物理学报 Acta Physica Sinica

基于 Lorenz 模型的集合预报与单一预报的比较研究

梁丁 顾斌 丁瑞强 李建平 钟权加

Comparative study of Lorenz model based ensemble forecasting and single forecasting

Liang Ding Gu Bin Ding Rui-Qiang Li Jian-Ping Zhong Quan-Jia

引用信息 Citation: Acta Physica Sinica, 67, 070501 (2018) DOI: 10.7498/aps.67.20172144 在线阅读 View online: http://dx.doi.org/10.7498/aps.67.20172144 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I7

您可能感兴趣的其他文章 Articles you may be interested in

一种具有隐藏吸引子的分数阶混沌系统的动力学分析及有限时间同步

Dynamic analysis and finite time synchronization of a fractional-order chaotic system with hidden attractors 物理学报.2018, 67(5): 050502 http://dx.doi.org/10.7498/aps.67.20172354

反应扩散模型在图灵斑图中的应用及数值模拟

Application of reaction diffusion model in Turing pattern and numerical simulation 物理学报.2018, 67(5): 050503 http://dx.doi.org/10.7498/aps.67.20171791

小世界神经元网络随机共振现象:混合突触和部分时滞的影响

Effects of hybrid synapses and partial time delay on stochastic resonance in a small-world neuronal network

物理学报.2017, 66(24): 240501 http://dx.doi.org/10.7498/aps.66.240501

基于磁化电流法的双稳压电悬臂梁磁力精确分析

Accurate analysis of magnetic force of bi-stable cantilever vibration energy harvesting system with the theory of magnetizing current

物理学报.2017, 66(22): 220502 http://dx.doi.org/10.7498/aps.66.220502

受污染混沌信号的协同滤波降噪

Denoising of contaminated chaotic signals based on collaborative filtering 物理学报.2017, 66(21): 210501 http://dx.doi.org/10.7498/aps.66.210501

基于Lorenz模型的集合预报与单一预报的 比较研究^{*}

梁丁¹⁾²⁾ 顾斌¹⁾³⁾ 丁瑞强^{2)†} 李建平⁴⁾ 钟权加²⁾

1)(南京信息工程大学空间天气研究所,南京 210044)

2)(中国科学院大气物理研究所,大气科学和地球流体力学数值模拟国家重点实验室,北京 100029)

3) (南京信息工程大学物理与光电工程学院,南京 210044)

4) (北京师范大学全球变化与地球系统科学研究院,北京 100875)

(2017年9月27日收到;2018年1月17日收到修改稿)

根据非线性局部 Lyapunov 向量方法和增长模繁殖方法,选取 Lorenz63 模型和 Lorenz96 模型的不同状态 为例,对集合预报与单一预报的预报技巧开展了对比研究.结果表明:与单一预报比较,集合预报的均方根误 差和型异常相关有明显改善,随预报时间推移,改善效果越显著,且集合平均优于单一预报的实验个例数逐渐 增多.就概率分布(f)而言,单一预报状态的 f 与真实状态基本一致,不随时间变化;而集合平均预报状态的 f 则随时间呈现出值域变窄、峰值变大的特点.表明随预报时间的延长,单一预报状态为混沌吸引子上的随机 状态,而集合平均预报状态为吸引子子集上的随机状态,这可能是集合平均误差小于单一预报的原因.

关键词:非线性局部Lyapunov向量,集合预报,单一预报,Lorenz模型
 PACS: 05.45.-a, 92.60.Wc
 DOI: 10.7498/aps.67.20172144

1引言

大气是一个复杂的非线性系统,任何初始的 微小误差都会导致预报结果存在很大的不确定 性^[1-3]. Epstein^[4]和Leith^[5]提出集合预报解决 "单一确定性"预报存在"不确定性"的问题. 其基 本思想是:针对大气初始状态的不确定性,选取 合适的扰动集合,叠加于预报初始分析场上,然后 分别向前积分制作预报,得到预报集合.大量研 究和业务应用表明,集合预报相对单一预报而言, 能有效减小预报误差,改善预报水平,提高预报技 巧^[6,7].

