物理学报 Acta Physica Sinica

基于光强与吸收率非线性同步拟合的吸收光谱测量方法

李宁 吕晓静 翁春生

Laser intensity and absorbance measurements by tunable diode laser absorption spectroscopy based on non-line fitting algorithm

Li Ning Lü Xiao-Jing Weng Chun-Sheng

引用信息 Citation: Acta Physica Sinica, 67, 057801 (2018) DOI: 10.7498/aps.20171905 在线阅读 View online: http://dx.doi.org/10.7498/aps.20171905 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I5

您可能感兴趣的其他文章 Articles you may be interested in

基于光学相干层析成像的早期鸡胚心脏径向应变测量

Measurement of wall strain in embryonic chick heart by spectral domain optical coherence tomography 物理学报.2016, 65(23): 235202 http://dx.doi.org/10.7498/aps.65.235202

辐射致折射率变化用于MeV级脉冲辐射探测的初步研究

Research on MeV pulsed radiation detection based on refractive index modulaiton 物理学报.2016, 65(15): 157801 http://dx.doi.org/10.7498/aps.65.157801

自准直法测 GdTaO4 晶体折射率

Measurement of refractive indices of GdTaO₄ crystal by the auto-collimation method 物理学报.2016, 65(8): 087801 http://dx.doi.org/10.7498/aps.65.087801

一维光子晶体中光场分布特性分析

The analysis on the properties of light field distribution in one-dimensional photon crystals 物理学报.2012, 61(23): 237801 http://dx.doi.org/10.7498/aps.61.237801

基于多角度偏振相机的城市典型地物双向反射特性研究

Research on the bidirectional reflectance of typical urban surface types measured by the directional polarimetric camera

物理学报.2012, 61(7): 077801 http://dx.doi.org/10.7498/aps.61.077801

基于光强与吸收率非线性同步拟合的 吸收光谱测量方法^{*}

李宁† 吕晓静 翁春生

(南京理工大学,瞬态物理国家重点实验室,南京 210094)(2017年8月26日收到;2017年12月12日收到修改稿)

针对高压环境吸收谱线加宽以及波分复用技术合波透射信号分析测试难题,提出利用非线性拟合方法对激光吸收光谱测量中激光强度与吸收光谱进行耦合求解.建立激光强度非线性变化与多谱线吸收拟合函数关系,解决了特殊环境下无法获取光谱基线的难题,实现了波分复用过程合波后光谱信号的分离与诊断.通过仿真验证该方法的可行性,分析计算了激光器特性和特征谱线位置等因素对拟合结果的影响.搭建实验台实现了1—10 atm变压力环境下 6330—6337 cm⁻¹ 波段 CO₂ 吸收光谱叠加信号的诊断分析.对气液两相脉冲爆轰过程中 7185.6 cm⁻¹ 与 7444.35 cm⁻¹ 波段波分复用光谱信号进行测试与拟合,无需分光设备实现了耦合光路分离和温度计算.研究结果对激光吸收光谱技术在高压环境以及燃烧环境下波分复用技术的发展具有重要意义.

关键词: 激光吸收光谱, 半导体激光器, 波分复用, 爆轰 **PACS:** 78.20.Ci, 52.70.Kz, 47.40.Rs

DOI: 10.7498/aps.67.20171905

1引言

可调谐半导体激光吸收光谱是一种具有高灵 敏度、高光谱分辨率、极快响应速度、高可靠性和强 环境适应性的非接触式燃气测试技术,可实现对燃 气温度、组分浓度、速度等参数的同步在线测量,通 过与CT技术相结合可实现燃气多参数二维重建, 在爆轰发动机、冲压发动机等新一代超音速发动机 研制与关键参数测试中具有重要作用^[1-5].

