物理学报 Acta Physica Sinica

 $Eu_{0.9}M_{0.1}$ TiO₃(M = Ca, Sr, Ba, La, Ce, Sm)的磁性和磁热效应 郝志红 王海英 张荃 莫兆军

Magnetic and magnetocaloric effects of $Eu_{0.9}M_{0.1}$ TiO₃ (M = Ca, Sr, Ba, La, Ce, Sm) compounds

Hao Zhi-Hong Wang Hai-Ying Zhang Quan Mo Zhao-Jun

引用信息 Citation: Acta Physica Sinica, 67, 247502 (2018) DOI: 10.7498/aps.67.20181750 在线阅读 View online: http://dx.doi.org/10.7498/aps.67.20181750 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I24

您可能感兴趣的其他文章 Articles you may be interested in

间隙原子H,B,C对LaFe_{11.5}Al_{1.5}化合物磁性和磁热效应的影响

Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe_{11.5}Al_{1.5} compound 物理学报.2018, 67(7): 077501 http://dx.doi.org/10.7498/aps.67.20172250

磁热效应材料的研究进展

Research progress in magnetocaloric effect materials 物理学报.2016, 65(21): 217502 http://dx.doi.org/10.7498/aps.65.217502

Dy₃Al₅O₁₂ 磁热性质研究

Study on the magnetic and magnetocaloric effects of Dy₃Al₅O₁₂ 物理学报.2015, 64(17): 177502 http://dx.doi.org/10.7498/aps.64.177502

PrNi₂的磁和磁热性能研究

Investigation on the magnetic and magnetocaloric properties of PrNi₂ 物理学报.2014, 63(22): 227501 http://dx.doi.org/10.7498/aps.63.227501

LaFe_{11.5}Si_{1.5}化合物氢化特性及稳定性的研究

Study on the hydrogenation properties and stability of LaFe_{11.5}Si_{1.5} compound 物理学报.2014, 63(19): 197501 http://dx.doi.org/10.7498/aps.63.197501

$Eu_{0.9}M_{0.1}TiO_3(M = Ca, Sr, Ba, La, Ce, Sm)的$ 磁性和磁热效应^{*}

郝志红1) 王海英1) 张荃1) 莫兆军2)†

(天津职业大学眼视光工程学院,天津 300410)
(天津理工大学材料科学与工程学院,材料物理研究所,天津 300384)
(2018年9月21日收到;2018年10月19日收到修改稿)

EuTiO₃ 是直接带隙半导体材料,在液氦温度附近呈现反铁磁性,且具有较大的磁熵变,但是当其转变为铁磁性时,可以有效提高低磁场下的磁熵变.本文通过元素替代,研究晶格常数的变化和电子掺杂对磁性和磁热效应的影响.实验采用溶胶凝胶法制备 EuTiO₃ 和 Eu_{0.9}M_{0.1}TiO₃ (*M* = Ca, Sr, Ba, La, Ce, Sm)系列样品.结果表明:大离子半径的碱土金属离子替代提高了铁磁性耦合,有利于提高低磁场下的磁热效应.电子掺杂可以抑制其反铁磁性耦合从而使其表现为铁磁性.当大离子半径的稀土 La 和 Ce 离子替代 Eu 离子时,既增大了晶格常数也实现了电子掺杂,表现出较强的铁磁性.在1 T的磁场变化下,Eu_{0.9}La_{0.1}TiO₃ 和 Eu_{0.9}Ce_{0.1}TiO₃ 的最大磁熵变分别为10.8 和 11 J/(kg·K),均大于 EuTiO₃ 的 9.8 J/(kg·K);制冷能力分别为 39.3 和 51.8 J/kg,相对于 EuTiO₃ 也有所提高.

关键词:磁热效应,磁熵变,磁相变 PACS: 75.30.Sg, 65.40.gd, 75.30.Kz

DOI: 10.7498/aps.67.20181750

1引言

人工制冷技术是现代社会工业文明的重要标志之一,在人类生活和生产中发挥了至关重要的作用.与传统的气体压缩与膨胀制冷技术相比,磁制 冷技术以固体磁性材料为制冷工质,不使用氟利昂 和压缩机,具有高效节能、绿色环保、稳定性高、可 靠性强、体积小、噪音小等众多优点^[1-3],被《环球 科学》认为是破解人类能源危机的七大颠覆性技术 之一.

