物理学报 Acta Physica Sinica

Yb 浓度对功率依赖的上转换荧光色彩的敏感度调控

高当丽 李蓝星 冯小娟 种波 辛红 赵瑾 张翔宇

Regulation of sensitivity of Yb concentration to power-dependent upconversion luminescence colors

Gao Dang-Li Li Lan-Xing Feng Xiao-Juan Chong Bo Xin Hong Zhao Jin Zhang Xiang-Yu

引用信息 Citation: Acta Physica Sinica, 67, 223201 (2018) DOI: 10.7498/aps.67.20181167 在线阅读 View online: http://dx.doi.org/10.7498/aps.67.20181167 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I22

您可能感兴趣的其他文章 Articles you may be interested in

低速 Xe^{q+}(4=q=20) 离子与 Ni 表面碰撞中的光辐射

Visible light emission from surface of nickel bombarded by slow Xe^{q+} (4 = q = 20) ion 物理学报.2018, 67(8): 083201 http://dx.doi.org/10.7498/aps.67.20172570

Eu 原子 4f⁷6snlRydberg 态的研究

Study of Eu 4f⁷6snl Rydberg states 物理学报.2017, 66(9): 093201 http://dx.doi.org/10.7498/aps.66.093201

He原子体系中偶极子响应的周期性量子相位调控的理论研究

Theoretical study of the periodic quantum phase modulation of the dipole response in atomic He 物理学报.2015, 64(24): 243201 http://dx.doi.org/10.7498/aps.64.243201

低速⁸⁴Kr^{15+,17+}离子轰击GaAs单晶 Slow ions⁸⁴Kr^{15+,17+} bombardment on GaAs

物理学报.2014, 63(5): 053201 http://dx.doi.org/10.7498/aps.63.053201

Yb浓度对功率依赖的上转换荧光色彩的 敏感度调控^{*}

高当丽^{1)†} 李蓝星¹⁾ 冯小娟¹⁾ 种波¹⁾ 辛红¹⁾ 赵瑾¹⁾ 张翔宇²⁾

1) (西安建筑科技大学理学院,西安 710055)

2) (长安大学理学院,西安 710064)

(2018年6月13日收到;2018年9月14日收到修改稿)

控制激发光功率密度是一种调控红绿荧光比率的简单方法. 然而, 大多数上转换系统对功率的调控并不 敏感. 本文通过柠檬酸钠辅助的水热法, 合成了一系列具有不同 Yb浓度掺杂的 NaYF4:Yb/Ho 微米棒. 通过 激光共聚焦显微镜系统, 研究了 Yb浓度和激发功率密度依赖的 NaYF4:Yb/Ho 微米棒的上转换荧光特性. 发 射谱和同步荧光成像图案表明: 荧光红绿比率不仅敏感于激发功率, 而且敏感度依赖于 Yb浓度. 随着 Yb浓 度的增加, 功率调控的红绿比率的敏感度增加, 这暗示了功率调控的红绿比率的敏感度可以作为一种度量和 评估 Yb 掺杂浓度的有效途径和方法. 通过上/下转换发射谱、激发谱和功率依赖关系, 揭示了功率调控红绿 比率的机理, 并提出了荧光色彩敏感于功率调控的上转换系统具有的特征和判据. 本研究为设计和合成高敏 感度的功率调控的上转换材料提供了理论基础和实验数据.

关键词: Yb浓度, 上转换, 荧光色彩, 敏感度调控 PACS: 32.30.Jc, 42.70.-a, 78.55.-m, 78.67.-n

DOI: 10.7498/aps.67.20181167

1引言

稀土上转换发光是指两个或多个长波长低能 光子转换成一个短波长高能光子的过程.早在20 世纪60年代中期, Auzel^[1]就证实Yb³⁺和Er³⁺配 对能显著提高上转换效率,并提出了能量转移上转 换机理.同时,伴随着纳米科技的发展,稀土微/纳 上转换材料凭借其优良的荧光特性如锐线发射和 无背底荧光等被广泛应用于生物诊断、温度传感、 医学成像和光子器件等领域^[2-7].然而,无人工干 预的稀土离子发光一般表现为其特征发射,很难满 足各种实际应用.例如:长波近红外或红色荧光适 于医学领域深层生物组织成像^[8,9];短波长紫外或 蓝色光子有利于触发光化学反应^[10];高纯度单色 多带光谱适用于多路成像和编码技术^[11];而热耦 合双色带发射则在温度探针领域独具优势^[12-14]. 为了适应各种应用,人工光谱调控技术随之产生. 常见的光谱调控手段主要包括掺杂、构造核-壳结 构、改变晶相、颗粒尺寸和外界抽运激光参数(包括 功率密度和波长)等.掺杂是以牺牲荧光能量效率 为前提的调控,而核-壳结构虽然有效地避免了离 子共掺杂导致的浓度淬灭问题,但制备过程繁琐冗 长且产量低,难以推广和满足商业应用.颗粒尺寸 对光谱的调控仅限于微调,而晶相调控受制于材料 的内在结构.功率调控虽然是一种常见的光谱调控 方法,但由于缺少相关的调控理论和判据,不能提 前预测哪些上转换系统对功率调控敏感,这使实验 充满了随机和偶然.同时,也严重制约了功率敏感 型上转换材料的人工设计.因此,研究功率对光谱