高压环境下燃气在线测试是可调谐半导体激 光吸收光谱技术研究的难点之一.可调谐半导体激 光吸收光谱利用高频锯齿波电流驱动窄线宽半导 体激光器对特定吸收谱线在一定波长范围内进行 扫描.目前商用分布反馈式激光器(DFB)单次波 长扫描范围受限,在低频(<1 kHz)电流驱动下波 长扫描范围可达到2 cm⁻¹以上,而在高频条件下 (>50 kHz)单次波长扫描范围不足1 cm⁻¹.图1为

© 2018 中国物理学会 Chinese Physical Society

实验获得 Nel 公司可调谐半导体激光器在不同频率 电流驱动下的波长扫描范围.一方面,波长扫描范 围减小将导致利用传统非吸收区域拟合获取初始

图 1 100 和 140 mA 电流驱动下不同波长 DFB 激光器 扫描范围随扫描频率的变化

Fig. 1. Wavelength coverage of DFB laser driven by injected current at amplitude of 100 and 140 mA with different frequencies.

http://wulixb.iphy.ac.cn

^{*} 国家自然科学基金(批准号: 11372141, 11472138)资助的课题.

[†]通信作者. E-mail: phoenixkyo@163.com

激光强度的计算误差迅速增加.另一方面,冲压发动机、爆轰发动机等新型发动机的燃烧室内测试环境压力高于1 atm,导致吸收谱线线宽迅速增加,有限激光器扫描波长范围内难以找出非吸收区域,无法从透射激光强度信号中获取初始激光强度.

部分学者采用直接吸收方法进行高压环境 下的气体测量研究,如Sander等^[6]采用温度驱动 波长扫描方法,半导体激光器扫波长描范围达 到20 cm⁻¹,成功获得1 MPa压力下7143 cm⁻¹ 波段H₂O的气体吸收谱线特征. Nagali等^[7]利用 电流驱动波长扫描方法对激波管内1800 K温度、 6.5 MPa压力环境下7117和7462 cm⁻¹波段H₂O 的光谱吸收特性进行测量,验证高压环境测量中 光谱参数的精度. 部分学者则采用波长扫描范围 更宽(30 cm⁻¹)的垂直腔发射半导体激光器(VC-SEL)获取完整的吸收光谱信号,如Wang等^[8]采 用 VCSEL 激光器对 10 atm 压力下 13140 cm⁻¹ 波 段O2的光谱特性进行研究,分别通过直接吸收方 法和波长调制方法验证了 VCSEL 激光器适用于高 压气体测量. 近些年来, 部分学者对波长调制技 术中一次谐波和二次谐波信号进行深入研究, Li 等⁹对高压环境下激光器特性对波长调制测量的 影响进行分析,包括调制深度、激光器非线性特性 等. 采用基于一次谐波标定的二次谐波测量方法, 调制深度达到0.65 cm⁻¹, 实现了高压环境下H₂O 的浓度测量. Liu等^[10]利用相同方法,在调制深 度 0.8 cm⁻¹ 条件下,对 20 atm 压力环境下 7185 和 7294 cm^{-1} 波段 H₂O 的叠加光谱进行了分析. Farooq 等^[11] 采用相同方法, 对 3633 和 3645 cm⁻¹ 波 段CO2气体在10 atm 压力环境下的温度和浓度进 行测试研究,对30 atm压力环境下的特征吸收谱 线光谱参数进行了实验验证^[12]. Rieker 等^[13,14] 采用类似技术对 10 atm 压力环境下 5006 cm⁻¹ 波 段CO2特征谱线以及25 atm压力、1050 K温度 环境下7203.9与7435.6 cm⁻¹波段H₂O的特征谱 线进行分析,并成功获得气体浓度与温度测量结 果. Goldenstein 等^[15] 针对 4025—4045 cm⁻¹ 波段 H₂O气体在50 atm 压力环境下的浓度和温度进行 测量. 国内蔡廷栋等 [16,17] 也采用波长调制技术对 5 atm 压力和 500 K 温度、10 atm 压力和 1000 K 温 度环境下 5006 cm⁻¹ 波段的 CO₂ 浓度进行测量. 基 于一次谐波标定的二次谐波测量方法需要激光器 性能稳定,同时需要在测量前完成大量激光器标定 工作.