近几十年以来,低温技术已成为支撑现代科 技最关键的技术之一.如液氦温区对超导技术、 航天军事、低温电子技术、低温物理学都有着十 分重要的意义.磁制冷技术将会成为一种有效 提高液氦温区制冷性能又满足环保性的技术,其

中磁制冷材料是磁制冷技术的核心.因此,液氮 温区大磁熵变材料的研究得到了极大的关注. 近 年来,在低温区有很多具有低磁场诱导大磁热效 应的稀土基金属化合物被发现,比如铁磁(FM) 的ErFeSi^[4], ErRuSi^[5]和TmCuAl^[6]; 反铁磁态 (AFM)的HoCuSi^[7], TmMn₂Si₂^[8], HoNiAl^[9]和 ErCr₂Si₂^[10];还有两个连续相变的HoPdIn,TmGa 等[11,12]. 稀土金属氧化物也是低温磁制冷研 究的方向, Balli等^[13] 报道了单晶HoMn₂O₅的磁 热效应, 在磁场变化7 T时, 易轴方向的最大磁 熵变值为13.1 J/(kg·K), 而a和c轴方向分别为 5 J/(kg·K) 和 3.5 J/(kg·K). 另外, Balli 等^[14]还报 道了DyMnO3单晶的磁热效应,在磁场变化5T 时, ab 面上的最大磁熵变值为 15 J/(kg·K), 而在低 磁场变化下, c轴方向表现出大的磁熵变, 在磁场变 化0.5 T时, c轴方向的最大磁熵变值为2 J/(kg·K).

* 天津职业大学科学研究基金(批准号: 20161102)和天津市教委自然科学基金(批准号: 2017KJ247)资助的课题.

© 2018 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: mzjmzj163@163.com

但这些材料的磁熵变远低于稀土金属间化合物(在磁场变化1T时磁熵变约为10J/(kg·K)).

Alho等^[15]利用Hamiltonian系统地研究了磁 场对单晶EuTiO₃各向异性磁熵变的影响. Eu-TiO3相变温度在6K左右,呈现出量子顺电性和 G型反铁磁性, Eu²⁺的磁矩为7 $\mu_{\rm B} \pm 1 \mu_{\rm B}$ ^[16,17]. EuTiO₃的在液氦温区具有巨磁热效应并且不存 在明显的磁滞损耗和热滞损耗现象. Akamatsu 等^[18]研究最近邻相互作用 J₁和次近邻相互作用 J2与体积的变化关系,结果表明随着体积的增大, EuTiO₃的基态由反铁磁态转化成铁磁态. 通过 改变外来的作用可以控制 EuTiO₃ 的磁性状态, 当 某一方向的晶格常数变大时, EuTiO₃的最近邻 Eu离子的磁相互作用会从反铁磁态转变成铁磁 态^[19,20]. 氧空位掺杂也可使EuTiO₃材料从反铁 磁态转变为铁磁态, Li 等^[21] 在 Eu_{0.5}Ba_{0.5}TiO_{3- σ} 薄膜中也证明了氧缺陷可以使反铁磁态转变为铁 磁态. 当对EuTiO3电子掺杂时, 巡游电子被加入 到Ti的三重简并的3d t2g 轨道中,以这些巡游电 子为媒介, Eu 自旋之间 Ruderman-Kittel-Kasuya-Yoshida (RKKY)相互作用,同样可以转变为铁磁 态^[22].本文通过二价碱金属元素和稀土元素(La, Ce, Sm)对Eu元素的替代,研究晶格常数的变化和 电子掺杂对EuTiO3磁性和磁热效应的影响.

2 实验过程

采用溶胶凝胶法制备Eu_{0.9} $M_{0.1}$ TiO₃ (M =Ca, Sr, Ba, La, Ce, Sm). 首先,将硝酸铕 (Eu(NO₃)₃·6H₂O)和M的硝酸盐(M =Ca, Sr, Ba, La, Ce, Sm)按一定的化学比例溶解到去离 子水中,搅拌至完全溶解,接着加入一定量的硝酸, 然后加入钛酸四丁脂[Ti(OC₄H₉)₄],搅拌0.5 h.最 后,将乙二醇(C₂H₆O₂)按相比于金属硝酸盐1:1 的摩尔比加入其中作为分散剂,继续搅拌0.5 h.

