物理学报 Acta Physica Sinica

基于平衡光学互相关方法的超短脉冲激光相干合成技术

黄沛 方少波 黄杭东 侯洵 魏志义

Coherent synthesis of ultrashort pulses based on balanced optical cross-correlator

Huang Pei Fang Shao-Bo Huang Hang-Dong Hou Xun Wei Zhi-Yi

引用信息 Citation: Acta Physica Sinica, 67, 244204 (2018) DOI: 10.7498/aps.67.20181851 在线阅读 View online: http://dx.doi.org/10.7498/aps.67.20181851 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I24

您可能感兴趣的其他文章 Articles you may be interested in

部分相干光束经过湍流大气传输研究进展

Research progress of partially coherent beams propagation in turbulent atmosphere 物理学报.2018, 67(18): 184203 http://dx.doi.org/10.7498/aps.67.20180877

激光光强扰动对相干场成像降质影响理论研究

Theoretical research of influence of laser intensity fluctuation on imaging quality degradation of coherent field

物理学报.2017, 66(24): 244202 http://dx.doi.org/10.7498/aps.66.244202

具有余弦-高斯关联结构函数部分相干贝塞尔-高斯光束的传输性质及四暗空心光束的产生

Propagation properties of nonuniform cosine-Gaussian correlated Bessel-Gaussian beam through paraxial ABCD system and generation of dark-hollow beam array 物理学报.2017, 66(16): 164202 http://dx.doi.org/10.7498/aps.66.164202

基于谱域相位分辨光学相干层析的纳米级表面形貌成像

Nanoscale surface topography imaging using phase-resolved spectral domain optical coherence tomography

物理学报.2017, 66(15): 154202 http://dx.doi.org/10.7498/aps.66.154202

复自相干度度量超连续谱相干性

Coherence properties of supercontinuum quantified by complex degree of self-coherence 物理学报.2012, 61(15): 154201 http://dx.doi.org/10.7498/aps.61.154201

基于平衡光学互相关方法的超短脉冲 激光相干合成技术^{*}

黄沛¹⁾²⁾³⁾ 方少波^{2)†} 黄杭东²⁾ 侯洵¹⁾ 魏志义^{2)3)‡}

(中国科学院西安光学精密机械研究所,瞬态光学与光子技术国家重点实验室,西安 710119)
2)(中国科学院物理研究所,北京凝聚态物理国家研究中心,北京 100190)
3)(中国科学院大学,北京 100049)

(2018年10月15日收到;2018年11月17日收到修改稿)

相干合成技术是超快光学领域的重要研究方向之一.当单路脉冲激光的连续谱超过一个倍频程时,精确 控制其光谱相位(色散管理)是获得亚周期超短脉冲激光的关键.由于常见的脉冲压缩系统存在光谱带宽限 制,因此多通道相干合成技术受到了广泛的关注.本文将充气空心光纤展宽后的超倍频程连续光谱分波段独 立压缩,并利用平衡光学互相关方法锁定子脉冲之间的相位延迟,获得了4.1 fs的合成脉冲.实验结果表明相 干合成技术在高能量亚周期超快光场调控中存在优势.

关键词:相干合成,平衡光学互相关,延时锁定,色散补偿 PACS: 42.25.Kb, 11.55.Fv, 42.60.Lh

DOI: 10.7498/aps.67.20181851

1引言

产生脉冲宽度更短、峰值功率更高的脉冲激光, 一直是激光科学研究最重要的前沿发展方向之一. 由于受到激光增益介质和脉冲压缩系统的带宽限 制,单路激光难以直接输出单(亚)周期量级的超短 脉冲.对于超倍频程光谱,利用多通道相干合成技 术^[1-3],分波段单独控制其光谱的振幅和相位,可 较为灵活地实现单(亚)周期脉冲压缩^[4].近年来, 美国斯坦福大学利用双色合成光场驱动氘分子,利 用其振动跃迁频率产生拉曼边带.由于两束激光脉 冲的中心频率差与氘分子的第一级振动跃迁频率 相近,实验结果得到十七条相干等距的斯托克斯边 带和反斯托克斯边带.这些边带从约3 μm一直延 伸到近200 nm,控制其中部分波长的相位进行相 干合成,产生了脉冲宽度为1.6 fs、脉冲间距为11 fs 的超短光脉冲串^[5,6].随后,中国台湾学者基于此 方案分别调控5路谐波的振幅,相对延迟和载波包 络相位等参数,相干合成了具有多种波形特性的超 短脉冲串^[7,8].欧美等国的科学家们分别利用充气 空心光纤和光学参量啁啾脉冲放大(optical parametric chirped pulse amplification, OPCPA)技术, 先后实现了高能量亚周期相干合成超短脉冲^[9-12]. 由于 OPCPA 方案的光路长达数十米,放大压缩系 统相对复杂,特别需要精确控制各脉冲之间的相 对延迟.在各种光路延迟锁定技术中,平衡光学互 相关(balanced optical cross-correlator, BOC)方法 可以在公里量级的光路中实现阿秒量级的延迟锁 定,是实现高能量亚周期相干合成的关键技术之 -- [13,14]

