物理学报 Acta Physica Sinica

基于场变换的毫米波半波片设计

王成 赵俊明 姜田 冯一军

Millimeter-wave half-waveplate based on field transformation

Wang Cheng Zhao Jun-Ming Jiang Tian Feng Yi-Jun

引用信息 Citation: Acta Physica Sinica, 67, 070201 (2018) DOI: 10.7498/aps.67.20171774 在线阅读 View online: http://dx.doi.org/10.7498/aps.67.20171774 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I7

您可能感兴趣的其他文章 Articles you may be interested in

超声波电喷推力器羽流中和特性研究

Plume neutralization mechanism for ultrasonically aided electrospray thruster 物理学报.2018, 67(4): 040201 http://dx.doi.org/10.7498/aps.67.040201

时间反演对称性破缺系统中的拓扑零能模

Topological zero-energy modes in time-reversal-symmetry-broken systems 物理学报.2017, 66(22): 220201 http://dx.doi.org/10.7498/aps.66.220201

多种有序钙钛矿结构的高压制备与特殊物性

High-pressure synthesis and special physical properties of several ordered perovskite structures 物理学报.2017, 66(3): 030201 http://dx.doi.org/10.7498/aps.66.030201

基于石墨烯超表面的宽带电磁诱导透明研究

Wide band electromagnetically induced transparency in graphene metasurface of composite structure 物理学报.2017, 66(10): 100202 http://dx.doi.org/10.7498/aps.66.100202

γ 射线辐照对掺 Yb 光纤材料性能的影响

Effects of γ-radiation on Yb-doped fiber 物理学报.2014, 63(20): 200201 http://dx.doi.org/10.7498/aps.63.200201

基于场变换的毫米波半波片设计^{*}

王成 赵俊明† 姜田 冯一军

(南京大学电子科学与工程学院,南京 210093)

(2017年8月2日收到;2018年2月10日收到修改稿)

极化转换是电磁波调控的重要研究方向之一.本文基于场变换理论提出一种宽入射角的宽带毫米波半波 片.基于等效媒质理论,该半波片可由亚波长厚度的两种介电常数不同的材料周期性排布后旋转45°得到.通 过设计控制两种材料的介电常数、高度比值以及整个半波片的厚度可以在毫米波段实现极化转换的功能,此 设计具有低损耗和高转化效率的特点.此半波片能实现横电波与横磁波的相互转换以及圆极化波的相互转 换,极化转换 –3 dB 相对带宽达49%.仿真和实测结果相符,验证了该半波片宽带高效的极化转换效果.在入 射角为60°时,极化转换 –3 dB 带宽依然能够达到36% 左右.

关键词:半波片,场变换,宽带 PACS: 02.10.Yn, 42.79.Ci, 41.20.Jb

1引言

电磁波调控研究既有科学理论研究意义又有 广泛的实际工程应用价值,其中极化转换是电磁 波调控的一个重要研究方向.因此,设计实现极 化转换的器件一直以来都是电磁波领域的研究热 点. 近年来, 出现了关于极化转换的多种理论研究, 如基于各向异性材料的双折射效应[1]、布鲁斯特 效应^[2]、手性介质^[3,4]等.这些理论已经通过人工 电磁材料实现了横电波(TE)与横磁波(TM)波之 间^[5-9]、左旋极化波(LCP)与右旋极化波(RCP)之 间^[4]以及线极化波到圆极化波之间^[10-13]的极化 转换. 在这些研究中, 变换光学以其对电磁波优秀 的调控性能引起了广泛的注意[14,15]. 变换光学提 供了灵活有效的数学工具,在隐身衣^[16-22]、极化 调控器件^[23-26]、光学器件^[27,28]上有很重要的应 用. 与传统变换光学通过空间坐标变换引起材料参 数渐变从而实现电磁波传播路径的变化不同,场变 换方法通过设计实现材料参数非对角线上的元素

DOI: 10.7498/aps.67.20171774

来操控电场与磁场之间的耦合系数,实现对极化的 调制.所以场变换可以很好地补充变换光学的不 足,在坐标变换时方便地调控电磁波.