近年来,集合预报的研究重点主要是:1)初值

不确定性; 2)模式不确定性; 3)集合预报产品释用. 在不考虑模式不确定性的理想情况下,集合预报成 功的关键在于初始扰动的产生. 围绕初始扰动的 生成,众多的理论方法被提出,如蒙特卡罗法^[5]、 时间滞后平均法^[8]、增长模繁殖(bred growing mode, BGM)法^[9,10]、奇异向量(singular vector, SV)法^[11-13]、观测扰动法^[14,15]、条件非线性最优 扰动法^[16,17]、集合卡尔曼滤波(ensemble Kalman filter, EnKF)法^[18]、集合变换卡尔曼滤波(ensemble transform Kalman filter, ETKF)法^[19]以及新 近发展的非线性局部Lyapunov向量(nonlinear local Lyapunov vector, NLLV)法等^[20-22]. 以上述 理论方法为基础,国内外学者开展了许多研究工 作.例如,Anderson^[23]基于Lorenz63理想模型,评

* 国家自然科学基金优秀青年科学基金(批准号: 41522502)、国家科技支撑计划(批准号: 2015BAC03B00)和"全球变化与海气相互作用"专项(批准号: GASI-IPOVAI-06)资助的课题.

†通信作者. E-mail: drq@mail.iap.ac.cn

© 2018 中国物理学会 Chinese Physical Society

估了 BGM, SV 以及随机扰动等方法的预报表现, 指出了随机扰动方法比 BGM和 SV 方法具有更高 的预报技巧;封国林等^[24]利用 Lorenz63 模型,对 集合预报可能的物理基础进行了探讨;Bowler^[25] 基于 Lorenz96 模型的研究结果表明,EnKF 方法的 预报效果比 BGM和 SV 方法更优.值得注意的是, 这些工作主要围绕初始扰动产生方法的比较,虽然 取得了许多有意义的结果,但多数研究为大样本平 均的结果,较少涉及预报技巧对个例依赖性问题的 研究.集合预报的预报表现对具体实验个例的敏感 性尚需进一步研究.此外,虽然人们对集合预报初 始扰动的生成及其在业务预报中的应用等方面的 研究较多^[26-31],但对集合平均减小预报误差的物 理本质与基础仍需进一步探讨.

本文以Lorenz63和Lorenz96理想模型为例, 利用NLLV和BGM方法,选取模型的不同状态为 实验个例,研究了集合预报对不同实验个例的预报 表现,将结果与单一预报进行对比,并试图从概率 分布演化的角度,初步分析集合平均具有较小预报 误差可能原因,希望能为集合预报理论和预报技巧 的改善提供一定的依据.

2 方法与物理模型

2.1 集合预报初始扰动集合产生

BGM方法是目前生成集合预报初始扰动集合的流行方法之一. 该方法被美国国家环境预报中心(National Center for Environmental Prediction, NCEP)长期采用. 其借鉴了分析循环中误差增长过程,叠加任意随机扰动,通过模式循环积分使其得到"繁殖",当该扰动在某种意义上达到饱和时,扰动的大小和分布可被视为实际分析误差快速增长模的估计. BGM方法的具体繁殖循环流程如图1(a)所示:初始时刻,在分析场上叠加一组大小相等、方向随机的扰动,并对受扰状态独立积分. 在每个繁殖循环的末尾,将扰动的大小尺度化到初始时刻的扰动大小,并叠加到新的分析场上,进行下一个繁殖循环. 如此重复,直至预报时刻,就可以获得一组BGM扰动.

图 1 (a) 增长模繁殖扰动^[10]、(b) 非线性局部 Lyapunov 扰动生成^[20] 示意图以及 (c) 集合预报流程图 Fig. 1. Schematic of (a) bred growing modes^[10], (b) nonlinear local Lyapunov^[20] perturbations and (c) the flow chart of ensemble forecasting.

