物理学报 Acta Physica Sinica

Chinese Physical Society

Institute of Physics, CAS

PS3000-b-PAA5000 球形胶束温度效应的原位小角 X 射线散射技术研究

金鑫 杨春明 滑文强 李怡雯 王劼

Temperature dependence of spherical micelles of PS₃₀₀₀-*b*-PAA₅₀₀₀ studied by *in-situ* small angle X-ray scattering

Jin Xin Yang Chun-Ming Hua Wen-Qiang Li Yi-Wen Wang Jie

引用信息 Citation: Acta Physica Sinica, 67, 048301 (2018) DOI: 10.7498/aps.20172167 在线阅读 View online: http://dx.doi.org/10.7498/aps.20172167 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I4

您可能感兴趣的其他文章 Articles you may be interested in

PS3000b-PAA5000 球形胶束温度效应的原位X射线小角散射技术研究

Temperature dependence of spherical micelles of PS₃₀₀₀b-PAA₅₀₀₀ studied by in-situ small angle X-ray scattering

物理学报.2018,67(4):048301 http://dx.doi.org/10.7498/aps.67.20172167

小角X射线散射表征非晶合金纳米尺度结构非均匀

Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotron small angle X-ray scattering

物理学报.2017, 66(17): 176109 http://dx.doi.org/10.7498/aps.66.176109

基于固体腔扫描法布里-珀罗干涉仪的大气温度绝对探测方法研究

Investigation of the absolute detection method of atmospheric temperature based on solid cavity scanning Fabry-Perot interferometer

物理学报.2017,66(8):089202 http://dx.doi.org/10.7498/aps.66.089202

聚丙烯腈基碳纤维原丝在纺丝过程中纳米孔变化规律与机理研究

Nanopore change law and mechanism of polyacrylonitrile based carbon fiber precursor in spinning process 物理学报.2015, 64(4): 046101 http://dx.doi.org/10.7498/aps.64.046101

长时间大气温度序列的外部变化趋势判别研究

Detection of significant external trend in long-term air temperature records 物理学报.2015, 64(2): 029201 http://dx.doi.org/10.7498/aps.64.029201

PS₃₀₀₀-*b*-PAA₅₀₀₀球形胶束温度效应的原位 小角X射线散射技术研究*

金鑫¹⁾²⁾ 杨春明^{1)†} 滑文强²⁾ 李怡雯³⁾ 王劼^{1)‡}

(中国科学院上海应用物理研究所,上海光源,上海 201204)
 2)(中国科学院大学,北京 100049)
 3)(中国科学院上海生命科学研究院,国家蛋白质中心,上海 200031)
 (2017年10月3日收到;2017年11月17日收到修改稿)

应用小角X射线散射技术 (SAXS) 对两亲嵌段共聚物聚苯乙烯聚丙烯酸 (PS-b-PAA) 胶束形貌的温度影响进行了原位表征. SAXS 结果表明:随着水含量的增加,粒子尺寸相应增加;对于水含量 10% 的 PS₃₀₀₀b-PAA₅₀₀₀ 胶束溶液,发现了明显的 SAXS 双峰现象;双峰的位置不随着温度的变化而改变,但是 peak 1 和 peak 2 的相对强度随着温度发生了减弱和增强的交错变化;相邻的 SAXS 双峰说明在 PS₃₀₀₀-b-PAA₅₀₀₀ 胶束 溶液中最初形成的粒子尺寸并不是均匀的,主要分为尺寸极其相近的两种球形粒子;随着温度的升高,粒径大 小不同的两种粒子存在着一种消融和生长的过程,并且保持着一个相同的归一化动态平衡速率.