虽然极化转换器件领域取得了很大的研究进展,但是依然存在很多局限性,值得进一步探索与设计.首先,现有极化转换器件很大一部分只能对垂直入射或某些特定角度入射的电磁波实现极化转换的功能,而对于多角度入射的电磁波极化转换效率不高.其次,大部分工作在毫米波段的极化转换器件实现极化转换的带宽较窄.另外,极化转换器件对制作工艺精度要求较高,样品制备困难.

基于以上背景,本文采用场变换的方法设计出 一种毫米波转极化半波片.所设计的半波片在极化 波垂直入射时,在22—36 GHz的带宽内能够实现 电磁波的极化转换,相对带宽达49%;当入射角增 加至60°时,在23—33 GHz的带宽内也有很好的 极化转换效果,相对带宽在36%左右,仿真和实验 的结果均表明利用场变换设计的波片能够实现广 角度、宽频带的转极化效果.

^{*} 国家自然科学基金(批准号: 61671231, 61571218, 61571216, 61301017, 61371034)资助的课题.

[†]通信作者. E-mail: jmzhao@nju.edu.cn

^{© 2018} 中国物理学会 Chinese Physical Society

2 场变换理论与波片的设计方法

2.1 场变换理论

2013年,香港城市大学的Li课题组^[29]提出了 利用场变换理论设计出第二类理想导体可以实现 反射型式的极化转换.文中的第二类理想导体定义 为可以将左旋圆极化波反射为右旋圆极化波,而不 是对于常规理想导体反射波为交叉极化.考虑透射 情况,我们之前的工作已经利用场变换原理实现了 厘米波波段的极化转换^[30],现在我们考虑毫米波 波段,假设只考虑二维坐标系下的场变换,即场在 *x-y*面中传输,*z*方向上场不变.在二维平面内引入 虚拟空间,场变换可以定义为

$$\begin{pmatrix} \boldsymbol{E} \\ \mathrm{i}\boldsymbol{H} \end{pmatrix} = \begin{pmatrix} \cos\phi - \sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \begin{pmatrix} \boldsymbol{E}_{(0)} \\ \mathrm{i}\boldsymbol{H}_{(0)} \end{pmatrix}, \quad (1)$$

其中 *E*₍₀₎, *H*₍₀₎ 分别表示虚拟空间中的电场和磁场.其中 φ 是场变换矩阵采用的三角函数变量中的一个参量,当 φ 取不同数值时,场变换区域的边界条件发生改变,所以出射的电磁场中包含的 *Z* 向偏振的电场和磁场的分量不同.对应于不同的 φ 的取值,出射的电磁波是不同比例的 TE 波和 TM 波的组合.

 $\phi \neq 0$ 时, 会引起介电常数 ε 与磁导率 μ 张量 形式上非对角线元素的变化:

$$\boldsymbol{\varepsilon} = \begin{pmatrix} n & 0 & A_y \\ 0 & n & -A_x \\ A_y & -A_x & n \end{pmatrix}, \quad \boldsymbol{\mu} = \begin{pmatrix} n & 0 & -A_y \\ 0 & n & A_x \\ -A_y & A_x & n \end{pmatrix},$$
(2)