© 2018 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金(批准号: 11604253)、陕西省自然科学基础研究计划(批准号: 2018JM1036)、中央高校基本科研业务费(批准号: 310812171004, 310812161001)、中国博士后科学基金(批准号: 2015M570816)、2017年省级大学生创新创业训练计划项目(批准号: 1229)和西安建筑科技大学本科生科研训练(SSRT)计划资助的课题.

[†]通信作者. E-mail: gaodangli@163.com

调控的内在机理和判据迫在眉睫.

众所周知, 基质在上转换过程中扮演着重要角 色,为了获得有效的上转换过程,基质材料要求具 有低的声子能量和高的稀土离子溶解度. NaYF4 是目前公认的具有低声子能量和最佳上转换效率 的基质材料之一[15-23]. 本文通过柠檬酸钠辅助 的水热法, 合成了一系列具有不同 Yb浓度掺杂的 NaYF₄:Yb/Ho微米棒. 通过激光共聚焦显微镜系 统研究了入射光功率密度依赖的NaYF4:Yb/Ho微 米棒的上转换光谱特性.结果表明,不同Yb掺杂 浓度的NaYF4:Yb/Ho微米棒均展现了强烈的上转 换荧光和携带了丰富信息的荧光空间分布图案,这 在显示、防伪和成像等领域具有重要的应用价值. 发射谱和荧光图案也清楚地表明荧光红绿比率不 仅依赖于Yb浓度,而且敏感于激发光功率. 通过 上/下转换光谱、激发谱和功率依赖关系,研究了功 率调控的红绿比率变化的内在机理,并提出了荧光 色彩敏感于功率调控的上转换材料具有的特征和 判据,为合成和设计敏感型功率调控上转换材料提 供了理论基础和指导思想.

2 实 验

2.1 实验原料

实验所用试剂Y₂O₃(4N,99.99%)、Ho₂O₃(4N, 99.99%)、Yb₂O₃(4N, 99.99%)、二水合柠檬酸三钠 (CitNa₃. 2 H₂O, GR, 99.5%)、NH₄F(GR, 96.0%) 和氨水(GR, 25.0%—28.0%)均购于国药集团化学 试剂有限公司.实验中所用水为去离子水.

2.2 样品制备

稀土硝酸盐溶液的配制:将Y₂O₃、Yb₂O₃和 Ho₂O₃分别溶解在适量稀硝酸中,加热、搅拌,至溶 液变成透明的胶状物时,加入定量的去离子水,继 续搅拌,直至胶状物质变澄清,配成0.2 mol·L⁻¹的 Y (NO₃)₃、Ho(NO₃)₃和Yb(NO₃)₃ 硝酸盐溶液作 为储备液备用.

NaYF₄:Yb³⁺/Ho³⁺ 微米棒采用柠檬酸钠辅助 的水热方法合成^[23,24]. 制备过程如下:取一定量 配制好的Yb(NO₃)₃、Y(NO₃)₃和Ho(NO₃)₃溶液 按照x:(0.995 - x):0.005(x = 0.05, 0.1, 0.2, 0.4 和0.6)的摩尔配比于烧杯中混合均匀,再按照柠檬 酸根 (Cit³⁻) 与稀土离子 (RE³⁺) 的摩尔比为1:1 的比值逐滴加入不同量的0.4 mol·L⁻¹的CitNa₃ 溶液,室温下磁力搅拌30 min. 然后加入6 mL的 NH₄F 溶液 (1.0 mol·L⁻¹) 继续搅拌15 min,用氨水 调节溶液的 pH 值约为8.5, 加水到40 mL. 最后,将 混合均匀的溶液转入50 mL 的反应釜内,在220 °C 条件下水热反应18 h. 自然冷却至室温,取出反应 釜离心清洗、真空干燥得到样品.