关键词: 嵌段共聚物聚, 小角 X 射线散射, 温度效应, 同步辐射
 PACS: 83.80.Uv, 61.05.cf, 92.60.hv, 29.20.dk
 DOI: 10.7498/aps.67.20172167

1引言

近年来, 嵌段共聚物由于其在药物输送^[1-3]、 激光光刻^[4-6]、分离薄膜等^[7,8]方面的应用而受到 了广泛重视. 人们通过改变嵌段高分子结构^[9]、溶 剂性质 (如 pH值、溶解度参数等)^[10-12]、体系的组 成等^[13]已成功实现了对胶束形貌结构的调控, 并 对其机理做了深入研究. 一般情况下, 嵌段共聚物 具有较长疏水链段, 往往形成大核小壳胶束, 这种 胶束又称为"平头"胶束^[14]; 而具有较长的亲水链 段往往形成小核大壳胶束的星形胶束^[15]. 其中值 得注意的是, 通过添加酸、碱改变体系的 pH值, 进 而改变体系电荷相互作用的方法可以方便、有效地 调控胶束的形貌结构, 但是这种方法通常仅改变体 系的电荷相互作用, 难以参与到胶束内部的构筑. 而使用不同成分的选择性溶剂不仅可以改变体系 的电荷相互作用,实现对胶束结构的调控,且可参 入胶束内部的构筑,进而使胶束形貌完全发生变 化.当合成具有确定比例成分的嵌段共聚物后,采 用不同选择性溶剂通过共聚物的自组装,得到具有 核壳结构不同形态的聚集体,包括球状、棒状、层状 及囊泡状^[16].

一般而言, 平头胶束聚集体系溶液自组装更容 易发生多种形态变化而星形胶束倾向于稳定, 使平 头胶束更容易产生形态变化^[17].目前许多研究对 平头溶液自组装极为关注, 并观察到许多不同形态 的平头聚集体.而当亲水端链段增加时, 胶束更易 形成且更加稳定, 更适用于药物传输^[18,19].同时对 于胶束形貌研究主要集中在常温环境中, 而温度变 化对嵌段共聚物形貌亦有较大影响.研究嵌段共聚 物聚合物胶束的温度感应, 对于制备具有定向靶向 作用的药物载体具有重大意义^[20].

* 国家自然科学基金 (批准号: 11405259) 和国家重点研发计划 (批准号: 2017YFA0403000) 资助的课题.

© 2018 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: yangchunming@sinap.ac.cn

[‡]通信作者. E-mail: wangjie@sinap.ac.cn

自1996年 Adieisenberg 小组^[17] 首次发现短亲 水链段平头胶束以来,从球状、棒状、层状及囊 泡状形貌和其他特殊形貌均被合成及表征. Shen 等^[21,22]通过透射电镜(TEM)研究了两亲嵌段共 聚物聚苯乙烯-聚丙烯酸(PS-b-PAA)胶束在不同 配比下的N, N-二甲基甲酰胺/水(DMF/H₂O)混 合溶剂中胶束的形貌. 岳玲等^[23] 通过原子转移自 由基的方法合成了 PS-b-PAA, 并通过 TEM 离线地 研究了不同放置时间下PS-b-PAA的形貌特征. 虽 然通过TEM成像可以清楚观察到胶束形貌,但只 能对局部区域的特性进行表征,缺乏统计性,同 时只能对于胶束形貌变化进行离线表征. 陆冬云 等^[24]基于标度理论建立了嵌段共聚物溶剂体系的 胶束模型,讨论了温度对嵌段共聚物胶束形貌的影 响,结果显示溶液中胶束的聚集数目和内核半径随 温度明显升高,但胶束的整体半径变化较小.

本研究应用同步辐射小角X射线散射 (SAXS) 技术与变温设备相结合,原位、实时研究了两亲嵌 段共聚物 PS-*b*-PAA,在不同配比的 DMF/H₂O 混 合溶剂中, PS-*b*-PAA 的结构与温度的关联.

2 实 验

2.1 嵌段共聚物胶束制备

嵌段共聚物聚苯乙烯聚丙烯酸 (Polystyreneblock-poly(acrylic acid), DDMAT terminated, 产 品编号: 776351, PS: PAA = 3000:5000) 购于 Sigma-Aldrich 试剂公司, DMF 购于上海国药集团 化学试剂有限公司 (产品编号:81007718). 实验 中所用水均为密立根超纯水 (18 MΩ·cm). 具体操 作步骤如下:取PS-b-PAA 样品 10 mg,在室温下 将其溶解于共同溶剂 DMF 中 (依照待配置样品的 浓度要求,分别使用 0.9, 0.8 和 0.7 mL),缓慢搅拌 60 min 左右,至嵌段共聚物完全溶解,然后逐滴加 入去离子水,滴入量为50 μL/次,每5 s滴一次,配 制成指定水含量嵌段共聚物溶液并放入冰箱保存. 嵌段共聚物胶束浓度均为10 mg/mL.