其中

$$A_x = \left(\frac{1}{k_0}\right) \frac{\partial \phi}{\partial x}, \quad A_y = \left(\frac{1}{k_0}\right) \frac{\partial \phi}{\partial y}, \qquad (3)$$

 k_0 为真空中的波数, n为折射率, 通过调整非对角 线上 A_y 的元素来改变电场与磁场之间的耦合系数, 进而达到调控电磁波的目的. 如图 1 所示, 我们令 ϕ 只在 y 方向上线性变化, 则 $A_x = 0$, $A_y = \phi/(k_0h)$, n = 1.33. 其中h为介质的厚度. 为了使设计方便, 令磁导率 $\mu = 1$, 此时各向异性媒质的磁导率 μ 与 介电常数 ε 满足:

$$\boldsymbol{\varepsilon} = \begin{pmatrix} n^2 & 0 & 2A_y \\ 0 & n^2 & 2A_x \\ 2A_y & 2A_x & n^2 \end{pmatrix}, \quad \boldsymbol{\mu} = 1.$$
 (4)

$$H = \frac{(E_{(0)} + iH_{(0)})}{\sqrt{2}},$$
 (6)

$$\phi = \frac{\pi}{2}, \quad \boldsymbol{E} = -\mathrm{i}\boldsymbol{H}_{(0)}, \quad \mathrm{i}\boldsymbol{H} = \boldsymbol{E}_{(0)}.$$
 (7)

由 (5) 式得出 $\phi = 0$ 时, 虚拟空间的场和物理空间中 的场是相对应的; (6) 式表明 $\phi = \pi/4$ 时, 虚拟空间 中的场可以实现交叉极化转换; (7) 式表明 $\phi = \pi/2$ 时可以实现极化转换.

图 1 波片转极化示意图 Fig. 1. Schematic diagram of FT transmitted waveplate.

2.2 波片的设计方法

由上述理论可知, 介电常数 ε 与磁导率 μ 满足 (2) 式和 (3) 式, 且 $\phi = \pi/2$ 的各向异性媒质就能够 实现电磁波的极化转换.使用等效媒质理论^[14] 实 现 (4) 式中的介电常数.如图 2 所示, 红色介质的介 电常数为 ε_1 , 厚度为 d_1 ; 蓝色介质的介电常数为 ε_2 , 厚度为 d_2 .两种介质厚度的比值为 η , 即 $\eta = d_2/d_1$. 将两种介质周期性排布, 得到新的各向异性的介 质, 其介电常数为 ε' , 即

$$\varepsilon' = \begin{pmatrix} \varepsilon_{x'} & 0 & 0 \\ 0 & \varepsilon_{y'} & 0 \\ 0 & 0 & \varepsilon_{z'} \end{pmatrix}, \qquad (8)$$

其中,

$$\varepsilon_{x'} = \varepsilon_{y'} = \frac{\varepsilon_1 + \eta \varepsilon_2}{1 + \eta},$$

$$\frac{1}{\varepsilon_{z'}} = \frac{1}{1 + \eta} \left(\frac{1}{\varepsilon_1} + \frac{\eta}{\varepsilon_2} \right). \tag{9}$$

通过坐标变换的原理,可以得到将各向异性的 介质绕y轴旋转角度后等效的介电常数与旋转前的 介电常数的关系为

图 2 波片设计示意图 Fig. 2. Schematic diagram of the realization of the FT waveplate.

$$\boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_{xx} \ \varepsilon_{xy} \ \varepsilon_{xz} \\ \varepsilon_{yx} \ \varepsilon_{yy} \ \varepsilon_{yz} \\ \varepsilon_{zx} \ \varepsilon_{zy} \ \varepsilon_{zz} \end{pmatrix} = \begin{pmatrix} \varepsilon_{x'} \cos^2 \theta + \varepsilon_{z'} \sin^2 \theta & 0 \ (\varepsilon_{z'} - \varepsilon_{x'}) \cos \theta \sin \theta \\ 0 & \varepsilon_{y'} & 0 \\ (\varepsilon_{z'} - \varepsilon_{x'}) \cos \theta \sin \theta & 0 \ \varepsilon_{x'} \sin^2 \theta + \varepsilon_{z'} \cos^2 \theta \end{pmatrix}.$$
(10)