2.3 样品的表征方法

样品结构采用D/Max2550VB+/PC X射线 衍射仪(XRD, Cu靶Kα (40 kV, 40 mA), 波长 0.15406 nm) 进行分析, 扫描速度10°/min, 步 长0.1°. 粒子的形貌和尺寸通过日本日立公司 (S-4800, Hitachi) 型扫描电子显微镜 (SEM) 进行 观察. 能量色散的 X-射线 (EDX) 分析仪连接到场 发射扫描电镜上用来分析样品的化学成分.下 转换光谱和激发谱采用氙灯作为光源(波长范围 300-900 nm)进行测量. 利用波长为980 nm的 连续激光器作为共聚焦激发光源对上转换荧光材 料进行光谱学表征. 荧光信号通过光学显微镜聚 焦系统 $(NA = 1.40, 1000 \times , 油寝)$ 输送到 CCD 摄 谱系统(CCD, ACTON, SP2750i, 0.008 nm)以及 0.75 m 单光栅单色仪和光电倍增管 PD471 (PMT, ACTON), 最后输送到电脑分析完成. 同步荧光图 案通过共聚焦显微镜捆绑Canon 75 600D相机俘 获. 所有的光谱测量均在室温下进行.

3 实验结果与讨论

图 1 展示了在Cit³⁻/RE³⁺比值为1:1,前 驱物溶液pH为8.5的条件下制备的NaYF4: Yb³⁺/Ho³⁺ (20%/0.5%)和NaYF4:Yb³⁺/Ho³⁺ (60%/0.5%)微米晶体的SEM照片及相应的XRD 图谱.由图1(a)和图1(b)可看出,所有样品形状 均为微米棒,在不同Yb掺杂浓度的样品中,形貌和 尺寸基本保持不变,均展示了棒状结构,棒的直径 和长度分别为1—2 μ m和15—20 μ m.所有样品的 XRD衍射谱均与六方相 β -NaYF4的标准谱一致, 即制备的样品均为六方相NaYF4结构(图1(c)). 仔细观察发现,和图1(c)底部的标准XRD谱相比, 谱峰向高角度偏移,暗示了Yb和Ho的掺杂导致了 晶胞的收缩.

图 1 (a), (b) NaYF4:Yb³⁺/Ho³⁺(20%/0.5%) 和 NaYF4:Yb³⁺/Ho³⁺(60%/0.5%) 微米棒的 SEM 照片及 (c) XRD 图 谱, 图 (c) 中内插图为选区放大的 XRD 衍射谱

Fig. 1. SEM micrographs (a), (b) and XRD patterns (c) of the as-synthesized NaYF₄:Yb³⁺/Ho³⁺ (20%/0.5%) and NaYbF₄:Yb³⁺/Ho³⁺ (60%/0.5%) microrods. Inset in (c) is the enlarged XRD patterns.

结构决定性能和深层次的应用. 为了进 一步探究其荧光性能,我们首先采用共聚焦显 微镜系统研究了具有不同Yb掺杂浓度的单颗 粒NaYF₄: Yb³⁺/Ho³⁺微米棒晶体的上转换荧 光特性. 注意, 图中单颗粒样品均采用波导激 发方式(波导激发方式指入射激光光束和一维 棒 c 轴方向成大于临界角的夹角入射时,入射 光线在管中发生全反射沿管轴方向传播而激 发整个棒管的现象). 图2展示了在980 nm 红 外激光激发下,一系列 Yb^{3+}/Ho^{3+} 掺杂 $NaYF_4$ 样品的上转换荧光光谱及荧光空间分布图案. 图2(a)中所有光谱峰均源自于Ho³⁺离子的特征 发射, 分别源于Ho³⁺离子的⁵F₃ \rightarrow ⁵I₈ (472—495 nm), ${}^{5}S_{2} \rightarrow {}^{5}I_{8} (525 - 555 \text{ nm}), {}^{3}K_{7}, {}^{5}G_{4} \rightarrow {}^{5}I_{8}$ (570-590 nm) 和 ⁵F₅ \rightarrow ⁵I₈ (630- 670 nm) 的跃 迁^[16,25-30]. 从图2(a)发射谱和图2(b)荧光强 度信息雷达图可清楚地看出,随着Yb浓度的 增加,总荧光强度和红色荧光强度均先增加 后减小. 而绿色荧光强度随着Yb浓度的增加 急剧减小. 当Yb浓度从5%增加到60%,红绿 比率从2增加到26. 容易理解在NaYF₄:Yb/Ho (60%/0.5%)中,由于Ho到Yb的能量反向传递 (包括Ho: ${}^{5}S_{2}+Yb:{}^{2}F_{7/2} \rightarrow Ho:{}^{5}I_{6}+Yb:{}^{2}F_{5/2}$ 和 Ho:⁵F₅+Yb:²F_{7/2} → Ho:⁵I₇+Yb:²F_{5/2}), 总荧光强 度出现了一定程度的淬灭^[31,32].图2(c)—(g)中分 别显示单颗粒和颗粒聚集体样品的荧光空间分布 图案,在相同条件激发下,荧光图案的真实色彩随

着 Yb浓度的增加,从绿色变为红色.在 Yb 掺杂浓 度为40% 及以上的样品中,单颗粒样品荧光图案显 示为红色哑铃状.而在颗粒聚集样品中,中间部分 显示红色,周围颗粒泛绿,这可能是由于激发功率 分布不均匀造成的^[16,26].