2.2 原位SAXS测量

SAXS 实验在上海光源 BL19U 线站上完成. 实验时选择的入射 X 射线的能量为12 keV, 能 量分辨率大约为 3×10^{-4} , 在样品处的光斑尺寸 大约为 $320 \times 43 \ \mu m^2$, 光通量 2×10^{12} phs/s. 实 验站的 X 射线探测器为 Pilatus 1 M, 有效面积为 $169 \times 179 \text{ mm}^2$, 像素尺寸 $172 \times 172 \mu m^2$, 每帧读取 速度最快 20 ms. 根据胶原蛋白样品的标定, 样品 到探测器的距离为 5340 mm, 实验能够获得的 q 值 范围为 $0.11-0.89 \text{ nm}^{-1}$.

SAXS实验采用透射模式,实验时将样品注入 液体样品池中.样品池的有效厚度大约为1 mm, 根据液体散射强度与吸收强度的计算,在该厚度 下可以获得较大的SAXS信号.样品池的窗口材 料为Kapton膜,为减少膜本身的吸收和散射,取膜 厚为20 µm.原位样品变温装置为TS1500(Linkam 公司,英国),样品池紧贴于加热片处,但由于样品 池窗口和加热片之间难以完全消除间隙,为保证样 品的均匀受热,升温速度控制为5°C/min,并在测 定温度处停留3 min,确保在X射线光束覆盖的范 围内,样品的温度有较好的一致性.液体升温范围 为30—70°C,单帧曝光时间100 s.为防止实验测 量过程中液体由于蒸发、挥发等效应影响样品的一 致性,样品池的开口一律封堵.

尽管入射X射线的通量和亮度较高,但我们在 实验中没有发现明显的样品损伤,因此在整个实验 过程中没有采用防损伤的措施.为消除散射本底的 影响,在测试样品前,先测试了同样样品池中的缓 冲液,得到的SAXS图像作为样品测量数据的本底, 扣除方法仿照蛋白质溶液样品扣除本底的方法^[25]. 一维SAXS曲线使用Fit2D处理数据获得,为消除 Pilatus探测器的模块间隔,对二维图像积分采用了 "间隔填充"方法处理,保证不影响一维SAXS曲线.

3 实验结果

通常情况下, 嵌段共聚物 PS-b-PAA 在常温 DMF 溶液中可完全溶解, 在逐步加入纯水过程 中形成核-壳结构的球状胶束, PS 段为硬的核, 而 PAA 段形成冠状物.为观察不同水含量对 PS₃₀₀₀b-PAA₅₀₀₀ 胶束结构的作用, 我们制备了水含量为 10%, 20% 和 30% 的胶束溶液样品 (表 1), 分别开展 了 SAXS 实验研究.

表1 实验研究制备的样品				
Table 1. Sau	mples used for experiments.			