当 $\theta = 45^{\circ}$ 时, (10) 式简化为

$$\boldsymbol{\varepsilon} = \begin{pmatrix} (\varepsilon_{x'} + \varepsilon_{z'})/2 & 0 & -(\varepsilon_{x'} - \varepsilon_{z'})/2 \\ 0 & \varepsilon_{y'} & 0 \\ -(\varepsilon_{x'} - \varepsilon_{z'})/2 & 0 & (\varepsilon_{x'} + \varepsilon_{z'})/2 \end{pmatrix}. \quad (11)$$

由(4)式及(11)式可知: $2\phi/(k_0h)n^2 = -(\varepsilon_{x'} - \varepsilon_{z'})/2$. 由此可知可以通过控制两种不同介质的介 电常数与厚度设计出具有转极化功能的毫米波段 半波片. 由于场变换区域经过设计后是一种各向异 性的材料,对于场变换区域的阻抗,针对不同极化 形式的入射波,其主要由介电常数与磁导率对角线 上的主要元素来影响.因此在设计过程中,主要通 过控制介电常数与磁导率张量的对角元素的比值 来使阻抗尽量与空气匹配.这个比值的平方根对应 于(4)式中的*n*,与折射率具有相同的量纲,可作参 考,而反射系数其实是与阻抗控制是相关.场变换 波片通过旋转各向异性材料以获得介电常数的非 对角分量,同时尽量保证主对角分量的值在一定范 围内,通过优化设计从而获得比较小的反射系数, 获得与理想模型接近的色散模型.

一般金属超材料结构由于强色散导致工作频 带窄,不易拓宽频率.而我们所设计的波片由于采 用纯介质来实现,其工作模式具有适中的色散性, 能够实现在相当宽的带宽内实现极化转换.我们设 计的波片是工作在0阶模式,这种模式相对于目前 光学频段广泛使用的高阶模式的波片^[27],具有相 当宽的带宽.另外在通过场变换方法进行设计的过 程中,可以直接获得本征的参数要求,而在参数要 求中没有对入射角进行限制,所以所设计的波片能 够实现广角度的特点.

3 全波仿真

利用仿真软件CST Microwave Studio分别 仿真了27 GHz到37 GHz带宽内入射TE(LCP) 波、出射TM(RCP)波与入射TE(LCP)波、出射 TE(RCP)波的S参数. 垂直入射时, TE(LCP)波 转为TM (RCP)波的效率如图3所示,极化转换的

图 3 全波仿真 (a) 线极化波垂直入射 S21 参数; (b) 圆极化波垂直入射 S21 参数

Fig. 3. Full wave simulation results: (a) S parameter of vertical incidence of linearly polarized wave; (b) S parameter of vertical incidence of circularly polarized wave.

图 4 全波仿真 (a) 线极化波不同入射角度、相同极化 S_{21} 参数; (b) 线极化波不同入射角度、不同极化 S_{21} 参数; (c) 圆极 化波不同入射角度、相同极化 S_{21} 参数; (d) 圆极化波不同入射角度、不同极化 S_{21} 参数 Fig. 4. Full wave simulation results: (a) S parameter of TE to TE transmission; (b) S parameter of TE to TM transmission; (c) S parameter of LCP to LCP transmission; (d) S parameter of LCP to RCP transmission.

-3 dB带宽达到了14 GHz (22—36 GHz), 其中在 27—33.5 GHz 的频带内能够实现85% 以上的极化 转换效率. 图4(a)和图4(c)同时给出了线极化和 圆极化波入射角 θ 由0°逐渐增加到60°时相同极 化的 S_{21} 参数. 图4(b)和图4(d)分别给出了随入 射角度变化的不同极化 S_{21} 参数. 由图4可知, 在 0°—60°范围内都保持了良好的极化转换特性, 因 此这种基于场变换的半波片具有较好的宽入射角 与极化稳定的特性.

