膨胀弹性 $\varepsilon = 10$,表面和内部Pelect 数分别取Pe = 100, $Pe^{b} = 100$ 的液膜排液演 化特征. 然后分析ε取不同值时,极限膨胀弹性 对液膜排液影响,如无特殊说明其余参数保持 不变.

图 6 给出了极限膨胀弹性 $\varepsilon = 10$ 时的排液演化过程. 演化初期,表面速度较大,流体在重力作

用下迅速向下排液,并带动活性剂流向底端,形成的表面张力梯度产生马兰戈尼效应将弱化重力作用,使表面速度不断减小,液膜逐渐达到刚性化(图6(b)). t = 1时,液膜中上部分表面活性剂浓度低于内部浓度,内部活性剂分子吸附到表面,吸附通量为正值. 而底部浓度分别为 $\Gamma = 5.6, c = 1.4$,活性剂分子在表面的囤积促使活性剂解吸附现象

发生,此时吸附通量为负值 (图 6 (e)).活性剂分子 在内部与表面的交换和内部流体携活性剂汇入液 池的协同作用使活性剂浓度及其梯度不断降低,因 而马兰戈尼效应弱于重力作用,活性剂几乎无法发 生逆流现象.表面弹性 E 随排液进行不断增大,但 因溶解度略高,其值始终低于 $\beta = 20$ 时的弹性值 (图 6 (f) 和图 2 (f)).

图 6 液膜排液特征 (a)液膜厚度; (b)表面速度; (c)表面活性剂浓度; (d)内部活性剂浓度; (e)吸附通量; (f)表面弹性 Fig. 6. Characteristics of film drainage: (a) Film thickness; (b) surface velocity; (c) surfactant concentration at the surface; (d) surfactant concentration in the film; (e) the adsorption-desorption flux; (f) surface elasticity.

图 7 为不同位置处的液膜厚度演化特征.从 图 7 可看出,初期排液较快,在表面达到刚性化后, 液膜上部出现黑膜,厚度几乎不再发生变化,并随 时间不断向下延伸.Berg 等^[40]将线粗4 mm的金 属框以1.6 mm/s的速度从含有 2% 十二烷基硫酸 钠 (sodium dodecyl sulfate, SDS) 和4% 甘油的混 合溶液池提出, 并测量提拉膜中间部位的液膜厚 度. 用本文(14) 式对其实验所得随时间演化的液 膜厚度进行无量纲化, 并与本文模拟结果进行对比 (如图7(b)所示). 实验所得排液时间无量纲化为 1.2×10³, 与本文排液时间保持在同一个量级, 且 实验值与模拟结果变化趋势相同, 但实验所得黑膜 厚度较小. 其原因之一是实际液膜排液时黑膜厚度 h* 与初始厚度 h₀ 比值过小, 如按真实比例选取δ, 则计算过程耗时过长, 因此模拟中对无量纲液膜厚 度进行了适度放大.

由图8可知,随 ε 值增大,液膜表面弹性也随 之增加,即不同 ε 值的液膜排液特征与表面弹性对 液膜排液的影响具有一致性.为进一步研究表面 弹性对可溶性活性剂液膜排液过程的影响,图9和 图10显示了极限膨胀弹性 ε 取值不同时在典型时 刻下的液膜厚度和表面速度.由图9可知,t = 10时,与 $\varepsilon = 1$,10,100,1000相对应的液膜厚度依次 增加,表面速度依次降低;且 $\varepsilon = 100$,1000情形下 的液膜出现逆流现象,弹性值越大,逆流现象越明 显.在t = 100前液膜始终保持随 ε 增大,厚度增 加、表面速度降低的特征.此时弹性较小的液膜流 动性更强,表面活性剂迅速流向底端,活性剂吸附 和解吸附现象更明显(图11 (a)和图12 (a)).

图 8 不同极限膨胀弹性值时液膜表面弹性对比 Fig. 8. Surface elasticity of evolution at different ε values.