样品名称	#1	#2	#3	
溶液中水含量/%	10	20	30	

图1给出了室温时不同样品的一维SAXS曲 线. 对于#1样品,在0.418 nm⁻¹附近出现散射峰. 室温下TEM图像(图2(a))中球形粒子清晰可见, 根据球形粒子散射的基本公式(qr = 5.76, 第一 峰值点),估算出此时散射体的名义"粒径"约为28 nm, 与图2TEM图像中的红色标记的粒子尺寸一 致. TEM 测试为场发射电镜 (Tecnai G2 F20 S-TWIN, FEI公司, 美国). 制样步骤为先将铜网放 在滤纸上,然后将溶液滴在铜网上,滤纸吸收大量 多余溶剂的同时自然风干30 min 以上, 最后得到 了TEM图像(图2(a)). 粒径分布如图2(b)所示, 其中粒径 27 nm (±2 nm)的胶束 23个, 粒径 53 nm (±2 nm) 左右的胶束 17个, 粒径 73 nm 左右的胶束 8个, 粒径100 nm 左右的胶束5个. 53 nm, 73 nm 和100 nm 球形粒子的一级散射峰的峰位分别是 0.22, 0.16 和 0.11 nm⁻¹, 但在本实验中均未看到明 显的峰. 一种可能是由于这些胶束的个数相对较 少,没有形成足够明显的散射峰.在#2样品的小 角散射信号上没有观察到明显的散射峰,根据文献 报道^[17],在PS-b-PAA的结构中,可以出现层状结 构. 如果我们的样品也是层结构, 则应符合薄片体 的散射理论,即散射强度不会出现明显的结构特征 峰. 当水含量为30%以上时, 散射强度曲线的低 q 区又出现散射峰,对应的胶束结构的"粒径"约为 60 nm, 应该是具有更大直径的颗粒物或小颗粒物 聚集而形成大的颗粒聚集体,基本符合文献[17]的 TEM 结果.

Fig. 1. SAXS profiles of the PS-*b*-PAA solutions with different concentrations at room temperature.

为进一步了解嵌段共聚物的温度-结构效应, 选择体系相对简单的#1样品开展了原位变温 SAXS研究. 图3是#1样品原位变温的一维SAXS 曲线,可以看出, 30°C时q值在0.41 nm⁻¹附近有 一个弱散射峰, 主峰的右侧隐约有散射峰的存在,

图 2 室温下 #1的 TEM 图 (a), 球形粒子清晰可见; 从 TEM 图像得到的粒径分布的统计结果 (b); 其中 粒径 27 nm (±2 nm)的胶束 (红色)23 个, 粒径 53 nm (±2 nm) 左右胶束 (绿色)17 个, 粒径 73 nm 左右胶束 (蓝 色)8 个, 粒径 100 nm 左右的胶束 (黄色)5 个

Fig. 2. TEM image of #1 was obtained at room temperature, in which particles of spherical profile were clearly shown (a). The distribution of particles diameter (b) was obtained from TEM image, 23 particles with diameter of (27 ± 2) nm (red), 17 particles with diameter of (53 ± 2) nm (green), 8 particles with diameter of ~73 nm (blue), and 5 particles with diameter of ~100 nm (yellow).

图 3 #1 样品在不同温度下的 SAXS 曲线

Fig. 3. SAXS profiles of sample #1 at various temperatures.

但是不很明显; 40 °C时,除了 $q = 0.41 \text{ nm}^{-1}$ 的峰,右侧 $q = 0.45 \text{ nm}^{-1}$ 附近出现了一个相对 较弱的峰; 45 °C时,明显的双峰出现;随着继 续升温, $q = 0.41 \text{ nm}^{-1}$ 附近的峰逐渐变弱,而 $q = 0.45 \text{ nm}^{-1}$ 附近的峰逐渐增强. 70 °C时,左侧 的峰变得不明显了,右侧的峰成为明显的主峰.

4 讨 论

随着温度的升高,双峰现象的出现预示着体系 中存在至少两种粒径非常接近的颗粒物. 拟合发 现,双峰拟合可以很好地符合散射强度曲线(图4), 不同温度下各拟合峰的参数见表2.

从拟合的结果可以看出, 在拟合过程中没有对 峰的位置加以限制, 但拟合峰的峰位相对稳定, 没 有明显的偏移, 说明溶液中确实存在两种不同直径 的粒子, 而且它们的直径可以认为是不随着温度的 改变而改变的, 峰位的微小差异应该是来源于测量 误差和后续数据处理引入的误差. 为计算出粒子 的直径, 取q的平均值作为实际的q值是合理的, 则 $q_{\text{peak1}} = 0.418 \text{ nm}^{-1}$, $q_{\text{peak1}} = 0.456 \text{ nm}^{-1}$, 根据 球形粒子散射强度的第一峰值点 qr = 5.76, 对应的 粒子直径分别为27.6 nm 和25.3 nm.

Fig. 4. Double-peak fitting for SAXS intensities at various temperatures.