所配置的均匀溶液在 70°C进行干燥,形成所 需的干凝胶.干凝胶在 400°C 空气中烧结 4 h,得 到的样品进行充分研磨.最后样品在 800°C 空气 中保持 2 h,然后通入 8%的 H₂和 92%的 Ar 的混合 气体,以 5°C/min 的升温速率升高温度到 1100°C, 并保持 4 h,得到替代的钛酸铕 Eu_{0.9} M_{0.1} TiO₃ 样品.

得到的粉末样品通过X射线衍射(XRD)进行 测量,以确定晶体结构.并使用超导量子干涉装 置(SQUID)磁强计测量等温磁化曲线和变温磁化曲线.

3 结果与讨论

图 1 是 Eu_{0.9} $M_{0.1}$ TiO₃ (M = Ca, Sr, Ba, La, Ce, Sm)的 XRD 图, 结果表明样品为钙钛矿结构, 没有其他杂相. 通过 Rietveld 对 XRD 衍射峰精修, 其中 $R_{wp} < 9\%$ 和 CHI² < 8, 得到晶格参数a为 (3.9065—3.9090), 离子的替代使得晶格参数有所 增大, 晶格参数增大量随替代离子半径的大小而变 化, 如图 1 中插图所示.

Fig. 1. The XRD patterns of $Eu_{0.9}M_{0.1}TiO_3$ (M = Ca, Sr, Ba, La, Ce, Sm). EuTiO_3 is the Rietveld technique program, the observed data are indicated by crosses, and the calculated profile is the continuous line overlying them, the lower curve is the difference between the observed and calculated. Inset: the change of lattice parameters.

图 2 Eu_{0.9} $M_{0.1}$ TiO₃ (M = Ca, Sr, Ba, La, Ce, Sm) 在磁场 0.01 T下的零场降温热磁曲线 (ZFC) 和带场降温 热磁曲线 (FC)

Fig. 2. Temperature dependences of ZFC and FC magnetizations of $Eu_{0.9}M_{0.1}TiO_3$ (M = Ca, Sr, Ba, La, Ce, Sm) under the magnetic field of 0.01 T (1 emu/g = $10^{-3} \text{ A} \cdot \text{m}^2/\text{g}$).

零场降温热磁曲线(ZEF)和带场降温热磁 曲线(FC)表明EuTiO3和Eu0.9Ca0.1TiO3呈现反 铁磁性, Ca离子的替代并没有改变原有的磁相 变性质, 奈尔温度约为5.5 K; 但Eu0.9Sr0.1TiO3 和Eu0.9Ba0.1TiO3样品呈现铁磁性,居里温度为 5.5 K, 如图 2(a) 所示. 这主要是因为 Ca 的离子半 径为0.99 Å, 和Eu的离子半径0.947 Å相近, 钙的 替代晶格参数增大较小,磁耦合形式没有变化,因 此磁相变形式不变.但Sr和Ba的离子半径(1.12 和1.35 Å) 明显大于 Eu 的离子半径, 当部分 Eu 离 子被Sr或Ba替代时,样品的晶格参数明显增大, 如图1中的XRD图所示. EuTiO3中通过原子内 Eu 5d态的铁磁交换作用与通过Ti 3d态的反铁磁 超交换作用之间竞争,并处于平衡状态.如果有外 界方式打破这种平衡,体系可能从反铁磁态转变为 铁磁态. 实验发现和理论预测的外界方式有掺杂 载流子或存在应力,都可打破这种平衡,晶胞体积 的增大使得铁磁相互作用增强[18],因而整体表现 为铁磁态. 另外, 零场降温热磁曲线和带场降温热 磁曲线完全重合, 表明样品没有热滞现象, 这对制 冷循环过程是十分有利的.图2(b)是3价稀土元素