而当t≥100时,液膜排液便不再遵循上述规 律. 此时较大弹性($\varepsilon = 100, 1000$)与较小弹性 $(\varepsilon = 1, 10)$ 的液膜具有不同的排液特征: 弹性较 小时, 液膜始终未发生逆流. 当t = 500, x > 30时, $\varepsilon = 10$ 的液膜表面活性剂浓度及梯度均较 大(图11(b)), 正向的马兰戈尼效应略强, 此时 液膜厚度较 $\varepsilon = 1$ 更厚(图9(d)),表面速度较小 (图 10 (d)). x < 30 时, $\varepsilon = 10$ 的液膜表面活性剂 浓度梯度与上部相反,因而表面速度略大于 $\varepsilon = 1$ 的液膜表面, 液膜厚度在x = 30附近出现较大差 值. 而当弹性较大时, 排液后期液膜上部活性剂吸 附现象更明显(图12(b)).此时由于上部活性剂分 子从液膜内部吸附至表面,底部活性剂分子由表面 解吸附至内部,致使液膜上部活性剂浓度较高,下 部较低(图11(d)),产生逆向的马兰戈尼效应,促使 液膜向下排液.此时, $\varepsilon = 100, 1000$ 比 $\varepsilon = 1, 10$ 排液速率更快,液膜更薄(图9(d)和图10(d)).因 $\varepsilon = 1000$ 比 $\varepsilon = 100$ 的液膜浓度低, 表面吸附量较 少,液膜排液更为迅速.由此可知排液初期随表面 弹性增加,液膜厚度增大,流动性减弱;但排液后期 较大弹性值的液膜因产生逆向的马兰戈尼效应,排 液更快,液膜稳定性降低.

Langevin^[6]指出含可溶性活性剂的较薄液膜 比较厚液膜的弹性更大,且对扰动的阻力更小,与 不溶性活性剂特征相反.Karakashev和Nguyen^[41] 用Scheludko电池装置对不同浓度的SDS (CMC 为7.5 mmol/L)和十二烷醇(dodecanol)的混合溶液

Fig. 9. Film thickness of evolution at different ε values.

Fig. 10. Surface velocity of evolution at different ε values.

214703-10

产生的水平薄液膜进行排液实验,并通过测量表面活性剂吸附量计算表面张力与表面弹性.发现 3.5 mmol/L SDS+10 mg dodecanol和7 mmol/L SDS + 20 mg dodecanol的液膜表面弹性分别为 52.1和81.6 mN/m,排液进行到第12 s时,前者液膜厚度约为29 nm,后者液膜厚度约为30 nm,而后期液膜分别于27和23 s破裂,破裂前的厚度 为22和17 nm. Wang和Yoon^[25]分别将加入5 ×

10⁻⁵ mmol/L的NaCl的甲基异丁基甲醇 (MIBC) 和聚丙二醇 (PPG-400)的容量瓶摇动后产生大量 泡沫.并通过测量表面活性剂浓度和临界液膜厚度 计算弹性值.发现当表面张力为63 mN/m时,二者 的表面弹性分别为12和200 mN/m,平衡时液膜厚 度为110和100 nm,泡沫存续时间分别为7和3 s, 进一步证实了可溶性活性剂弹性越大,排液后期液 膜更容易失稳,这与图9呈现的特征一致.

图 11 不同极限膨胀弹性值时初期和后期表面活性剂浓度对比

图 12 不同极限膨胀弹性值时初期和后期吸附通量对比

Fig. 12. Adsorption-desorption flux at the early and late stages of evolution at different ε values.

图 13 $\varepsilon = 10$ 时可溶性活性剂与不溶性活性剂对比 (a) 液膜厚度; (b) 表面速度

Fig. 13. Evolution of soluble surfactant and insoluble surfactant film at $\varepsilon = 10$: (a) Film thickness; (b) surface velocity.

因前人所用实验方法及弹性计算公式各不相同,且实验中所用不同活性剂特性有很大差别,如 活性剂分子结构、活性剂分子质量及单分子面积、 亲水亲油基种类等均对液膜稳定性有显著影响,由 此本文模拟结果只与部分实验结果定性一致.

图 13 对比了含可溶性活性剂与不溶性活性剂 两种情形下的液膜厚度与表面速度.由图 13 可知, 在整个排液过程中含可溶性活性剂的液膜厚度较 含不溶性的液膜厚度更小,表面速度更大,并在后 期形成的黑膜更薄,且几乎不发生逆流现象.上述 特征与Lin等^[16]所得的可溶性活性剂液膜更容易 失稳结论一致.