048301-4

温度/°C -	散射峰拟合参数				数针修五和上比	
	q/nr	m^{-1}	峰面积	$/\mathrm{nm}^{-1}$	目又为了叫手口	即你白儿
	Peak 1	Peak 2	Peak 1	Peak 2	Peak 1	Peak 2
30	0.41	0.45	260	580	0.309	0.690
35	0.42	0.46	270	678	0.285	0.715
40	0.41	0.45	326	1116	0.226	0.774
45	0.42	0.45	173	1362	0.113	0.887
50	0.41	0.46	120	1367	0.080	0.919
60	0.42	0.45	127	1727	0.068	0.931
70	0.42	0.46	84	1399	0.057	0.943

表 2 不同温度下 #1 样品散射峰的拟合参数 Table 2. Fitting parameters for the sample #1 scattering peaks at various temperatures.

由散射理论,对于稀疏溶液体系,当散射体的 形状相同时,体系的总散射强度为^[26]

$$I(q) = \int \rho(r)I(r,q)\,\mathrm{d}r,\tag{1}$$

式中r为散射体的粒径, $\rho(r)$ 是距离分布函数 (distance distribution function), I(r,q)是粒径为r的散射体的散射强度.

对于本文中的样品体系,可以认为是只有两种 球形粒子的稀疏散射体系,且粒子形状不随温度变 化而变化,温度为T时的散射峰的总散射强度可以 近似为:

$$I_{\text{peak}}(T) \stackrel{\Delta}{=} \int_{\text{peak}} I(q, T) dq$$

=
$$\int_{\text{peak} 1} I(r_1, q, T) dq$$

+
$$\int_{\text{peak} 2} I(r_2, q, T) dq$$

=
$$N(r_1, T) \int I_0(r_1, q) dq$$

+
$$N(r_2, T) \int I_0(r_2, q) dq, \quad (2)$$

 $N(r_i, T)$ 是半径为 r_i 的球形颗粒在温度T时的粒子数,

$$I_0(r_i,q) = \frac{9\pi}{2} (\Delta \rho)^2 V_i^2 \frac{\mathbf{J}_{3/2}^2(qr_i)}{(qr_i)^3} \ (i=1,2)$$

是单个球形粒子的散射强度, Δρ是散射体和溶剂 的电子密度差, V是球形颗粒的体积, J是贝塞尔函数.根据对峰位的判断,在整个变温过程中,球形 粒子的直径是不变的,也即单颗粒的散射强度是不 变的.可以推断,散射强度随温度的变化主要是由 于散射体系中散射颗粒的数量发生了变化. 尽管在我们的原位实验过程中,实验条件保持 了基本不变,特别是X射线入射光的强度、样品的 有效质量和总质量、样品-探测器距离等与散射强 度有关的条件,但为更准确地考察粒子数随温度的 变动,引入散射峰面积占比参数为拟合峰面积除以 总散射峰面积,以消除不同温度下总散射强度的变 化导致的粒子数的变动,因此散射峰面积比表示了 一种归一化的粒子数.图5给出了拟合峰的归一化 面积与温度的关系.

图 5 #1 样品散射强度的拟合峰的面积比与温度的关系, 图中实线是量效函数拟合结果

Fig. 5. Temperature dependence of the normalized area ratio between two fitting peaks of SAXS profiles for sample #1. The solid lines indicate the fitting curves of dose-response relations. More details can be seen in the text.

从图 5 中可见, 拟合峰 1(粒径为 27.6 nm) 的数 量随着温度的增加而减少, 在40—50 °C间存在一 个突变. 相应地, 拟合峰 2(粒径 25.3 nm) 的数量 随温度的上升而增加, 突变也发生在相同的温度 区域内. 我们发现, 选择量效函数 (dose-response relation):

$$\Im(r,T) = \Im_{\min} + \frac{\Im_{\max} - \Im_{\min}}{1 + e^{p(T-T_0)}},$$
(3)

可以得到与实验数据符合得非常好的拟合. ③max 和③min 分别代表转变前后达到稳态时的最大值和 最小值. 拟合得到的参数见表3.

表3 归一化粒子数随温度变化的函数关系

Table 3. Relationship between normalized number ofparticles and temperatures.