(La, Ce, Sm) 替代 Eu 的零场降温热磁曲线和带场 降温热磁曲线. Eu_{0.9}La_{0.1}TiO₃和Eu_{0.9}Ce_{0.1}TiO₃ 呈现铁磁性,这表明10%的3价稀土元素(La, Ce) 替代Eu原子都增强了铁磁的偶和作用, 整体表现 为铁磁性,这与之前的文献报道相似^[23].样品表 现出铁磁性主要有两个原因, 一是额外载流子可 能占据原来Ti的空3d轨道,导致Eu 4f-Ti 3d-Eu 4f杂化减少,反铁磁交换作用减弱,当电子掺杂 浓度大于10%时,费米面上Ti 3d态的自旋极化率 为负,引起AFM到FM态的转变.二是La和Ce的 离子半径1.061和1.034 Å大于Eu离子, 晶格膨胀 通过Eu 5d的间接铁磁交换作用得到增强,引起 AFM 到 FM 态的转变. 但 Eu_{0.9}Sm_{0.1}TiO₃ 磁性转 变并不明显,可能是因为Sm的离子半径与Eu的 离子半径非常接近,晶格变化很小,同时在还原气 氛下有部分Sm以二价形式存在,电子掺杂浓度低 于10%,从而铁磁性耦合增强不明显.另外,值 得注意的是Eu0.9La0.1TiO3和Eu0.9Ce0.1TiO3低 温下的磁化率明显大于Eu0.9Sm0.1TiO3,这也说 明了La和 Ce替代体系晶格参数的增大和电子掺 杂共同作用下使得铁磁性耦合作用增强.

为了进一步证实 Eu_{0.9} $M_{0.1}$ TiO₃ (M = La, Ce, Sm) 系列样品磁性的变化,图 **3** (a) 给出了在低磁场 下 2, 3, 4, 5 K 的等温磁化曲线. 结果表明 Eu-TiO₃ 的等温磁化曲线存在少量交叉,说明呈现 反铁磁性;当10%的 Sm 元素替代 Eu 时,2000 Oe (1 Oe = 10³/(4 π) A/m) 以下 2, 3, 4, 5 K 的等温 磁化曲线完全重叠,与EuTiO₃ 的少量交叉还是 有所区别的,说明铁磁耦合有所增强;而当La, Ce 替代Eu时,等温磁化曲线明显表现出铁磁性 特征.同时,从图3(b)的Arrott图中也可以看到, EuTiO₃表现出负斜率,为反铁磁的一级相变;而 Eu_{0.9} $M_{0.1}$ TiO₃ (M = La, Ce, Sm)样品表现出正 斜率,为铁磁的二级相变,这说明了Sm元素替代 Eu 时,宏观磁性表现为弱铁磁性.

图 3 EuTiO₃和Eu_{0.9} $M_{0.1}$ TiO₃ (M = La, Ce, Sm) 系列样品 (a) 在低磁场下 2, 3, 4, 5 K 的等温磁化曲线和 (b)Arrott 图 Fig. 3. (a) The isothermal magnetization curves of EuTiO₃ and Eu_{0.9} $M_{0.1}$ TiO₃ (M = La, Ce, Sm) collected at 2, 3, 4 and 5 K under low field; (b) Arrott curves.

图 4 描述的是 EuTiO₃和 Eu_{0.9} $M_{0.1}$ TiO₃(M = Ca, Sr, Ba, La, Ce, Sm)样品 2 K时 0—5 T的 等温磁化曲线. 随磁场的增强磁化强度快速增 大,约10 kOe时磁化强度趋于饱和. 当Ca替代 Eu时磁化强度明显减小,主要是因为稀土Eu离 子减少. 而 Sr和 Ba替代Eu, 当磁场大于10 kOe 时,尽管稀土Eu离子减少,但磁化强度基本保持 不变,当磁场小于10 kOe时,磁化强度明显提高, 这主要是因为晶格常数增大,导致铁磁性增强.当 对EuTiO3电子掺杂约10%时,虽然宏观呈现铁磁 性,但由于稀土Eu离子减少,饱和磁化强度明显降 低. Eu_{0.9}Sm_{0.1}TiO3在低场下(磁场小于10 kOe) 没有表现出大的磁化强度,主要是因为Sm的离子 半径与Eu离子半径相近,因此可以近似为只考虑 电子掺杂的作用,而电子掺杂浓度相对较低.而 Eu_{0.9}La_{0.1}TiO₃和Eu_{0.9}Ce_{0.1}TiO₃样品,在磁场小 于10kOe时磁化强度明显高于EuTiO₃,这主要是 因为La和Ce的离子半径明显大于Eu离子,在晶 格常数膨胀和电子掺杂共同作用下增强了铁磁性 耦合,使得样品低场下具有较大的磁化强度.