激发功率密度调控是一种常见的光谱调控方 式^[18],遗憾的是大多数上转换系统对激发光功 率密度调控并不敏感.为了进一步调控红绿比 率,图3展示了激发光功率密度变化对一系列不 同Yb掺杂浓度的NaYF4:Yb/Ho聚集堆样品的红 绿比率的调控.对比图3(a)—(e)的发射谱,可以 明显地看出, 随Yb 掺杂浓度的增大, 绿色荧光 (520-560 nm)相对谱峰强度急剧减小,而红色荧 光的相对谱峰强度逐渐增加. 图3(f)进一步定量 描述了红绿比率随Yb浓度的增加而升高. 图3(g) 和图3(h)展示了各种Yb掺杂浓度样品中,红色 和绿色荧光强度对功率的依赖关系. 从图3(g) 和图3(h)中可以看出,功率导致的各色荧光强 度增加的快慢程度即敏感度 $\Delta R_{\rm red/green}/\Delta P$ 依赖 于Yb浓度.为了定量描述,我们定义功率调控 的红绿比率的敏感度 $\Delta R_{\rm red/green}/\Delta P$ 为每升高或 减少单位激发功率时红绿比率的变化量,其中, ΔP 为功率的变化量, $\Delta R_{\rm red/green}$ 为红绿荧光强度 比率的变化量. 我们发现: 随着Yb浓度从5% 增 加到60%, 敏感度从0.1% 增加13.0% (从图3(f) 中 计算获得),这暗示了功率调控的红绿比率可以 作为一种度量和评估Yb掺杂浓度量的途径和方

法. 总之, 以上实验现象表明, 在一系列不同 Yb 浓度掺杂的样品中, 红绿比率的敏感度强烈地依赖于 Yb 浓度.

我们知道,在上转换过程中,当激发功率 比较低时,荧光强度和激发功率密度遵从 $P \propto I^{n}$ ^[33-36],其中,P为激发功率密度,I为荧光强度, n为光子数.对于双光子和三光子激发,n值应当分 别约为2和3.然而,当激发光功率密度比较大时, 荧光强度和激发光功率密度不再满足 P ∝ Iⁿ关系, n值则依赖于具体的上转换机理和上转换过程中的 电子能级的相对级别,即该荧光能级是最高激发态 还是中间激发态.具体的n值见表1^[33].

表 1 稳态激发时各能级在低功率限和高功率限激发下, 对应不同的上转换机理时, 各能级布居密度与激发功率遵守的函数关系^[33] Table 1. Double-logarithmic slopes of the steady-state excited-state population densities, N_i of levels $i = 1, \dots, n$ and luminescence from the states for *n*-photon excitation. The investigated limits are: 1) small upconversion or 2) large upconversion by A) ETU or B) ESA, and decay predominantly i) into the next lower-lying state or ii) by luminescence to the ground state ^[33].

上转换的影响	机理	主控衰减路径	功率依赖关系	能级
1) Small	ETU or ESA	Next lower state or ground state	$N_i \propto p^i$	$i = 1 \cdots n$
2) Large	A) ETU	i) Next lower state	$N_i \propto p^{i/n}$	$i = 1 \cdots n$
		ii) Ground state	$N_i \propto p^{1/2}$	$i = 1 \cdots n - 1$
			$N_i \propto p^1$	
	B) ESA	i) Next lower state	$N_i \propto p^i$	$i = 1 \cdots n$
		ii) Ground state	$N_i \propto p^0$	$i = 1 \cdots n - 1$
			$N_i \propto p^1$	
(a) λ_e Wave 16 Stime 12 $5F_3 \rightarrow 51$ 4 0 450	$ x = 980 \text{ nm} \\ syb-0.5 \text{Ho} \\ 10Yb-0.5 \text{Ho} \\ 20Yb-0.5 \text{Ho} \\ 40Yb-0.5 \text{Ho} \\ 60Yb-0.5 \text{Ho} \\ 5S_2 \rightarrow {}^{5}I_8 \\ $	$5F_{5}\rightarrow 5I_{8}$ 5Yb-0.5Hc 20Yb-0.5Hc 20Yb-0.5Hc 20Yb-0.5Hc 60Yb-0.5Hc 60Yb-0.5Hc 60Yb-0.5Hc 60Yb-0.5Hc 	nits $I_{total}/arb.$ units	I _{blue} /arb. units
(c)	(d)	(e) (f)	(g)	