	\Im_{\min}	\Im_{\max}	$p/^{\circ}\mathrm{C}^{-1}$	$T_0/^{\circ}\mathrm{C}$
Peak 1	0.064	0.31	0.37	41.6
Peak 2	0.69	0.94	-0.37	41.6

SAXS 双峰的存在说明在室温下, #1样品中 形成的粒子尺寸并不是均匀的, 特别是对于尺寸极 其相近的两种球形粒子 (粒径相差 2.3 nm), 这种基 于大量粒子的统计上的差别结果 TEM 是难以给出 的.实验结果表明大粒径粒子和小粒径粒子的散射 强度随着温度的升高存在明显的依存关系, 当温度 上升时, 大粒径粒子的散射强度降低, 小粒径粒子 散射强度升高, 而且尽管二者的初始和最终强度值 并不一致, 但散射强度的变化速率在实验误差范围 内是一致的, 即

$$\left|\frac{\mathrm{d}\Im}{\mathrm{d}T}\right| = \frac{0.09\,\mathrm{e}^{0.37(T-41.6)}}{[1+\,\mathrm{e}^{0.37(T-41.6)}]^2},\tag{4}$$

这也从实验数据上验证了(2)式.

假设两种粒子的与溶剂的电子密度差值 Δρ 是 相同的, 根据 (2) 式可以很简单地计算出两种粒子 的粒子数之比:

$$\frac{N(r_1, T)}{N(r_2, T)} = \frac{S_{\text{peak 1}}}{S_{\text{peak 2}}} \cdot \frac{\int I_0(r_2, q) \,\mathrm{d}q}{\int I_0(r_1, q) \,\mathrm{d}q}, \qquad (5)$$

式中的积分就是单个球形粒子的散射强度的积分, 其中 S_{peak1} 和 S_{peak2} 为SAXS曲线分峰处理得到 的peak1和peak2的峰面积值(表2),代入球形粒 子的散射强度公式有:

$$\frac{N(r_1,T)}{N(r_2,T)} = \frac{S_{\text{peak }1}}{S_{\text{peak }2}} \cdot \left(\frac{r_1}{r_2}\right)^2.$$
 (6)

图 6 是 根 据 表 2 中 的 拟 合 数 据 以 及 r_1 = 27.6 nm, r_2 = 25.3 nm 计算得到在不同温度下 粒子数之比 ($N_{\text{large}}/N_{\text{small}}$). 图中实线是应用 (3) 式对数据进行拟合的结果. 对于粒子数比 (和总 的散射强度)的拟合得到的参数为: $T_0 = 40.5$ °C, p = 0.25(以及 $T_0 = 38$ °C, p = -0.37),也基本和 表 3 中的拟合结果一致.

图 6 两种粒径的粒子数之比 (N_{large}/N_{small}) 与温度的 关系 (圆) 以及总体散射强度的温度依赖性 (方), 图中实线 是 (3) 式拟合的结果

Fig. 6. Temperature dependence of the number ratio $(N_{\rm large}/N_{\rm small})$ of large one to small one (cycles), and total scattering intensity (squares) changed with the temperature. The solid lines are obtained using a fit of the data.

从图6中可以看出,随着温度的升高,总的散射强度逐渐增加并于一个临界温度后趋于恒定.总的散射强度增加意味着溶液中总的粒子数在增加,但大粒径的粒子数却在相对减少,也就是说,随着温度升高,溶液中的大粒径颗粒相对减少.在低温区域,大粒径颗粒占比值随温度上升下降迅速,大约45°C后,二者的比例变化趋缓.从实验结果的分析可以大致推测PS₃₀₀₀-b-PAA₅₀₀₀胶束溶液中胶束随温度的变化过程,随着样品温度的升高,小粒径的胶束迅速合成生长,其所占比例大幅增加;同时,大粒径胶束的数量最终减少,由于增加的粒子数要远大于减少的粒子数,使得溶液的总散射强度随温度的增加而加强.在45°C前的温度明显适宜于小粒径胶束的合成,而当温度进一步升高时,溶液中的总胶束数变化不大.