图 5 为 Eu_{0.9} $M_{0.1}$ TiO₃ (M = Ca, Sr, Ba, La, Ce, Sm)系列样品在磁场变化为1 T时, 磁熵变

与温度的关系.结果表明, Eu^{2+} 被替代减少了 磁性离子, $Eu_{0.9}Ca_{0.1}TiO_3$ 的磁熵变降低.虽然 Eu^{2+} 被替代减少了磁性离子, 但在磁场变化1 T 时, $Eu_{0.9}Sr_{0.1}TiO_3$ 和 $Eu_{0.9}Ba_{0.1}TiO_3$ 的最大磁熵 变分别为9.8和10 J/(kg·K), 和 $EuTiO_3$ 的最大磁 熵变相近, 而且在相变温度以下, $Eu_{0.9}Sr_{0.1}TiO_3$ 和 $Eu_{0.9}Ba_{0.1}TiO_3$ 的磁熵变有明显的提高.因 为晶格膨胀使得铁磁性耦合增强, 有利于提高 材料低磁场下的磁熵变.在1 T的磁场变化下, $Eu_{0.9}La_{0.1}TiO_3$ 和 $Eu_{0.9}Ce_{0.1}TiO_3$ 的最大磁熵变

图 4 EuTiO₃和Eu_{0.9} $M_{0.1}$ TiO₃ (M = Ca, Sr, Ba, La, Ce, Sm) 样品 2 K时 0—5 T 的等温磁化曲线 Fig. 4. The isothermal magnetization curves of EuTiO₃ and Eu_{0.9} $M_{0.1}$ TiO₃ (M = Ca, Sr, Ba, La, Ce, Sm) for increasing and decreasing field model at 2 K under magnetic field 0–5 T.

图 5 EuTiO₃ 和 Eu_{0.9} $M_{0.1}$ TiO₃ (M = Ca, Sr, Ba, La, Ce, Sm) 系列样品在磁场变化为 1 T时, 磁熵变与温度的关系 Fig. 5. Temperature dependences of magnetic entropy change of EuTiO₃ and Eu_{0.9} $M_{0.1}$ TiO₃ (M = Ca, Sr, Ba, La, Ce, Sm) compounds under magnetic field 1 T.

分别为10.8和11 J/(kg·K),大于EuTiO₃的最大 磁熵变9.8 J/(kg·K). La和Ce的离子半径介于 Eu和Sr之间,如果仅仅是由晶格膨胀引起的磁 熵变,变化应该与Eu_{0.9}Sr_{0.1}TiO₃相似,但Eu_{0.9} La_{0.1}TiO₃和Eu_{0.9}Ce_{0.1}TiO₃的磁熵变明显高于 Eu_{0.9}Sr_{0.1}TiO₃,这是因为在La和Ce离子替代Eu 离子时,不但有晶格的膨胀,而且还有电子掺杂,抑制反铁磁耦合,表现出更强的铁磁性,因此具有 更大的磁熵变.在相变温度以下,Eu_{0.9}La_{0.1}TiO₃ 和Eu_{0.9}Ce_{0.1}TiO₃的磁熵变也明显高于EuTiO₃. Eu_{0.9}Sm_{0.1}TiO₃的磁熵变为6.7 J/(kg·K),明显降 低,主要是因为Eu²⁺被替代减少了磁性离子. 另外,Sm替代Eu铁磁性耦合的增强不明显,可 能是因为在还原气氛下Sm存在二价,因此在 Eu_{0.9}Sr_{0.1}TiO₃材料中电子的掺杂含量低于10%.

磁制冷能力也是表征磁热效应的重要参数. Eu_{0.9}Sr_{0.1}TiO₃和Eu_{0.9}Ba_{0.1}TiO₃的制冷能力分 别为36.6和45.1 J/kg,相对于EuTiO₃的27 J/kg 有明显的提高. Eu_{0.9}La_{0.1}TiO₃和Eu_{0.9}Ce_{0.1}TiO₃ 的制冷能力分别为39.3和51.8 J/kg,相对于Eu-TiO₃也有提高. 磁熵变和制冷能力提高的原因主 要是材料从反铁磁性转变为铁磁性.