图 2 (a) 980 nm 激发下,不同 Yb 掺杂浓度的 NaYF₄:Yb³⁺/Ho³⁺ 单颗粒微米棒的荧光发射谱; (b) 不同 Yb 掺杂浓度的 NaYF₄:Yb³⁺/Ho³⁺ 单颗粒微米棒的总荧光强度,红色、绿色和蓝色荧光强度及红绿比率的对比图; (c)—(g) 相应的单颗粒和聚集 堆样品的暗场显微镜照片 (所有的单颗粒样品均采用激光共聚焦波导激发方式,激发功率密度均为 40 W/cm²)

Fig. 2. (a) Upconversion emission spectra of NaYF₄:Yb³⁺/Ho³⁺ microcrystals with various Yb³⁺ doping concentrations under waveguiding excitation approach of 980 nm laser with the power density of 40 W/cm²; (b) the comparison of the integrated intensities of total luminescence, blue, green and red luminescence of a series of samples with different Yb³⁺ concentrations; (c)–(g) the real-color dark-field luminescence photographs of a series of NaYF₄:Yb³⁺/Ho³⁺ microrod samples at single particle and clustering states, respectively.

图 3 在不同激发功率激发下,各种 Yb 掺杂浓度的 NaYF₄:Yb³⁺/Ho³⁺ 聚集堆样品的上转换荧光发射谱 (a)—(e)、红绿 比率 (f) 和荧光强度-功率的依赖关系 (g), (h)

Fig. 3. Upconversion luminescence spectra of a series of $NaYF_4:Yb^{3+}/Ho^{3+}$ aggregation samples with the varying of Yb concentrations under 980 nm focused laser excitation (a)–(e), the ratios of red to green luminescence (f) and the log-log plots of emission intensities as a function of excitation power densities (g), (h).

为了理解红绿比率对功率调控的敏感度依赖 于Yb浓度的深层物理机理,进一步研究红绿荧光 强度对功率的双对数依赖关系, 斜率n值代表上转 换过程中发射一个光子需要的光子数. 很显然, 荧 光强度功率曲线展示了明显的弯曲,表明荧光强度 随功率变化不遵守简单的 P ∝ Iⁿ 关系, 荧光达到 饱和状态[33-36].为此,我们对荧光强度功率曲线 分段拟合,发现随着功率的增大,n值越来越小,直 至n = 1乃至小于1(图3(g)和图3(h)中分段拟合 值). 根据Yb³⁺和Ho³⁺离子的能级结构(图4),单 光子吸收显然不可能发射绿光,这暗示绿色荧光为 上转换荧光且处于饱和状态. n值越小,代表饱和 程度越高^[36],直至达到表1中所列的能量转移上 转换机理的最高激发态饱和极限值 n = 1 和次激发 态极限值n = 0.5附近^[34,35].正像期望的那样,从 图3(f)—(h)还可以发现, n值的变化不但依赖于激 发功率区间,而且依赖于Yb浓度和激发方式.Yb 浓度越高,激发功率区间的功率值越大,n值越小. 红色荧光在合适的Yb掺杂浓度下,展示了三光子 过程, 暗示在合适的Yb掺杂浓度和激发功率范围 内,红色荧光能级通过三光子过程布居. 和绿光 n 值相比,在同样激发条件和Yb掺杂浓度条件下,红 光n值偏大,暗示了绿色荧光能级可能是中间态能 级(根据表1结论)或者是绿色荧光能级的中间态 比红色荧光能级的中间态更容易饱和^[33-35].根据 能级图和荧光强度功率关系的n值,提出的上转换 机理如图4所示.

为了进一步确认提出的红色和绿色荧光的上

转换机理,直接将电子激发到Ho³⁺离子⁵G₄能级和⁵S₂能级测量其荧光发射是必要的(Ho的能级结构见图4).图5(a)展示了其荧光发射谱.可以看出,当532 nm激光直接激发进⁵S₂能级时,荧光被源自于⁵S₂能级的绿光控制,几乎没有红光发射,暗示⁵S₂能级到⁵F₅能级的无辐射弛豫概率小到可以忽略.当激光直接激发到⁵G₆能级时,荧光发射被红色荧光主控,暗示了如果通过上转换布居三光子能级⁵G₆将有利于红光发射布居,这进一步被图5(b)的激发谱证实:布居⁵G₆能级时,有利于迂回布居红色荧光能级而不是绿色荧光能级.