5 结 论

表面弹性是影响可溶性活性剂垂直液膜排液 过程中必不可少的因素.排液初期,随表面弹性增 加,液膜初始厚度增大,表面更趋于刚性化.随排 液进行,较大弹性的液膜与较小弹性的液膜具有不 同的排液特征:当弹性较小时,活性剂分布使液膜 上部表面张力较大,下部表面张力较小,产生正向 的马兰戈尼效应,与重力作用相抗衡,抑制液膜排 液.当弹性较大时,由于液膜上部活性剂吸附到表 面与液膜下部表面活性剂解吸附到内部的协同作 用增强,液膜下部表面张力较大,上部表面张力较 小,产生逆向的马兰戈尼效应,促使液膜排液加速, 液膜厚度变薄,更易发生失稳.

可溶性活性剂的溶解度不同致使液膜表面的 活性剂分子吸附量有显著差异,活性剂吸附量以及 在液膜表面的分布不同产生不同的表面张力梯度, 进而影响表面弹性. 当活性剂溶解度较大 ($\beta \rightarrow 0$) 时,液膜极不稳定,很快发生破断. 随溶解度降低 (β 增大),液膜稳定性增加,表面速度降低,且更易 发生逆流,液膜表面更倾向于刚性化. 初始表面弹 性也随之增加,并随液膜变薄逐渐接近极限膨胀弹 性值.

参考文献

- Warner M R E, Craster R V, Matar O K 2004 Phys. Fluids 16 2933
- [2] Lee K S, Ivanova N, Starov V M, Hilal N, Dutschk V 2008 Adv. Colloid Interface Sci. 144 54
- [3] Afsar-Siddiqui A B, Luckham P F, Matar O K 2003 Adv. Colloid Interface Sci. 106 183

- [4] Xe J N 2007 Int. Med. Health Guid. News 13 44 (in Chinese) [谢绛凝 2007 国际医药卫生导报 13 44]
- [5] Couder Y, Chomaz J M, Rabaud M 1989 Physica D 37 384
- [6] Langevin D 2014 Annu. Rev. Fluid Mech. 46 47
- [7] Lucassen-Reynders E H, Cagna A, Lucassen J 2001 Colloids Surf. A 186 63
- [8] Mysels K J, Shinoda K, Frankel S 1959 Soap Films: Studies of Their Thinning and a Bibilography (New York: Pergammon) p116
- [9] Naire S, Braun R J, Snow S A 2001 Phys. Fluids 13 2492
- [10] Ye X M, Yang S D, Li C X 2017 Acta Phys. Sin. 66 184702 (in Chinese) [叶学民, 杨少东, 李春曦 2017 物理学 报 66 184702]
- [11] Schwartz L W, Roy R V 1999 J. Colloid Interface Sci. 218 309
- [12] Seiwert J, Benjamin D, Isabelle C 2014 J. Fluid Mech.
 739 124
- [13] Ye X M, Yang S D, Li C X 2017 Acta Phys. Sin. 66 194701 (in Chinese) [叶学民, 杨少东, 李春曦 2017 物理学 报 66 194701]
- [14] Ye X M, Li M L, Zhang X S, Li C X 2018 Acta Phys.
 Sin. 67 164701 (in Chinese) [叶学民, 李明兰, 张湘珊, 李 春曦 2018 物理学报 67 164701]
- [15]~ Yiantsios S G, Higgins B G 2010 Phys. Fluids **22** 022102
- [16] Lin C K, Hwang C C, Uen W Y 2000 J. Colloid Interface Sci. 231 379
- [17] Shi D, Gu H X, Liu X Y, Fan Q L 2004 China Surf. Deterg. Cosmet. 34 229 (in Chinese) [史东, 谷惠先, 刘晓 英, 樊全莲 2004 日用化学工业 34 229]
- [18] Luo J, Gao B J, Wang J F, Cao Y, Yuan H 2000 Acta Polym. Sin. 1 262 (in Chinese) [罗娟, 高保娇, 王久芬, 曹 远, 袁宏 2000 高分子学报 1 262]
- [19] Bergeron V 1997 Langmuir 13 3474
- [20] Monroy F, Kahn J G, Langevin D 1998 Colloids Surf. A 143 251
- [21] Lucassen J, Tempel M V D 1972 Chem. Eng. Sci. 27 1283
- [22] Santini E, Ravera F, Ferrari M, Stubenrauch C, Makievski A, Krägel J 2007 Colloids Surf. A 298 12
- [23] Beneventi D, Pugh R J, Carré B, Gandini A 2003 J. Colloid Interface Sci. 268 221
- [24] Georgieva D, Cagna A, Langevin D 2009 Soft Matter 5 2063
- [25] Wang L, Yoon R H 2008 Int. J. Miner. Process. 85 101
- [26] Wang L, Yoon R H 2006 Colloids Surf. A 282 84
- [27] Karakashev S I, Ivanova D S 2010 J. Colloid Interface Sci. 343 584
- [28] Champougny L, Scheid B, Restagno F, Vermant J, Rio E 2015 Soft Matter 11 2758
- [29] Seiwert J, Cantat I 2015 Colloids Surf. A 473 2
- [30] Jensen O E, Grotberg J B 1993 Phys. Fluids A 5 58
- [31] Zhao Y P 2012 Physical Mechanics of Surface and Interface (Beijing: Science Press) pp185, 186 (in Chinese)
 [赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第 185, 186 页]
- [32] Afsarsiddiqui A B, And P F L, Matar O K 2003 Langmuir 19 703