另一方面,基于波分复用技术的激光吸收光谱 测量应用日益增多^[18-20].波分复用技术将4个甚 至更多波长激光信号耦合入一根光纤内^[21-23],但 后续分光和探测系统复杂,尤其当激光器波长位置 接近或激光器数量较多时,为实际现场测量带来 不便.

本文提出一种基于光强与吸收率同步拟合的 吸收光谱直接测量方法.该方法可以同时获取可调 谐半导体激光器波长扫描过程中光强变化和吸收 谱线的光谱吸收率信号,适用于高压,尤其是基线 难以确定的工况环境.同时,该方法无需分光装置 也可准确计算波分复用系统中各个波长的吸收光 谱信号,更加适用于现场测量环境,具有重要理论 研究意义和工程应用前景.

2 测量与直接吸收光谱多参数拟合 方法

可调谐半导体激光器扫描一个或多个相邻特 征吸收谱线时,激光强度变化根据Beer定律进行 描述:

$$-\ln\left(\frac{I_{t}}{I_{0}}\right) = \sum_{m=1}^{M} PS_{m}(T)\phi_{m}(\nu)XL$$
$$= \sum_{m=1}^{M} \alpha_{m}(\nu), \qquad (1)$$

其中 I_t 为穿越待测气体介质后透射激光强度, I_0 为 无气体吸收时初始激光强度;P为气体介质压力;L为激光在气体介质中传播光程;X为体积浓度;M为激光器扫描波长范围内特征谱线数量; $\phi_m(\nu)$ 为 第m条特征谱线线型函数,在整个频域范围内积分 值为1; ν 为波数; $S_m(T)$ 为第m条特征谱线线强函 数; $\alpha_m(\nu)$ 定义为第m条特征谱线光谱吸收率.

传统直接吸收测量方法利用透射激光强度 I_t 非吸收区域拟合获得初始激光强度 I_0 ,此方法要求 激光器波长扫描范围远大于特征谱线线宽.例如常 温常压下6332.7 cm⁻¹位置的CO₂特征吸收谱线 全线宽为0.156 cm⁻¹,电流驱动激光器波长扫描范 围应大于1 cm⁻¹才能获得 I_t 非吸收区域信号,从 而进行拟合计算,如图2所示.

图 2 扫描 6332.7 cm⁻¹ \pm CO₂ 特征谱线透射激光强 度与拟合初始激光强度 (T = 296 K, P = 1 atm, L = 100 cm, X = 0.1)

Fig. 2. Transmitted laser intensity across the absorption feature of CO₂ at 6332.7 cm⁻¹ and fitted incident laser intensity (T = 296 K, P = 1 atm, L = 100 cm, X = 0.1).

本文不再采用上述传统方法计算吸收光谱,而 将初始激光强度和吸收率同时作为未知量进行拟 合求解.传统DFB激光器初始激光强度和波长变 化与输入驱动电流近似呈线性关系,但在高频电流 驱动下非线性特性逐渐显现,可采用二次关系式进 行描述:

$$I_0 = a_2 v^2 + a_1 v + a_0, (2)$$

其中*a*₂, *a*₁和*a*₀分别为初始激光强度随扫描波长 变化非线性系数、线性系数和常数.因此,光强与吸 收率非线性同步拟合目标函数*F*可以表示为

$$F = \frac{1}{I_{t}} \left\{ I_{t} - (a_{2}v^{2} + a_{1}v + a_{0}) \right.$$
$$\times \exp\left[-\sum_{m=1}^{M} \alpha_{m}(\nu) \right] \left\} \lambda(v), \qquad (3)$$

λ(v)为拟合计算中不同透射激光强度的区域权重 函数,用于加权透射激光强度在拟合中所占比重, 抑制激光强度较小时测量信噪比降低所导致的拟 合误差增大.本文中权重函数λ(v)采用与激光强 度变化一致的线性表达式

$$\lambda(v) = \frac{I_{\rm t}(v) - I_{\rm t}(v_1)}{I_{\rm t}(v_2) - I_{\rm t}(v_1)},\tag{4}$$

其中 v₁, v₂分别为电流驱动波长扫描过程中波长 变化的上下限. 拟合过程主要变量除了表述激光 强度变化的 a₂, a₁和 a₀ 外, 还包括描述特征谱线 吸收信息的谱线中心波长、线宽以及光谱吸收率. 计算可采用多种非线性拟合算法, 如 Levenberg-Marquardt 算法、遗传算法、退火算法等, 在此不再 赘述. 本文中以Levenberg-Marquardt算法^[24,25] 为例进行分析计算.