本实验首次将BOC技术与充气空心光纤技术 相结合,在超过一个倍频程的光谱中,具体对比了

^{*} 国家重点研发计划(批准号: 2017YFC0110301)、国家自然科学基金(批准号: 61575219)、中国科学院战略性先导科技专项 (B类)(批准号: XDB23030230)、中国科学院前沿科学重点研究计划(批准号: YZDJ-SSW-JSC006)和中国科学院青年创新促进会 (批准号: 2018007)资助的课题.

[†]通信作者. E-mail: shaobo.fang@iphy.ac.cn

[‡]通信作者. E-mail: zywei@iphy.ac.cn

^{© 2018} 中国物理学会 Chinese Physical Society

直接压缩全段光谱得到的超短脉冲和分波段独立 压缩子脉冲的超宽光谱后再同步合束得到的相干 合成超短脉冲.实验结果表明相干合成的压缩脉冲 宽度(4.1 fs)小于直接全波段光谱色散补偿后获得 的超短脉冲(5.3 fs),并利用BOC技术精确锁定了 两子脉冲的相对延时,为下一步实现高能量相干合 成系统奠定预研基础.

2 实验装置及原理

超短脉冲既可以用时域E(t)来表达,也可以用 频域 $\tilde{E}(\omega)$ 来描述,频域 $\tilde{E}(\omega)$ 可由时域E(t)傅里叶 逆变换得到^[15]

$$\widetilde{E}(\omega) = \mathcal{F}\{E(t)\} = \int_{-\infty}^{\infty} E(t) e^{j\omega t} dt$$
$$= \left|\widetilde{E}(\omega)\right| e^{j\varphi(\omega)}.$$
 (1)

这里 $|\tilde{E}(\omega)|$ 为光谱强度, $\varphi(\omega)$ 为光谱相位. 由于 E(t) 为实函数, 所以 $|\tilde{E}(\omega)| = \tilde{E}^*(-\omega)$, 时域E(t)也可由频域 $\tilde{E}(\omega)$ 进行傅里叶逆变换得到

$$E(t) = \mathcal{F}^{-1}\{\widetilde{E}(\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widetilde{E}(\omega) e^{j\omega t} d\omega.$$
 (2)

由(1)和(2)式可知,在确定载波频率 ω_0 后,频 域上光谱带宽 $\Delta \omega$ 与时域上脉冲宽度 τ 不能相互独 立的变化,根据量子力学中的不确定性原理,存在 一个时间带宽积,其表达式为

$$\Delta \omega \tau = 2\pi \Delta \nu \tau \geqslant 2\pi c_{\rm B}.\tag{3}$$

也就是说当光谱带宽 $\Delta \omega$ 确定之后,脉冲时域宽度 τ 不小于 $2\pi c_{\rm B}/\Delta \omega$,这就决定了此光谱所支持的最 短脉冲宽度,也称作傅里叶变换极限脉宽.因此支 持亚周期量级脉冲的超连续光谱通常超过一个倍 频程,而要将脉宽压缩至傅里叶变换极限,则需要 将脉冲的色散(特别是高阶色散)完全补偿.