4 实验测试

同时采用实验制备测量的方法验证了该半波 片的转极化性能.利用 3D 打印技术制作出实验样 品,如图 5 所示.本文所设计的毫米波半半波片由 两种介质组成,一种介质是空气,厚度 d₂ 为5 mm, 另一种介质是介电常数为 10.7,厚度 d₁ 为 0.68 mm 的材料,半波片的总厚度 h 为 4.5 mm.半波片的 框架由 3D 打印机打印制备,框架四角分别打印出 斜角,方便实现旋转角.框架中间加一条宽度为 1 mm的支架,以实现介质的均匀排布.

如图 6 所示,使用点聚焦透镜天线组成的自由 空间电磁参数测试系统分别测量了 27—37 GHz 频 带范围内相同极化与不同极化的 S₂₁ 曲线.图 7 为 电磁波垂直入射时所测得的半波片的 S 参数. 图 8 分别给出了入射角从 0°逐渐增加到 60°时,相

图 5 实验样品 Fig. 5. Image of the fabricated sample.

图 6 实验测量环境图 Fig. 6. Experimental setup.

图 7 实验测量线极化波垂直入射 S21 参数

Fig. 7. Experimental measured the S parameter of vertical incidence of linearly polarized wave.

图 8 (a) 实验测量线极化波不同入射角度、相同极化 S₂₁ 参数; (b) 实验测量线极化波不同入射角度、不同极化 S₂₁ 参数 Fig. 8. Experimental results: (a) S parameter of TE to TE transmission; (b) S parameter of TE to TM transmission.

同极化(图8(a))和不同极化(图8(b))的S₂₁参数. 由实验结果和仿真结果的对比可知,在 27—37 GHz的频带范围内,实测测量值与仿真 结果基本一致,该半波片在宽入射角的范围内均能 达到宽频带的转极化效果.

5 结 论

本文基于场变换理论设计了一种宽入射角的 宽带毫米波半波片. 仿真与实测结果均表明: 在 平面波垂直入射时, 极化转换-3 dB带宽达到了 49%. 其中在27—33.5 GHz 的频带内能够实现 85%以上的极化转换效果. 此外, 半波片在入射角 ±60°范围内也能够很达到很好的极化转换效果, 实现了宽入射角的极化转换效果. 本文设计的半 波片, 采用3D打印技术制作实验样品, 具有制作 工艺简单的特点, 为极化转换器件设计提供了崭新 思路.

参考文献

- Elston S J, Brown B, Preist T W, Sambles J R 1991 *Phys. Rev. B* 44 3483
- Born M, Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press) pp604–607
- [3] Gansel J K 2009 Science 325 1513
- [4] Zhao Y, Belkin M, Alu A 2012 Nat. Commun. 3 870
- [5] Hooper I R, Sambles J R 2002 Opt. Lett. 27 2152
- [6] Wu L 2014 Appl. Phys. A 116 014
- [7] Hallam B T, Hooper I R, Sambles J R 2004 Appl. Phys. Lett. 84 849
- [8] Hao J 2006 Phys. Rev. Lett. **99** 063908
- [9] Ye Y, He S 2010 Appl. Phys. Lett. **96** 203501
- [10] Zhao Y, Belkin M A, Alu A 2012 Nat. Commun 3 870
- [11] Dietlein C, Luukanen A, Popovic Z, Grossman E A 2007 IEEE Trans. Antennas Propag 55 1804
- [12] Doumanis E 2012 IEEE Trans. Antennas Propag 60 212
- [13] Zhu H, Cheung S, Chung K, Yuk T 2013 IEEE Trans. Antennas Propag 61 4615
- [14] Wood B, Pendry J B, Tsai D P 2006 Phys. Rev. B 74 115116
- [15] Liu Y C, Yuan J, Yin G, He S, Ma Y G 2015 Appl. Phys. Lett 107 011902