利用激光吸收光谱技术进行温度测量或多种 气体测量,需同步扫描多条气体特征谱线.由于单 一激光器波长扫描范围受限,且适合的特征谱线所 在波长位置可能较为分散,因此需采用波分复用技 术将多个波段激光信号耦合入一根光纤内,穿越 待测气体后通过光栅或其他设备将不同波段的激 光信号分开并独立计算.本文提出的拟合方法无 需分光设备即可实现对不同波段激光信号的分析. 根据(3)式,不同波段激光器扫描多条气体特征谱 线时光强与吸收率非线性同步拟合目标函数F可 表示为

$$F = \frac{1}{I_{t}} \left\{ I_{t} - \sum_{n=1}^{N} \left\{ (a_{n2}v_{n}^{2} + a_{n1}v_{n} + a_{n0}) \right\} \times \exp \left[-\sum_{m=1}^{M} \alpha_{m}(\nu_{n}) \right] \right\} \lambda(v_{n}), \quad (5)$$

其中*N*为测量中所用激光器的数量.(5)式表明对 合波后透射激光强度进行拟合,可实现不同波段激 光吸收光谱信号的分析计算.需要注意的是,利用 拟合方法进行计算需满足以下条件:1)不同波段 激光器输出激光强度随波长变化的非线性系数或 线性系数需有所差异,以减小拟合过程中不同波段 透射激光强度方程之间的相关性,现实中激光器在 电流驱动下输出特性、光纤耦合效率等均存在明显 差异,满足拟合方法应用于波分复用吸收光谱计算 要求;2)耦合后各个波段透射激光强度信号需提供 较多的吸收光谱信息,合波时通过温度调节方式将 各个特征吸收谱线中心进行调谐,减少由于吸收信 号叠加所导致的吸收光谱信息缺失,有利于准确拟 合计算不同波段初始激光强度及光谱吸收率结果.

实际测量中通过温度调谐方式调整各个激光 器的波长位置,减少合波后特征吸收谱线间的相互 影响,利用光路设计或电流扫描波形设计实现不同 波段激光强度随波长变化的线性或非线性差异.测 量得到合波后的透射激光强度信号,由HITRAN 光谱数据库和现场环境确定谱线中心波长、线宽、 光谱吸收率和描述激光强度变化参数等初始条件, 代入(5)式中进行拟合求解,最终获取完整的吸收 光谱信息.

3 仿真分析

为体现该方法在激光吸收光谱测量方面优势, 利用仿真分别对高压多谱线叠加和多波长波分复 用条件下的光谱分析计算能力进行验证.

图 3 为5 atm 压力条件下 6330—6337 cm⁻¹范 围内的 CO₂ 特征谱线透射激光强度模拟和拟合计 算结果.在压力作用下四条特征谱线明显加宽,谱 线间叠加严重,无法确定透射激光强度中的非吸收 区域,同时激光强度变化非线性明显.利用(3)式 对透射激光强度信号进行拟合,计算得到初始激光 强度的非线性系数、线性系数和常数分别为-0.02, 0.3 与 8.9,准确获得了初始激光强度.同步拟合计 算光谱吸收率,计算误差 0.54%.

Fig. 3. Simulated transmitted laser intensity across the absorption features of CO₂ from 6330 cm⁻¹ to 6337 cm⁻¹ and fitting results (T = 296 K, P = 5 atm, L = 100 cm, X = 0.1): (a) Simulated transmitted laser intensity and fitted incident laser intensity; (b) calculated CO₂ absorbance.