- [33] Ruschak K J 2010 Aiche J. $\mathbf{33}$ 801
- [34] Saulnier L, Restagno F, Delacotte J, Langevin D, Rio E 2011 Langmuir 27 13406
- [35] Angarska J K, Ivanova D S, Manev E D 2015 Colloids Surf. A 481 87
- [36] Xiong Z 2012 Farm Prod. Process. 3 67 (in Chinese) [熊 拯 2012 农产品加工 3 67]
- [37] Xiong Y, Chen D J, Wang J, Zhang Q, Wu W G, Yao Y 2008 J. Oil Gas Techn. 30 136 (in Chinese) [熊颖, 陈

大钧, 王君, 张谦, 吴文刚, 尧艳 2008 石油天然气学报 **30** 136]

- [38] Kumar N, Couzis A, Maldarelli C 2003 J. Colloid Interface Sci. 267 272
- [39] Hsu C, Chang C, Lin S 1999 Langmuir 15 1952
- [40] Berg S, Adelizzi E A, Troian S M 2005 Langmuir 21 3867
- [41] Karakashev S I, Nguyen A V 2007 Colloids Surf. A 293 229

Effect of surface elasticity on drainage process of vertical liquid film with soluble surfactant^{*}

Ye Xue-Min Li Ming-Lan Zhang Xiang-Shan Li Chun-Xi[†]

(Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, North China Electric Power University, Baoding 071003, China)

(Received 25 May 2018; revised manuscript received 3 July 2018)

Abstract

The aim of the present paper is to investigate the gravity-driven draining process containing soluble surfactant when considering the coupling effects of surface elasticity and surfactant solubility. A nonlinear coupling evolution equation including liquid film thickness, surface velocity and surfactant concentration (both on the surface and in the bulk) is established based on the lubrication theory. Assuming that the top of liquid film is attached to the wireframe and the bottom is connected to a reservoir, the drainage evolution is simulated with the software called FreeFem. The effects of surface elasticity and solubility on liquid film draining are discussed under their coupling. The simulation results show that the surface elasticity is an indispensable factor in the process of liquid film drainage with soluble surfactant, and the surfactant solubility also has an important influence on the process. At the initial stage of liquid draining, the initial thickness of liquid film increases with increasing surface elasticity, and the surface tends to be more rigid; with the drainage proceeding, the liquid film with high and low elasticity illustrate different notable draining features: in the case of low surface elasticity, the distribution of surfactant forms a surface tension gradient from top to bottom on the film surface, leading to positive Marangoni effect that counteracts gravity. However, in the case of high elasticity, the film surface presents a surface tension gradient from bottom to top, resulting in a reverse Marangoni effect, which accelerates the draining and makes the film more susceptible to instability. The solubility of surfactant dominates the number of adsorbent molecules on the film surface, which affects the surface elasticity. When the solubility of the surfactant is great $(\beta \rightarrow 0)$, the film is extremely unstable, and it breaks down quickly. As the solubility decreases (namely, β increases), the stability of the film increases, and the initial surface elasticity also rises. The surface elasticity gradually approaches to the limiting dilational elasticity modulus due to the film being thinner.

Keywords: vertical film, soluble surfactant, surface elasticity, solubility, drainage processPACS: 47.61.-k, 47.85.mf, 47.61.Fg, 47.55.dkDOI: 10.7498/aps.67.20181020

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11202079) and the Fundamental Research for the Central Universities, China (Grant No. 13MS97).

[†] Corresponding author. E-mail: leechunxi@163.com