实验装置如图1所示, 钛宝石激光放大器输出 的飞秒脉冲(790 nm, 0.8 mJ, 30 fs, 1 kHz)被聚焦 入射到充气的空心光纤中, 产生0.4 mJ的超倍频程 连续光谱(图2中的黑色实线: 450—950 nm).为 了进行对比, 实验中设计了两套脉冲压缩系统.在 压缩器(1)中, 空心光纤后的激光脉冲被双色镜分 为两个通道输出(长波波段: 650—950 nm, 短波波 段: 450—750 nm).两个通道分别利用两组定制的 啁啾镜并配合尖劈对进行色散补偿, 再将独立压缩 后的两个子脉冲相干合成为一束激光输出.利用

图 2 空心光纤展宽光谱 (实线, 450—950 nm) 以及分光后短 波臂光谱 (蓝色点线, 450—750 nm) 和长波臂光谱 (红色虚线, 650—950 nm)

Fig. 2. Broad spectrum after hollow fiber (solid line, 450–950 nm), short-wavelength arm spectrum (blue dot line, 450–750 nm) and long-wavelength arm spectrum (red dotted line, 650–950 nm) after dichroic mirror.

图1 实验装置图 (F, 聚焦镜; D, 分束片; PZT, 压电陶瓷平移台; BOC, 平衡光学互相关; TG-FROG, 瞬态光栅 频率分辨光学开关)

Fig. 1. Experimental setup (F, focused lens; D, dichroic mirror; PZT, piezo-transducer; BOC, balanced optical cross-correlator; TG-FROG, transient-grating frequency-resolved optical grating).

BOC方法测量出两个子脉冲的相对延迟信号, 并将其作为反馈型号实时控制长波通道中的压 电陶瓷平移台(PZT).在压缩器(2)中,利用一组 超宽带啁啾镜配合尖劈对进行全波段光谱的色 散补偿.最后利用瞬态光栅频率分辨光学开关 (transient-grating frequency-resolved optical gating, TG-FROG)装置分别测量了两类方案的压缩 效果^[16].

3 BOC技术

由于相干合成脉冲的波形非常依赖于子脉冲 之间的相对相位(延时),这里重点讨论利用BOC 技术锁定脉冲之间相对延时.实验原理如图3所 示,脉冲相干合成之后,引出小部分能量作为参考 光.假设将此参考光镜像等分成两路.其中一路插 入一片透明材料(如熔融石英、氟化钙等),使得两 路参考光中红光部分和蓝光部分的延时有显著差 别,主要体现在两路参考光通过同样参数的偏硼酸 钡(BBO)晶体时会产生两个强度不同的和频信号. 只要相干合成子脉冲的相对延迟有微小的改变,其 对应的两路和频信号强度差就会发生相应的变化. 而作为BOC装置中的核心元器件,平衡光电二极 管探测器能将这些常规方法不易察觉的微小延迟 抖动放大千万倍.20 min锁定结果如图4所示,可 以看出,锁定时,子脉冲之前的相对延时抖动量优 于 80 as RMS, 未锁定时,子脉冲之前的相对延时 抖动量大于 200 as RMS.

图 3 BOC 装置原理示意图以及扫描得到的时间-电压曲线 (BBO, 偏硼酸钡晶体; PID controller, 比例积分微分 控制器; Balance PD, 平衡光电二极管)

Fig. 3. Schematic representation of BOC and BOC signal (S curve). BBO, β -BaB₂O₄; PID controller, proportional-integral-derivative controller; balance PD, balance photodiode detector.

图 4 BOC 方案锁定两束脉冲相对延时

Fig. 4. Relative time delay drift measurements.

244204-3

4 脉冲宽度测量结果

为了使对比实验更有说服力,选择测量特性与 波长无关的 TG-FROG. 通过 TG-FROG 的测量结

果可知,相干合成脉冲的时域宽度小于直接全波段 光谱色散补偿后获得的超短脉冲.实验中由于啁啾 镜每次反射引入的负色散是固定值,所以需要用一 对连续可调的尖劈对来配合补偿.

图 5 相干合成脉冲测量结果 Fig. 5. Pulse duration measurement of synthesized pulses.

图 6 空心光纤后直接压缩结果 Fig. 6. Pulse duration measurement after hollow fiber.

244204-4

图 7 直接压缩方案结果对比相干合成方案结果 Fig. 7. Compressed pulses with/without coherent synthesis.

在压缩器(1)中,最优化的压缩结果是长波通 道需要在长波啁啾镜组(500—750 nm)中往返反 射4次,获得7.9 fs的脉冲,短波通道则需要在短 波啁啾镜组(750—1000 nm)中往返反射3次,产生 6.1 fs的脉冲.最后通过长波通道中的PZT优化两 束脉冲之间的相对延时,实现了4.1 fs的最短合成 脉冲,如图5所示.