图 4 为利用 7185 和 7444 cm⁻¹ 波段激光器进 行温度测量时采集得到的合波后透射激光强度信 号的模拟结果,两个波段激光强度随波长变化的非 线性差异明显.利用(5)式对合波后的透射激光强 度进行拟合,可获得每个激光器的透射激光强度、 初始激光强度以及光谱吸收率信息,无需任何分光 设备,适用于激光器波长接近和分光难度较大的测 试环境,符合实际现场应用需求.

图 4 7185 cm⁻¹ 和 7444 cm⁻¹ 波段合波后透射激光强 度模拟图与非线性拟合结果 (T = 1227 K, P = 1 atm, L = 20 cm, X = 0.1)

Fig. 4. Simulated multiplexed transmitted laser intensities across the absorption features of H₂O at 7185 cm⁻¹, 7444 cm⁻¹ and non-linear fitting results (T = 1227 K, P = 1 atm, L = 20 cm, X = 0.1).

模拟研究不同波段激光器能量输出特性的比 值 *R*(*a*_{2,7185}/*a*_{2,7444}, *a*_{1,7185}/*a*_{1,7444}) 对合波后透射 光谱吸收率拟合计算的影响,如图 5 (a) 所示.当两 个波段激光器非线性系数或线性系数接近时,拟合 计算光谱吸收率误差 *e* 同步增大.相对而言,拟合 误差对于激光器非线性系数比值更为敏感.此外, 两个波段激光器线性系数比值在较大范围内变化 (0.05—0.67)都可获得较好的拟合计算结果,有利 于实际现场测量,同时也表明线性系数比值在拟合 过程中对于抑制误差至关重要.

图 5 (b) 为改变特征谱线在合波后透射激光信 号中的相对位置 Δv (对激光器工作温度进行调节) 对光谱吸收率拟合误差 e 的影响.当两条特征谱线 相对位置小于谱线全线宽 (仿真中特征吸收谱线全 线宽约为 0.1 cm⁻¹)时,特征吸收谱线间相互干扰 将导致两个波段内光谱吸收信息迅速减少, 拟合计 算误差迅速增大.相对位置 Δv 大于全线宽时, 位 置变化对于计算结果基本无影响.

需要说明的是,该方法不但适用于直接吸收光 谱技术,也适用于波长调制技术.根据波长调制理 论模型以及调制参数,同样可以对相互叠加或利用 波分复用技术合波后的二次谐波信号进行分析计 算,在此不再赘述.

图 5 激光器输出特性及特征谱线位置对合波后光谱吸收 率拟合误差的影响 (a)激光器输出非线性及线性系数比 值对光谱吸收率拟合误差的影响;(b)特征谱线相对位置 对光谱吸收率拟合误差的影响

Fig. 5. Effects of laser output characteristic and transitions locations in transmitted signal on absorbance fitting errors: (a) Effect of non-linear and linear coefficients ratio on absorbance fitting errors; (b) effect of relative transitions spacing on absorbance fitting errors.

4 实验验证

为验证该方法在高压环境以及高速爆轰燃气 测量环境中的分析计算能力,分别搭建静态高压气 体吸收光谱测试系统和气液两相脉冲爆轰发动机 燃气测试系统.

静态高压气体吸收光谱测试系统中,高压 CO₂ 气体静置于光程53 cm高压气体吸收池内,吸收池 两端为楔形铝硅玻璃窗口,由压力表监测内部气体 压力.测量采用 Nanoplus 公司14针蝶形封装 DFB 激光器,中心波数 6333.5 cm⁻¹.通过分光镜将测 量光束分为两路,一路通过气体吸收池后由光电探 测器获取透射激光强度,另一路由标准具获取波长 变化情况.测量信号由数据采集系统记录,采样率 2 M sample/s,如图6所示.