图 4 Ho^{3+} 和 Yb³⁺ 的相关能级结构图及建议的上转换机理 Fig. 4. The energy level diagrams of Ho^{3+} and Yb³⁺ ions and the proposed upconversion mechanism.

图 5 NaYF₄:Yb/Ho (20%/0.5%) 微米棒聚集堆样品的发射谱 (a) 和激发谱 (b), 相应的激发波长和监控波长在图上已标出

Fig. 5. Emission spectra (a) and excitation spectra (b) of $NaYF_4$:Yb/Ho (20%/0.5%) microrod samples. The corresponding excitation wavelengths and monitoring wavelengths have been shown in the figure.

在上转换过程中,在980 nm激光激发下,随着功率增大,基于能级布居与功率的关系 $P \propto I^{n} [^{33-36]}$ 可知,高阶光子能级布居强度比低阶 光子能级布居强度随功率增加得更快 $[^{33]}$.因此,无 论增加激发功率或者Yb浓度,都能增强⁵G₆能级 的布居.而⁵G₆能级的消布居有可能通过两个交叉 弛豫⁵I₆+⁵G₆ →⁵F₅+⁵F₅和⁵I₇+⁵G₄ →⁵F₅+⁵F₅ 而间接增强红色荧光能级布居,随后增强红色荧 光.然而,随着功率增大,绿色荧光能级达到饱 和,绿色荧光能级通过上转换方式消布居,这减弱 并阻止了绿色荧光的增加,建议的上转换机理如 图4所示.

为了进一步证实交叉弛豫对红色荧光能级布 居的贡献,我们测量了不同Ho浓度掺杂的NaYF4: Yb/Ho微米棒的发射谱并展示于图6.正如预 期的那样,增大Ho的掺杂浓度,源自于 ${}^{5}F_{3}$ 能级 的荧光(472—495 nm)和源自于 ${}^{5}G_{4}$ 能级的荧光 (570—590 nm)相对荧光强度均减小,而红色相对 荧光强度(${}^{5}F_{5} \rightarrow {}^{5}I_{8}$, 630—670 nm)增加. 这支持 了交叉弛豫布居红色荧光能级的结论. 而且随着 Ho浓度的增加,荧光强度与功率依赖关系的n值 逐渐增大,暗示了增加Ho³⁺离子浓度弱化了绿色 荧光能级的饱和度和红色荧光能级的高阶光子布 居. 这支持了前面上转换机理的讨论.

综上,我们可以推断出功率敏感的上转换系统 的判据:1)多色荧光源自于不同阶光子上转换过 程,且某种单色荧光能级上转换可以作为另一种单 色荧光的中间能级,在这种情况下,光谱色彩调控 对激发功率最为敏感;2)多色光荧光能级布居源自 于不同独立布居通道,且上转换光子阶数不同,光 色比较敏感于功率变化;3)各单色光源自于不同或 相同布居通道,且上转换光子阶数相同,则光色对 激发功率变化最不敏感.这个结论可以推广到一般 的上转换系统.

图 6 不同 Ho³⁺ 离子掺杂浓度的 NaYF₄:Yb/Ho 微米棒聚集堆样品的变功率发射谱 (a), (b) 和荧光强度依赖的功率关系 (c), (d) Fig. 6. Variable power emission spectra (a), (b) and the dependence of upconvertion luminescence on excitation power density, shown in double-logarithmic representation (c), (d) of NaYF₄:Yb/Ho microrod stacking samples with different Ho³⁺ ion doping concentrations.

4 结 论

本文通过柠檬酸钠辅助的水热法, 合成了一系 列Yb浓度变化的NaYF4:Yb/Ho微米棒. 通过激 光共聚焦显微镜系统波导激发模式,变功率激发了 一维单颗粒微米棒.不同Yb掺杂浓度样品的发射 谱和荧光图案清楚地表明:荧光红绿比不仅依赖于 激发功率,而且其功率调控的红绿比率的敏感度依 赖于 Yb浓度,这可作为预测和评估 Yb掺杂浓度的 一种方法. 通过上/下转换光谱、激发谱和功率依 赖关系,研究了功率调控红绿比率的机理,并给出 了敏感于功率调控上转换光谱的判据: 1) 多色荧 光源自于不同阶光子上转换过程,且某种单色荧光 能级上转换可以作为另一种单色光的中间能级,在 这种情况下,光谱色彩调控对激发功率最为敏感; 2) 多色光荧光能级布居源自于不同独立布居通道, 且上转换光子阶数不同,光色比较敏感于功率变 化;3)各单色光源自于不同或相同布居通道,且上 转换光子阶数相同,则光色对激发功率变化最不敏 感. 这个结论可以推广到一般的上转换系统. 本研 究为稀土微/纳材料的光谱剪裁设计提供了理论依 据,并为稀土材料的推广应用奠定了基础.