在压缩器(2)中,直接利用超宽带啁啾镜 (500—1000 nm)配合尖劈对进行色散补偿,当啁啾镜往返反射4次时,压缩脉宽最短为5.3 fs,如 图6所示.

对比以上两组脉冲压缩结果可知,由于超宽光 谱不同波段之间的色散量差异较大,直接压缩方 案难以在全光谱范围内获得接近傅里叶变换极限 的脉冲. 而将超宽带光谱分波段压缩后再相干合 成,可以针对各个波段色散量实现更有效的精细调 节,获得更短的脉冲.根据图7可知,两方案在半高 全宽处的脉冲占比一致,均为总脉冲能量的43.7%. 由于相干合成方案引入了包括分(合)束镜等透射 元件,因此在整体色散补偿方案设计时需要统筹兼 顾,否则会影响到脉冲对比度和整体压缩效率.本 实验中使用的啁啾镜反射率大于99%, 空心光纤系 统后直接压缩方案的能量损失约为5%. 考虑到相 干合成系统中使用的分(合)束镜所产生的额外损 失,当输入功率为400 mW时,相干合成系统最终 输出为350 mW. 通过优化分(合)束镜和啁啾镜反 射率,压缩系统整体的能量损失有望进一步降低.

5 结 论

本实验直接用啁啾镜对压缩超倍频程光谱时, 压缩系统难以对所有光谱成分(特别是连续光谱两 端的高阶色散部分) 实现有效补偿, 因此压缩后的 脉冲宽度无法完全接近傅里叶变换极限.本文通过 两个对比实验, 初步验证了多通道相干合成技术可 对充气空心光纤展宽后的不同光谱成分分别开展 精细色散补偿, 获得了 4.1 fs 的最短压缩脉宽, 而直 接压缩超倍频程光谱只得到了 5.3 fs 的超短脉冲. 可见进一步将超宽光谱细分成多路后分别压缩效 果更佳.同时, 利用 BOC 技术实现了子脉冲之间的 相对延时锁定, 20 min 的锁定精度小于 80 as RMS, 为将来利用高能量亚周期脉冲驱动高次谐波和阿 秒光源等方向做好了预研^[17-20].

参考文献

- Brocklesby W S, Nilsson J, Schreiber T, Limpert J, Brignon A, Bourderionnet J, Lombard L, Michau V, Hanna M, Zaouter Y, Tajima T, Mourou G 2014 *Eur. Phys. J. Special Topics* **223** 1189
- [2] Danson C, Hillier D, Hopps N, Neely D 2015 High Power Laser Sci. Eng. 3 3
- [3] Kozlov V A, Hernandez-Cordero J, Morse T F 1999 Opt. Lett. 24 1814
- [4] Manzoni C, Mucke O D, Cirmi G, Fang S, Moses J, Huang S W, Hong K H, Cerullo G, Kartner F X 2015 Laser Photon Rev. 9 129
- [5] Sokolov A V, Walker D R, Yavuz D D, Yin G Y, Harris S E 2000 *Phys. Rev. Lett.* 85 562
- [6] Shverdin M Y, Walker D R, Yavuz D D, Yin G Y, Harris S E 2005 *Phys. Rev. Lett.* **94** 033904
- [7] Chan H S, Hsieh Z M, Liang W H, Kung A H, Lee C K, Lai C J, Pan R P, Peng L H 2011 Science 331 1165
- [8] Hsieh Z M, Lai C J, Chan H S, Wu S Y, Lee C K, Chen W J, Pan C L, Yee F G, Kung A H 2009 Phys. Rev. Lett. 102 213902
- [9] Hassan M T, Wirth A, Moulet A, Luu T T, Gagnon J, Pervak V, Goulielmakis E 2012 *Rev. Sci. Instrum.* 83 111301