图 6 高压环境 CO₂ 气体测试系统与测量结果 (a) 静态 高压气体吸收光谱测试系统图; (b) 不同压力下透射激光 强度

Fig. 6. Tunable diode laser sensing for CO_2 in high pressure and results: (a) Tunable diode laser absorption spectroscopy system for static gas in high pressure; (b) transmitted laser intensities in various pressure.

采用本文拟合方法对不同压力环境下的透射 激光信号进行分析,结果如图7所示.可以看出, 2 atm压力条件下CO₂特征谱线间相互独立,但 5 atm压力以上谱线间相互叠加干扰严重,已经无 法通过传统方法计算基线.利用本文方法拟合计算 初始激光强度非线性系数为1.4×10⁻⁴,表明低频 扫描条件下激光强度随锯齿波驱动电流基本呈线 性变化.在10 atm范围内利用拟合方法计算光谱 吸收率平均误差为3.2%.

气液两相脉冲爆轰发动机燃气测试系统如 图8所示.实验对象为无阀式气液两相脉冲爆轰发 动机,发动机总长190 cm,口径80 mm.发动机采 用高能脉冲等离子体点火方式,通过改变点火频率 控制发动机工作频率. 调整气源供气流量改变爆轰 管内氧化剂进气速度,满足发动机工作频率变化要 求. 测量中采用两个Nel公司14针蝶形封装DFB 激光器,中心波数为7185.6和7444.35 cm⁻¹,分别 对应该波段内H₂O特征吸收谱线. 锯齿波驱动电 流扫描频率20 kHz, 对应测量时间分辨率50 µs. 利用温度调节将两个波段的HoO特征谱线在合波 后透射激光信号中的相对位置调整至60个采样点 (根据激光器特性不同,换算至两个激光器波段后 相对位置分别约为0.7 cm⁻¹和0.9 cm⁻¹),有利于 后续拟合计算.两个波段激光经过合波后通过光 纤由测试间传输至发动机测试段, 经准直后穿过爆 轰管测试区,再由光纤准直镜耦合入400 μm 芯径 多模光纤并传输至测试间,由光电探测器接收合波 后的透射激光信号,通过NI数据采集系统记录,测 量系统采样率10 M sample/s. 测试段窗口前设计 N2吹扫装置,防止窗口污染并实现对窗口的冷却 保护. 测试段安装有 PCB 动态压力传感器, 以测量 发动机工作过程中的压力变化.

图 7 拟合得到的 1—10 atm 压力条件下 CO₂ 光谱吸收 率图

Fig. 7. CO_2 absorption spectrum from 1 atm to 10 atm calculated by non-linear fitting method.

脉冲爆轰发动机工作频率10 Hz、填充率100% 条件下测量得到爆轰波过后7.45 ms时刻的透射激 光强度如图9所示.对透射激光强度进行拟合分 析,分别获得两个波段内透射激光强度和光谱吸 收率信号.结果表明:20 kHz扫描频率下,两个波 段DFB激光器线性系数差异明显,分别为0.18和 0.46,符合仿真中激光器输出特性差异的要求.根 据双谱线温度计算方法,计算得到当前时刻爆轰燃 气温度为1183 K.

图 8 爆轰燃气激光吸收光谱测试系统 (a) 气液两相脉 冲爆轰发动机实验系统示意图; (b) 发动机测试段实物图 Fig. 8. Detonation exhaust sensing system based on tunable diode laser absorption spectroscopy: (a) Diagram of gas-liquid two-phase pulsed detonation engine experimental system; (b) picture of testing section in engine.

图 9 爆轰波后 7.45 ms 时刻 7444 与 7185 cm⁻¹ 波段合 波后透射激光强度

Fig. 9. Multiplexed transmitted laser intensities of 7444, 7185 $\rm cm^{-1}$ at 7.45 ms after detonation wave.