5 结 论

本研究应用 SAXS 技术原位研究了水含量 10%的 PS₃₀₀₀-*b*-PAA₅₀₀₀ 胶束溶液中粒子的尺 寸随温度的变化特性. 随着温度的升高,发现 了明显的双峰现象. 双峰对应的q值分别为 $q_{\text{peak 1}} = 0.418 \text{ nm}^{-1}, q_{\text{peak 1}} = 0.456 \text{ nm}^{-1}; 对$ 应的粒子的尺寸分别为27.6 nm和25.3 nm. 双峰 的位置不随着温度的变化而改变,但是peak 1和 peak 2的相对强度随着温度发生了减弱和增强的 交错变化.它们的变化过程中存在着一个强度突 变的临界温度,通过拟合计算发现,共同的临界温 度为40°C左右,并且有着相同的变化速率.SAXS 双峰的存在说明在室温下PS₃₀₀₀-b-PAA₅₀₀₀胶束 溶液中形成的粒子尺寸并不是均匀的,主要分为尺 寸相近的两种球形粒子.随着温度的升高,粒径大 小不同的两种粒子存在着消融和生长的过程,并且 保持着一个速率的动态平衡.

感谢中国科学院上海生命科学研究院国家蛋白质中心 刘广峰博士以及吴洪金的设备调试帮助.

参考文献

- Kataoka K, Harada A, Nagasaki Y 2001 Adv. Drug Deliv. Rev. 47 113
- [2] Gaucher G, Dufresne M H, Sant V P, et al. 2005 J. Control. Release 109 169
- [3] Allen C, Maysinger D, Eisenberg A 1999 Colloid. Surface. B 16 3
- [4] Bates C M, Maher M J, Janes D W, et al. 2014 Macromolecules 47 2
- [5] Park M, Harrison C, Chaikin P M, et al. 1997 Science 276 1401
- [6] Peng Q, Tseng Y C, Darling S B, et al. 2010 Adv. Mater.
 22 5129
- [7] Phillip W A, O' neill B, Rodwogin M, et al. 2010 ACS Appl. Mater. Inter. 2 847
- [8] Yang S Y, Park J, Yoon J, et al. 2008 Adv. Fun. Mater. 18 1371

- [9] Cameron N S, Corbierre M K, Eisenberg A 1999 Can.
 J. Chem. 77 1311
- [10] Lee A S, Gast A P, Bütün V, et al. 1999 Macromolecules 32 4302
- [11] Shim W S, Yoo J S, Bae Y H, et al. 2005 Biomacromolecules 6 2930
- [12] Zhang L, Yu K, Eisenberg A 1996 Science 272 1777
- [13] Alexandridis P, Olsson U, Lindman B 1998 Langmuir 14 2627
- [14] Gao Z, Varshney S K, Wong S, et al. 1994 Macromolecules 27 7923
- [15] Pang X, Zhao L, Akinc M, et al. 2011 Macromolecules 44 3746
- [16] Choucair A, Eisenberg A 2003 Eur. Phys. J. E 10 37
- [17] Zhang L, Eisenberg A 1996 J. Am. Chem. Soc. 118 3168
- [18] Ivanova R, Lindman B, Alexandridis P 2000 Langmuir 16 9058
- [19] Wang F, Bronich T K, Kabanov A V, et al. 2005 Bioconjugate Chem. 16 397
- [20] He C, Kim S W, Lee D S 2008 J. Control. Release 127 189
- [21] Shen H, Zhang L, Eisenberg A 1997 J. Phys. Chem. B 101 4697
- [22] Shen H, Eisenberg A 2000 Macromolecules 33 2561
- [23] Yue L, Zhang X H, Wu S K 2004 Acta Poly. Sin. 1 236 (in Chinese) [岳玲, 张晓宏, 吴世康 2004 高分子学报 1 236]
- [24] Lu D Y, Wen H, Liu H Z, Xu Z H 2004 Acta Phys. Chim. Sin. 20 38 (in Chinese) [陆冬云, 温浩, 刘会洲, 许志宏 2004 物理化学学报 20 38]
- [25] Li Y W, Bian F G, Hong C X, et al. 2015 Atom. Energ. Sci. Technol. 49 1914 (in Chinese) [李怡雯, 边风刚, 洪春 霞, 等 2015 原子能科学技术 49 1914]
- [26] Fedorova I S, Schmidt P W 1978 J. Appl. Crystallogr. 11 405