4 结 论

利用溶胶凝胶法制备EuTiO₃和Eu_{0.9} $M_{0.1}$ -TiO₃(M = Ca, Sr, Ba, La, Ce, Sm)系列样品, 研究其磁性和磁热效应.研究表明,通过增大晶格 常数和控制一定浓度的电子掺杂,可使直接带隙半 导体材料EuTiO₃在低温下的铁磁性耦合增强或抑 制其反铁磁性耦合,实现由反铁磁性转变为铁磁 性.当大离子半径的碱土金属Ba和Sr离子替代Eu 离子时,晶格常数增大.相变温度以下,低磁场下 的磁熵变有所提高.当大离子半径的稀土La和Ce 离子替代Eu离子时,既增大了晶格常数也实现了 电子掺杂,表现出较强的铁磁性.在1T的磁场变 化下,Eu_{0.9}La_{0.1}TiO₃最大磁熵变为10.8 J/(kg·K), 制冷能力为39.3 J/kg,相对于EuTiO₃有所提高. Eu_{0.9}Ce_{0.1}TiO₃的最大磁熵变为11 J/(kg·K);制冷 能力为51.8 J/kg,相对于EuTiO₃有所提高.

参考文献

- [1] Benford S M, Brown G V 1981 J. Appl. Phys. 52 2110
- [2] Shen B G, Sun J R, Hu F X, Zhang H W, Chen Z H 2009 Materials. Adv. Mater. 21 4545
- [3] Tegus O, Bruck E, Buschow K H, DeBoer F R 2002 Nature 415 150
- [4] Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. 102 092401
- [5] Gupta S B, Suresh K G 2013 Appl. Phys. Lett. 102 022408
- [6] Mo Z J, Shen J, Yan LQ, Wu J F, Wang L C, Tang C C, Shen B G 2013 Appl. Phys. Lett. 102 192407
- [7] Chen J, Shen B G, Dong Q Y, Sun J R 2010 Solid State Commun. 150 1429
- [8] Li L W, Saensunon B, Hutchison W D, Huo D X, Nishimura K 2014 J. Alloys Compd. 582 670
- [9] Cui L, Wang L C, Dong Q Y, Liu F H, Mo Z J, Zhang Y, Niu E, Xu Z Y, Hu F X, Sun J R, Shen B G 2015 J. Alloys Compd. 622 24
- [10] Li L, Hutchison W D, Huo D X, Namiki T, Qian Z H, Nishimura K 2012 Scr. Mater. 67 237
- [11] Li L W, Namiki T, Huo D X, Qian Z H, Nishimura K 2013 Appl. Phys. Lett. 103 222405
- [12] Mo Z J, Shen J, Yan L Q, Tang C C, Lin J, Wu J F, Sun J R, Wang L C, Zheng X Q, Shen B G 2013 *Appl. Phys. Lett.* **103** 052409
- [13] Balli M, Jandl S, Fournier P, Gospodinov M M 2014 Appl. Phys. Lett. 104 232402
- [14] Balli M, Jandl S, Fournier P, Mansouri S, Mukhin A, Ivanov Yu V, Balbashov A M 2015 J. Magn. Magn. Mater. 374 252
- [15] Alho B P, Magnus A, Carvalho G, von Ranke P J 2014 J. Appl. Phys. 116 113907
- Scagnoli V, Allieta M, Walker H, Scavini M, Katsufuji T, Sagarna L, Zaharko O, Mazzoli C 2012 *Phys. Rve. B* 86 094432
- [17] Guguchia Z, Keller H, Kremer R K, J Köhler, Luetkens H, Goko T, Amato A, Bussmann-Holder A 2014 *Phys. Rve. B* 90 064413
- [18] Akamatsu H, Kumagai Y, Oba F, Fujita K, Murakami H, Tanaka K, Tanaka L 2011 *Phys. Rev. B* 83 214421
- [19] Mo Z J, Hao Z H, Deng J Z, Shen J, Li L, Wu J F, Hu F X, Sun J R, Shen B G 2017 J. Alloys Compd. 694 235
- [20] Mo Z J, Sun Q L, Wang C H, Wu H Z, Li L, Meng F B, Tang C C, Zhao Y, Shen J 2017 Ceram. Int. 43 2083
- [21] Li W W, Zhao R, Wang L, Tang R J, Zhu Y Y, Lee J H, Cao H X, Cai T Y, Guo H Z, Wang C, Ling L S, Pi L, Jin K J, Zhang Y H, Wang H Y, Wang Y Q, Ju S, Yang H 2013 Sci. Rep. 3 2618
- [22] Rubi K, Midya A, Mahendiran R, Repaka D V M, Ramanujan R V 2016 J. Appl. Phys. 119 243901
- [23] Mo Z J, Sun Q L, Shen J, Mo Y, Li Y J, Li L, Liu G D, Tang C C, Meng F B 2018 Chin. Phys. B 27 017501