5 结 论

为实现高压环境下激光吸收光谱的测量以及 多路波分复用条件下透射激光信号的分析,提出了 基于光强与吸收率非线性同步拟合的吸收光谱测

量方法,可同步获取可调谐半导体激光器波长扫描 过程中单个或多个激光器光强变化和吸收谱线的 光谱吸收率信号. 通过仿真研究了5 atm 压力环境 下6330—6337 cm⁻¹波段的CO₂气体叠加吸收光 谱信号拟合方法以及波分复用吸收光谱测量过程 中激光器特性和特征谱线在合波透射激光信号中 相对位置对拟合结果的影响.结果表明:当两个波 段激光器非线性系数或线性系数接近时, 拟合得到 的光谱吸收率误差e将同步增大;当两个波段激光 器线性系数比值大于0.05时可以获得较好的计算 结果;同时,当两条特征谱线在合波信号中相对位 置大于谱线全线宽时,位置变化对于计算结果无影 响. 分别对1—10 atm 压力环境下静态 CO₂ 吸收光 谱和气液两相脉冲爆轰发动机工作过程爆轰燃气 波分复用光谱进行实验测试, 验证本方法在理论和 现场测试中的可行性. 基于光强与吸收率非线性同 步拟合的吸收光谱测量方法可适应于高压环境单 个激光器扫描多条吸收谱线以及多个激光器波分 复用技术,无需复杂的分光设备和多个探测装置, 适用于实际现场测量环境,具有重要理论研究意义 和工程应用前景.

参考文献

- Zhang W, Shen Y, Yu X L, Yao Z P, Wang M, Zeng H, Li F, Zhang S H 2015 J. Propul. Technol. 36 651 (in Chinese) [张伟, 沈岩, 余西龙, 姚兆普, 王梦, 曾徽, 李飞, 张少华 2015 推进技术 36 651]
- [2] Yang B, Qi Z M, Yang H N, Huang B, Liu P J 2015 J. Combust. Sci. Technol. 21 516 (in Chinese) [杨斌, 齐宗 满, 杨荟楠, 黄斌, 刘佩进 2015 燃烧科学与技术 21 516]
- [3] Lü X J, Li N, Weng C S 2016 Spectrosc. Spect. Anal. 36
 624 (in Chinese) [吕晓静, 李宁, 翁春生 2016 光谱学与光 谱分析 36 624]
- [4] Hanson R K 2011 P. Combust. Inst. 33 1
- [5] Li H, Farooq A, Jeffries J B, Hanson R K 2007 Appl. Phys. B 89 407

- [6] Sanders S T, Mattison D W, Jeffries J B, Hanson R K 2001 Opt. Lett. 26 1568
- [7] Nagali V, Herbon J T, Horning D C, Davidson D F, Hanson R K 1999 Appl. Opt. 38 6942
- [8] Wang J, Sanders S T, Jeffries J B, Hanson R K 2001 Appl. Phys. B 72 865
- [9] Li H J, Rieker G B, Liu X, Jeffries J B, Hanson R K 2006 Appl. Opt. 45 1052
- [10] Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Opt. 43 6500
- [11] Farooq A, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 6740
- [12] Farooq A, Jeffries J B, Hanson R K 2010 J. Quant. Spectrosc. Radiat. Transfer 111 949
- [13] Rieker G, Jeffries J B, Hanson R K 2009 Appl. Phys. B 94 51
- [14] Rieker G, Li H, Liu X, Jeffries J B, Hanson R K, Allen M G, Wehe S D, Mulhall P A, Kindle H S 2007 Meas. Sci. Technol. 18 1195
- [15] Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2014 Appl. Phys. B 116 705
- [16] Cai T D, Gao G Z, Wang M R, Wang G S, Gao X M
 2014 Spectrosc. Spect. Anal. 34 1769 (in Chinese) [蔡廷 栋, 高光珍, 王敏锐, 王贵师, 高晓明 2014 光谱学与光谱分析 34 1769]
- [17] Cai T D, Gao G Z, Wang M R, Wang G S, Liu Y, Gao X M 2016 Appl. Spec. 70 474
- [18] Li N, Weng C S 2010 Acta Phys. Sin. 59 6914 (in Chinese) [李宁, 翁春生 2010 物理学报 59 6914]
- [19] Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Phys. B 78 503
- [20] Teichert H, Fernholtz T, Ebert V 2003 Appl. Opt. 42 2043
- [21] Mattison D W, Liu J T C, Jeffries J B, Hanson R K 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 10–13, 2005 p224
- [22] Sanders S T, Jenkins T P, Hanson R K 2000 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Huntsville, AL, July 16–19, 2000 p3592
- [23] Hinckley K M, Jeffries J B, Hanson R K 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5–8, 2004 p713
- [24] Watson G A 2007 J. Comput. Appl. Math. 208 331
- [25] Fan J Y, Pan J Y 2009 Appl. Math. Comput. 207 351