Temperature dependence of spherical micelles of PS_{3000} -b-PAA₅₀₀₀ studied by *in-situ* small angle X-ray scattering^{*}

Jin $Xin^{1/2}$ Yang Chun-Ming^{1)†} Hua Wen-Qiang²⁾ Li Yi-Wen³⁾ Wang Jie^{1)‡}

 Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China)

2) (University of Chinese Academy of Sciences, Beijing 100049, China)

 3) (Nation Center for Protein Science Shanghai, Shanghai Institutes for Biological Sciences, Shanghai 200031, China) (Received 3 October 2017; revised manuscript received 17 November 2017)

Abstract

Amphiphilic block copolymer has a character that it spontaneously self-assembles into various micellar morphologies when dissolved in selective solvents with different proportions. Amphiphilic block copolymer has wide potential applications in drug delivery such as the targeting delivery, controlled release, molecular recognition, etc. Poly (styrene)block-poly (acrylic acid) (PS-b-PAA) is a representative amphiphilic block copolymer whose self-assembly in the selective solvents has been widely studied during the past years. Micellar morphology of PS-b-PAA sensitive to temperature, and temperature effect of PS-b-PAA are of great importance for the drug delivery. However, the micellar morphologies of PS-b-PAA have been investigated mainly at the room temperature so far. The understanding is still limited to micellar morphology of PS-b-PAA in the varying temperature processes. In the present work, an investigation of the relationship between micellar morphology of PS-b-PAA and the temperature is conducted by using *in-situ* small-angle X-ray scattering (in-situ SAXS). The SAXS experiments are performed on the BL19U2 beamline of Shanghai Synchrotron Radiation Facility. The energy is selected to be 10 keV and the wave length is 0.1033 nm. The two-dimensional (2D) SAXS patterns are recorded by Pilatus 1 M with a pixel size of 172 μ m \times 172 μ m. A sample-to-detector distance of 5340 mm is chosen, giving access to a range of scattering vectors q of 0.11–0.89 nm^{-1} . The temperatures of the specimens are monitored by using a Linkam thermal stage THMS600 (Linkam Scientific Instruments). One-dimensional (1D) integrated intensity curves are obtained from the 2D SAXS patterns by employing the Fit2D software. The PS-b-PAAs (PS : PAA = 3000 : 5000) is purchased from Sigma-Aldrich Inc and used directly (without any treatment prior to experiment). The PS-b-PAA is dissolved in solvents of N, N-Dimethylformamide and H₂O with various proportions. The concentration of solution of PS-b-PAA is 10 mg/mL. The experiments show that the sizes of micelle particles in PS_{3000} -b-PAA₅₀₀₀ solution are grown with water content increasing, and double scattering peaks ($q_{peak 1} = 0.418 \text{ nm}^{-1}$, $q_{\text{peak 1}} = 0.456 \text{ nm}^{-1}$) appear for the solution with 10% water. A temperature-dependent change of SAXS intensity is demonstrated by *in-situ* SAXS. The intensities of peak 1 and peak 2 vary in a contrary waywith the sample's warming up, but the positions of the peaks are independent of temperature. The double peaks in SAXS profiles suggest that the size of micelle particles in the solution is not homogeneous but the micelles with two close sizes coexist. It is interesting that the number of two-sized particles changes at the same rate in the heating process although there is a significant difference between the initial number and the final number of micelles.

Keywords:block copolymer, small angle X-ray scattering, temperature effect, synchrotronPACS:83.80.Uv, 61.05.cf, 92.60.hv, 29.20.dkDOI:DOI:10.7498/aps.67.20172167

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11405259) and the National Key R&D Program of China (Grant No. 2017YFA0403000).

[†] Corresponding author. E-mail: yangchunming@sinap.ac.cn

[‡] Corresponding author. E-mail: wangjie@sinap.ac.cn