- [10] Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66
- [11] Huang S W, Cirmi G, Moses J, Hong K H, Bhardwaj S, Birge J R, Chen L J, Li E, Eggleton B J, Cerullo G, Kartner F X 2011 Nat. Photon. 5 475
- [12] Manzoni C, Huang S W, Cirmi G, Farinello P, Moses J, Kartner F X, Cerullo G 2012 Opt. Lett. 37 1880
- [13] Mucke O D, Fang S, Cirmi G, Giulio, Rossi M, Chia S H, Ye H, Yang Y D, Mainz R, Manzoni C, Farinello P, Cerullo G, Kartner F X 2015 *IEEE J. Sel. Top. Quantum Electron* **21** 8700712
- [14] Xin M, Safak K, Peng M Y, Kalaydzhyan A, Wang W T, Mucke O D, Kartner F X 2017 Light Sci. Appl. 6 16187

- [15] Diels J C, Rudolph W 2006 Ultrashort Laser Pulse Phenomena (Vol. 1) (Burlington: Elsevier) pp2–10
- [16] Sweetser J N, Fittinghoff D N, Trebino R 1997 Opt. Lett.22 519
- [17] Chipperfield L E, Robinson J S, Tisch J W G, Marangos J P 2009 Phys. Rev. Lett. 102 063003
- [18] Paul P M, Toma E S, Breger P, Mullot G, Auge F, Balcou P, Muller H G, Agostini P 2001 *Science* 292 1689
- [19] Henischel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509
- [20] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Worner H J 2017 Opt. Express 25 27506

Coherent synthesis of ultrashort pulses based on balanced optical cross-correlator^{*}

Huang Pei¹⁾²⁾³⁾ Fang Shao-Bo^{2)†} Huang Hang-Dong²⁾ Hou Xun¹⁾ Wei Zhi-Yi^{2)3)‡}

 (State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an 710119, China)

2) (Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)

3) (University of Chinese Academy of Sciences, Beijing 100049, China)

(Received 15 October 2018; revised manuscript received 17 November 2018)

Abstract

Coherent synthesis of laser pulses is a major trend in the generation of ultrafast pulse field. There is no good way to compensate for the whole spectrum when the spectrum of ultrashort pulses is wide enough to reach an octave, so it is difficult to realize a sub-cycle pulse in a single-path laser system even if the spectrum range is wide enough. In this paper, 0.8 mJ, 30 fs laser pulses at 1 kHz repetition rate with 790 nm center wavelength from a Ti:sapphire chirped pulse amplifier (CPA) system are focused into hollow fiber with an inner diameter of 250 μ m and a length of 1 m to produce an octave-spanning white-light supercontinuum (450–950 nm). Using this supercontinuum, we conduct two sets of comparative experiments. 1) We split the supercontinuum into two pulses with different spectrum ranges (450-750 nm and 650-1000 nm) by a dichroic mirror (HR, 500-700 nm; HT, 700-1000 nm), and we compress the two pulses by the double-chirped mirrors and wedge pairs to generate two few-cycle pulses: the long and short wavelength yielding pulses are 7.9 fs and 6.1 fs, respectively. Then we coherently synthesize two pulses by using another dichroic mirror, and controlling the relative time delay between the two pulses, and thus we synthesize a pulse of 4.1 fs. 2) We directly compress the supercontinuum by the double-chirped mirrors and wedge pairs, and obtain an optimization result of 5.3 fs, of which the pulse duration is wider than that in experiment 1. In these comparative experiments, the advantage of coherent synthesis for shorter pulse duration is preliminarily verified. Besides, the balanced optical cross-correlator technique is used to lock the relative time delay between two pulses. The root-mean-square value of relative time delay drift is less than 80 as in the case with feedback control loop, which ensures the stability of coherent synthesis system. This scheme can be adopted to accurately compensate for the dispersion and obtain the sub-cycle synthesized pulse, which is useful for generating the high harmonic and atto-second pulse.

Keywords: coherent synthesis, balanced optical cross-correlator, relative time delay control, dispersion compensation

PACS: 42.25.Kb, 11.55.Fv, 42.60.Lh

DOI: 10.7498/aps.67.20181851

^{*} Project supported by the National Key R&D Program of China (Grant No. 2017YFC0110301), the National Natural Science Foundation of China (Grant No. 61575219), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences, China (Grant No. XDB23030230), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences, China (Grant No. YZDJ-SSW-JSC006), and the Youth Innovation Promotion Association, Chinese Academy of Sciences, China (Grant No. 2018007).

[†] Corresponding author. E-mail: shaobo.fang@iphy.ac.cn

[‡] Corresponding author. E-mail: zywei@iphy.ac.cn