Laser intensity and absorbance measurements by tunable diode laser absorption spectroscopy based on non-line fitting algorithm^{*}

Li Ning[†] Lü Xiao-Jing Weng Chun-Sheng

(National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China) (Received 26 August 2017; revised manuscript received 12 December 2017)

Abstract

A novel approach to using tunable diode laser absorption spectroscopy (TDLAS) is developed for measuring the laser intensity and absorbance of gas with highly broadened and congested spectra by wavelength division multiplex (WDM) technology. Direct absorption spectroscopy with non-linear algorithm is utilized, because this fitting method offers benefits in dealing with blended spectral features according to the relationship between transmitted laser intensity and absorbance by Beer law. Compared with traditional TDLAS sensing with WDM, this approach has some advantages of transmissions demultiplexing without additional optic gratings and detectors. Following the published theory, the absorbance and transmitted laser intensity are incorporated into an improved non-linear fitting model. A solution to a simulation of CO₂ blended spectrum at a pressure of 5 atm is exploited to demonstrate the ability to recover the absorption in a high pressure environment, inferring the optimal combination of parameters in the model. The influences of these nonideal laser effects, such as nonlinear and linear coefficients, are investigated by the multiplexed transmission simulations at rovibrational transitions of H_2O near 7444 cm⁻¹ and 7185 cm⁻¹. Errors in absorbance fitting is larger when nonlinear or linear coefficients of two lasersbecome closer. The satisfied results can be obtained when linear coefficients ratio is limited whitin a range from 0.05 to 0.67. In addition, the essential transition spacing in multiplexed transmissions, larger than the full width of transitions, is considered to be able to improve the fitting accuracy. This approach is validated in a static absorption cell over a pressure range from 1 to 10 atm at room temperature to demonstrate the ability to measure the blended CO_2 spectrum from 63307 cm⁻¹ to 6337 cm⁻¹ by a single DFB laser. The sensor method resolves laser intensity with a nonlinear coefficient of 1.4×10^{-4} and recovers absorbance with a root mean square (RMS) precision of 3.2%, which demonstrates the applicability of this sensor to high-pressure gas sensing systems. Another approach to validating the gas temperature and measuring H_2O by WDM is presented in a gas-liquid two phase pulsed detonation engine running with a filling fraction of 100%. Two fiber coupled lasers, respectively, near 7185.6 $\rm cm^{-1}$ and 7444.35 $\rm cm^{-1}$ are scanned at 20 kHz to achieve a temporal resolution of 50 µs for monitoring detonation exhaust. A fixed spectrum interval (about 0.7 cm^{-1}) of transitions in multiplexed transmission is created through temperature adjustment in DFB laser to provide more independent absorption information. Recovered linear coefficients of 0.18 and 0.46 in two DFB lasers are in good agreement with the results from the simulations. An instantaneous temperature measurement of 1183 K in the exhaust 7.45 ms after detonation wave provides the confirmation of the ability of this method to infer the temperature and H_2O time histories in the whole detonation process. In conclusion, the novel approach based on TDLAS has tremendous potential applications in high pressure combustion diagnosis and WDM spectrum analysis.

Keywords: tunable diode laser absorption spectroscopy, diode laser, wavelength division multiplex, detonation

PACS: 78.20.Ci, 52.70.Kz, 47.40.Rs

DOI: 10.7498/aps.67.20171905

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11372141, 11472138).

[†] Corresponding author. E-mail: phoenixkyo@163.com