参考文献

- [1] Auzel F 1966 CR Acad. Sci. Paris **263** 819
- [2] Wang F, Banerjee D, Liu Y, Chen X, Liu X 2010 Analyst 135 1839
- [3] Ai X Z, Ho C J H, Aw J X, Attia A B E, Mu J, Wang Y, Wang X Y, Wang Y, Liu X G, Chen H B, Gao M Y, Chen X Y, Yeow E K L, Liu G, Olivo M, Xing B J 2016 *Nat. Commun.* 7 10432
- [4] Zheng S H, Chen W B, Tan D Z, Zhou J J, Guo Q B, Jiang W, Xu C, Liu X F, Qiu J R 2014 Nanoscale 6 5675
- Wickberg A, Mueller J B, Mange Y J, Fischer J, Nann T, Wegener M 2015 Appl. Phys. Lett. 106 133103
- [6] Dey R, Rai V K 2014 Dalton Trans. 43 111
- [7] Azam M, Rai V K 2017 Solid State Sci. 66 7
- [8] Chen G Y, Shen J, Ohulchanskyy T Y, Patel N J, Kutikov A, Li Z P, Song J, Pandey R K, Ågren H, Prasad P N, Han G 2012 ACS Nano 6 8280
- [9] Hong G, Antaris A L, Dai H 2017 Nat. Biomed. Engineer. 1 0010
- [10] Pepin P A, Diroll B T, Choi H J, Murray C B, Vohs J M 2017 J. Phys. Chem. C 121 11488
- [11] Erogbogbo F, Yong K T, Roy I, Hu R, Law W C, Zhao W, Prasad P N, Ding H, Wu F, Kumar R, Swihart M T 2010 ACS Nano 5 413

- [12] Yang Y, Mi C, Jiao F Y, Su X Y, Li X D, Liu L L, Zhang J, Yu F, Liu Y Z, Mai Y H 2014 J. Am. Ceram. Soc. 97 1769
- [13] Zhang Z Y, Suo H, Zhao X Q, Sun D, Fan L, Guo C F 2018 ACS Appl. Mater. Interfaces 10 14570
- [14] Suo H, Zhao X, Zhang Z, Shi R, Wu Y, Xiang J, Guo C 2018 Nanoscale 10 9245
- [15] Wang L, Li Y 2007 Chem. Mater. 19 727
- [16] Gao D L, Wang D, Zhang X Y, Feng X Y, Xin H, Yun S N, Tian D P 2018 J. Mater. Chem. C 6 622
- [17] Zhang X Y, Wang D, Shi H W, Wang J G, Hou Z Y, Zhang L D, Gao D L 2018 Acta Phys. Sin. 67 84203 (in Chinese) [张翔字, 王丹, 石焕文, 王晋国, 侯兆阳, 张力东, 高当丽 2018 物理学报 67 84203]
- [18] Gao D L, Zhang X Y, Chong B, Xiao G Q, Tian D P 2017 Phys. Chem. Chem. Phys. 19 4288
- [19] Zhou B, Shi B, Jin D, Liu X 2015 Nat. Nanotech. 10 924
- [20] Gao D L, Zhang X Y, Zheng H R, Shi P, Li L, Ling Y W 2013 Dalton Trans. 42 1834
- [21] Gao D L, Zhang X Y, Zheng H R, Gao W, He E J 2013 J. Alloys Compd. 554 395
- [22] Shao W, Chen G, Kuzmin A, Kutscher H L, Pliss A, Ohulchanskyy T Y, Prasad P N 2016 J. Am. Chem. Soc. 138 16192
- [23] Gao D L, Zhang X Y, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732
- [24] Gao D L, Tian D P, Zhang X Y, Gao W 2016 Sci. Rep. 6 22433
- [25]~ Yi G S, Chow G M 2005 J. Mater. Chem. ${\bf 15}~4460$
- [26] Chen B, Liu Y, Xiao Y, Chen X, Li Y, Li M Y, Qiao X S, Fan X P, Wang F 2016 J. Phys. Chem. Lett. 7 4916
- [27] Gao W, Wang R, Han Q, Dong J, Yan L, Zheng H 2015 J. Phys. Chem. C 119 2349
- [28] Gao D, Zhang X, Pang Q, Zhao J, Xiao G, Tian D 2018 J. Mater. Chem. C 6 8011
- [29] Deng K, Gong T, Hu L, Wei X, Chen Y, Yin M 2011 Opt. Exp. 19 1749
- [30] Wang L, Lan M, Liu Z, Qin G, Wu C, Wang X, Qin W, Huang W, Huang L 2013 J. Mater. Chem. C 1 2485
- [31] Wang M Y, Tian Y, Zhao F Y, Li R F, You W W, Fang Z L, Chen X Y, Huang W, Ju Q 2017 J. Mater. Chem. C 5 1537
- [32] Zhang J H, Hao Z D, Li J, Zhang X, Luo Y S, Pan G H 2015 Light: Sci. Appl. 4 e239
- [33] Gamelin D R, Gudel H U 2001 Transition Metal and Rare Earth Compounds (Vol. 214) (Berlin, Heidelberg: Springer) p1
- [34] Luthi S R, Pollnau M, Gudel H U, Hehlen M P 1999 Phys. Rev. B 60 162
- [35] Pollnau M, Gamelin D R, Luthi S R, Gudel H U, Hehlen M P 2000 Phys. Rev. B 61 3337
- [36] Yang Y M, Jiao F Y, Su H X, Li Z Q, Liu Y F, Li Z Q, Yang Z P 2012 Spectrosc. Spect. Anal. 32 2637 (in Chinese) [杨艳民, 焦福运, 苏红新, 李自强, 刘云峰, 李志强, 杨志平 2012 光谱学与光谱分析 32 2637]