Magnetic and magnetocaloric effects of $Eu_{0.9}M_{0.1}TiO_3$ (M = Ca, Sr, Ba, La, Ce, Sm) compounds^{*}

Hao Zhi-Hong¹⁾ Wang Hai-Ying¹⁾ Zhang Quan¹⁾ Mo Zhao-Jun^{2) \dagger}

1) (School of Optometry, Tianjin Vocational Institute, Tianjin 300410, China)

2) (School of Material Science and Engineering, Institute of Material Physics, Tianjin University of Technology,

Tianjin 300384, China)

(Received 21 September 2018; revised manuscript received 19 October 2018)

Abstract

EuTiO₃ is a direct band-gap semiconductor material and exhibits antiferromagnetism with large magnetic entropy change around the liquid helium temperature. The ferromagnetic state can be changed into antiferromagnetic state through lattice constant change and electron doping by element substitution due to strong spin-lattice coupling coexistence of ferromagnetic coupling, and antiferromagnetic coupling. The values of magnetic entropy change can be effectively improved under low magnetic field change after changing into ferromagnetism. Samples of $EuTiO_3$ and $Eu_{0.9}M_{0.1}TiO_3$ (M = Ca, Sr, Ba, La, Ce, Sm) are prepared by the sol gel method. The Eu_{0.9}Ca_{0.1}TiO₃ exhibits the antiferromagnetism due to similar ion radius. The ferromagnetic coupling between $Eu_{0.9}Sr_{0.1}TiO_3$ and $Eu_{0.9}Ba_{0.1}TiO_3$ is enhanced, for alkaline earth metal (Sr and Ba) has larger ion radius, which is beneficial to improving the magnetocaloric effect under low magnetic field. Electron doping can inhibit the antiferromagnetic coupling because the extra carrier may occupy the Ti 3d and reduce the hybridization of Eu 4f-Ti 3d-Eu 4f. When the electron doping concentration is greater than 10%, the spin polarization rate of Ti 3d state on the Fermi surface is negative, resulting in the transition from antiferromagnetic to ferromagnetic state. When the Eu ions are replaced with the Sm ions (Sm ion radius is similar to Eu ion radius), the ferromagnetic coupling is enhanced. However, when the Eu ions are replaced with the La or Ce ions, the samples show strong ferromagnetism, for the lattice constant and electron doping are increased. A giant reversible magnetocaloric effect and large refrigerant capacity for each of $Eu_{0.9}M_{0.1}TiO_3$ (M = Sr, Ba, La, Ce) compounds are observed. Under the magnetic field change of 1 T, the values of maximum magnetic entropy change and refrigeration capacity are 9.8 J/(kg·K) and 36.6 J/kg for Eu_{0.9}Sr_{0.1}TiO₃, and 10 J/(kg·K) and 45.1 J/kg for Eu_{0.9}Ba_{0.1}TiO₃. The values of maximum magnetic entropy change of $Eu_{0.9}La_{0.1}TiO_3$ and $Eu_{0.9}Ce_{0.1}TiO_3$ are 10.8 J/(kg·K) and 11 J/(kg·K), respectively, which are larger than that of EuTiO₃ (9.8 J/(kg·K)). The values of refrigeration capacity are 39.3 J/kg and 51.8 J/kg, which are also improved compared with those of EuTiO₃. In a word, the results suggest that these compounds could be considered as good candidates for low-temperature and low-field magnetic refrigerant.

Keywords: magnetocaloric effect, magnetic entropy change, magnetic phase transitionPACS: 75.30.Sg, 65.40.gd, 75.30.KzDOI: 10.7498/aps.67.20181750

^{*} Project supported by the Scientific Research Fund of Tianjin Vocational University, China (Grant No. 20161102) and the Natural Science Foundation of Tianjin Education Commission, China (Grant No. 2017KJ247).

[†] Corresponding author. E-mail: mzjmzj163@163.com