- [16] Zhang B, Luo Y, Liu X, Barbastathis G 2011 Phys. Rev. Lett. 106 033901
- [17] Gharghi M, Gladden C, Zentgraf T, Liu Y, Yin X, Valentine J, Zhang X 2011 Nano Lett. 11 2825
- [18] Alu A, Engheta 2008 Phys. Rev. Lett. 100 113901
- [19] Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901
- [20] Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M 2010 Science 328 337
- [21] Ma H F, Cui T J 2010 Nat. Commun 1 21
- [22] Zhang B L, Luo Y, Liu X G, Barbastathis G 2011 Phys. Rev. Lett. 106 033901
- [23] Luo Y, Chen H, Zhang J, Ran L, Kong J A 2008 Phys. Rev. B 77 125127

- [24] Chen H, Hou B, Chen S, Ao X, Wen W, Chan C T 2009 *Phys. Rev. Lett.* **102** 183903
- [25] Chen H Y, Chan C T 2007 Appl. Phys. Lett. 90 241105
- [26] Kwon D H, Werner D H 2008 Opt. Express 16 18731
- [27] Lai Y, Ng J, Chen H Y, Han D Z, Xiao J J, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. **102** 253902
- [28] Li C, Meng X, Liu X, Li F, Fang G, Chen H, Chan C T 2010 Phys. Rev. Lett. 105 233906
- [29] Liu F, Liang Z X, Li J S 2013 Physical Review Letters 111 033901
- [30] Zhao J M, Zhang L H, Li J S, Feng Y J, Dyke A, Sajad-Haq, Hao Y 2015 Sci. Reports 5 17532

Millimeter-wave half-waveplate based on field transformation^{*}

Wang Cheng Zhao Jun-Ming[†] Jiang Tian Feng Yi-Jun

(Department of Electronic Engineering, School of Electronic Science and Engineering Nanjing University, Nanjing 210093, China)

(Received 2 August 2017; revised manuscript received 10 February 2018)

Abstract

Over the last decades, manipulating polarization has received much attention due to its wide applications in science and technology. In this paper, a half-waveplate based on a field transformation (FT) method is proposed and investigated in order to convert polarization, which works at millimeter-wave band with a wide incident angle and broad working bandwidth.

Inspired by the FT method, we confine our attention to a two-dimensional (2D) case of in-plane wave propagation on the x-y plane, with both material properties and fields unchanged in the z direction. The fields are denoted with a subscript "(0)" in the virtual space. Then a series of theoretical calculations is analyzed in detail. Under the guidance of theoretical analysis, it is shown that the main job for realizing this half-wavepalate is to obtain a material with specific permittivity and permeability. The proposed waveplate is composed of periodically arranged two dielectric layers each with sub-wavelength in height. By using the effective medium theory, the effective electromagnetic (EM) parameters of the waveplate can be tuned by manipulating the heights of the two dielectric layers. Among them one layer is a material with a permittivity of 10 and height of 0.68 mm, and another layer material has a permittivity of 1, and height of 5 mm. We alternately arrange the two materials along one direction periodically to obtain a waveplate for realizing the TE-to-TM and LCP-to-RCP conversion. The thickness of whole waveplate is 5.5 mm. A broadband EM half-waveplate is achieved in millimeter-wave region, which possesses a nearly 90% conversion efficiency across the frequency band from 24 GHz to 37 GHz. At the same time, we also find that when the incident angle gradually increases from 0° to 60° , the performances of polarization conversion efficiency and working bandwidth are still good. For the incident angle of 60° , a 3-dB bandwidth over 26–33 GHz is still achieved. The performance of the waveplate is verified through both full-wave simulation and experimental measurement, which are in good agreement with each other. Meanwhile, three-dimensional (3D) printing technology makes the sample fabricated more easily. Another advantage of our design is that the 3D printing technology can be used to carry out the experimental fabrication, which may pave a new way to manufacturing more microwave devices.

Keywords: half-waveplate, field transformation, broadband PACS: 02.10.Yn, 42.79.Ci, 41.20.Jb

DOI: 10.7498/aps.67.20171774

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 61671231, 61571218, 61571216, 61301017, 61371034).

[†] Corresponding author. E-mail: jmzhao@nju.edu.cn