Regulation of sensitivity of Yb concentration to power-dependent upconversion luminescence colors^{*}

Gao Dang-Li^{1)†} Li Lan-Xing¹⁾ Feng Xiao-Juan¹⁾ Chong Bo¹⁾ Xin Hong¹⁾ Zhao Jin¹⁾ Zhang Xiang-Yu²⁾

1) (College of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China)

2) (College of Science, Chang'an University, Xi'an 710064, China)

(Received 13 June 2018; revised manuscript received 14 September 2018)

Abstract

Controlling the power density of exciting light is a widely applied technological approach to dynamically tuning emission spectra to yield desirable luminescence properties, which is essential for various applications in laser devices, cancer cell imaging, biomarker molecule detections, thermometers and optoelectronic devices. However, most of upconversion systems are insensitive to power regulation. In this study, a series of Yb/Ho doped NaYF₄ microrods with different Yb concentrations was synthesized by using a sodium citrate-assisted hydrothermal method. The dependence of upconversion characteristics of NaYF₄:Yb/Ho microrods on Yb concentration and excitation power density are investigated in detail by a laser confocal microscopy system. The emission spectra exhibit discrete upconversion emission characteristic peaks that can easily be assigned to ${}^{5}F_{3} \rightarrow {}^{5}I_{8}$ (at about 488 nm), ${}^{5}F_{4}$, ${}^{5}S_{2} \rightarrow {}^{5}I_{8}$ (at about 543 nm), ${}^{3}K_{7}$, ${}^{5}G_{4} \rightarrow {}^{5}I_{8}$ (at about 580 nm) and ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ (at about 648 nm) transitions of Ho, respectively. The upconversion spectra and synchronous luminescence imaging patterns show that the luminescence ratio of red to green is not only dependent on the Yb concentration, but also sensitive to the excitation power. With Yb concentration increasing from 5% to 60%, the sensitivity of the power-controlled red to green luminescence ratio largely increases from 0.1% to 13.0%, corresponding to a clear luminescent color modification from green to red. These results indicate that the power-tuned red-to-green-luminescence ratio can be used as a method of measuring and evaluating Yb doping concentration. We attribute the sensitivity tuned by Yb concentration to the differences in population approach and upconversion mechanism for the red and green luminescence. By recording the slope of luminescence intensity versus exciting power density in a double-logarithmic presentation, we detect a small slope for the green emission relative to that for the red emission, especially at a high Yb concentration. These results indicate that the red upconversion process may be a three-photon process. The exciting power induced color adjusting is therefore explained by preferential three-photon population of the red emission due to the high ${}^{5}S_{2} \rightarrow {}^{5}G_{4}$ excitation rate, which is verified by down-conversions of emission spectra. Our present study provides a theoretical basis for the spectral tailoring of rare-earth micro/nano materials and supplies a foundation for the applications in rare-earth materials.

Keywords: Yb concentration, upconversion, luminescence color, sensitivity regulation

PACS: 32.30.Jc, 42.70.-a, 78.55.-m, 78.67.-n

DOI: 10.7498/aps.67.20181167

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11604253), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2018JM1036), the Fundamental Research Fund for the Central Universities, China (Grant Nos. 310812171004, 310812161001), the China Postdoctoral Science Foundation (Grant No. 2015M570816), the Provincial Undergraduate Training Program for Innovation and Entrepreneurship, China (Grant No. 1229), and the Undergraduate Scientific Research Training Plan (SSRT) of Xi'an University of Architecture and Technology, China.

[†] Corresponding author. E-mail: gaodangli@163.com