理论上BGM方法产生的扰动集合能很好地 反映分析误差中的增长成分,但在基本流的演化 过程中,任何初始随机扰动都会自然地向相空间 中增长最快的主导线性局部 Lyapunov 向量 (linear local Lyapunov vector, LLV) 方向偏转^[9,10]. 因此, 由BGM方法产生的扰动集合往往存在较高的相 似性,从而影响其全局正交性[19,25],导致集合离 散度不够. 针对上述BGM 方法的局限性, 丁瑞 强、李建平等[32-35]提出了在非线性理论框架下 生成初始扰动的NLLV方法. 该方法将非线性局 部 Lyapunov 指数 (nonlinear local Lyapunov exponent, NLLE)^[20-22] 拓展至多维, 代表正交的扰动 增长(缩小)方向. NLLV方法在保留BGM方法的 优点,即对参考和扰动状态直接积分,获取扰动集 合的基础上,加入正交化过程,保证扰动严格正交, 因而能更好地抓住分析误差的特征. NLLV 的繁 殖循环流程如图1(b)所示: 基本繁殖过程与BGM 方法类似,不同的是在每个繁殖循环的末尾,对扰 动进行正交操作,得到一组正交的扰动,再叠加到 新的分析场上.如此重复,直至预报时刻.需要 注意的是,在进行正交操作时,要先确定增长最快 的扰动,记为主导非线性局部 Lyapunov 向量 (leading nonlinear local Lyapunov vector, LNLLV), 其 余NLLV 扰动可在LNLLV 约束下依次获得. Feng 等^[20,21]的研究结果表明, NLLV 较 BGM 方法具有 更高的预报技巧;与ETKF方法相比,两者预报技 巧接近,但NLLV计算所需资源要远小于ETKF. 本文采用BGM和NLLV方法生成集合预报初始扰 动集合,进行相关预报实验.

2.2 Lorenz模型与实验设计

Lorenz63 模型的控制方程如下:

$$dx/dt = -\sigma x + \sigma y,$$

$$dy/dt = \gamma x - y - xz,$$

$$dz/dt = xy - bz,$$
 (1)

其中, $\sigma = 10$, $\gamma = 28.0$, b = 8/3, 分别为Prandtl 数、Rayleigh 数以及表示与对流尺度相联系的参 数. 数值积分采用四阶龙格-库塔方法, 积分步长 取 0.01, 记作 0.01 tus. 在该非线性模型混沌吸引子 上, 每间隔 0.05 tus 选取一个状态, 作为实验个例 的初始态, 共计选取 $N_1(N_1 = 10^4)$ 个真实状态, 记 为 X_{t63} . Lorenz96模型作为大气的低阶近似,相较 Lorenz63模型更适合于研究大气,已经被广泛应 用于大气预测和资料同化的研究中^[36]. Lorenz96 模型对初值异常敏感,且非线性作用强,其动力框 架可描述为

$$dX_i/dt = (X_{i+1} - X_{i-2})X_{i-1} - X_i + F, \quad (2)$$

其中, X_i 为模型变量, F为定常强迫.本文的实验 设计中, 模型维数等于40, 即 $i = 1, 2, \cdots, 40$, 强迫 项F为8, 数值积分采用四阶龙格-库塔格式, 积分 步长为0.05.对于Lorenz96模型而言, 从误差增长 程度来看, 间隔0.2时间单位大致对应1 d^[37].因 此本文Lorenz96模型的时间单位统一用天(d)表 示.在该非线性模型混沌吸引子上每间隔0.25 d 选取 $N_2(N_2 = N_1)$ 个不同状态, 记为 X_{t96} , 作为 Lorenz96模型实验个例的初始态.

为了和实际预报情况接近,我们利用 EnKF 方法对 **X**_{t63}, **X**_{t96} 进行同化,生成对应的分析场 **X**_{a63}, **X**_{a96}. 作为比较,将从分析场 **X**_{a63}, **X**_{a96}开 始的预报视为单一预报.

Lorenz63 模型任意实验个例 $i(i = 1, 2, \dots, N_1)$ 的集合预报实验设计如图1(c)所示:在 T_1 时刻的分析场上叠加M(M = 2)个初始随机扰动,扰动的模与真实分析误差 $|X_{a63i} - X_{t63i}|$ 一致,分布服从[-1, 1]上均匀随机分布;从叠加扰动后的分析场出发,分别进行周期为0.1 tus,总时长为0.4 tus的繁殖循环,到 T_0 时刻,产生M个NLLV和BGM扰动;在 T_0 预报时刻的分析上分别叠加和扣除M个扰动后得到2M个扰动场,将扰动场和分析场分别向前积分5 tus,对所有的预报成员采取等权平均,得到集合平均预报.

Lorenz96 模型集合预报实验设计与Lorenz63 模型类似:在 T_1 时刻的分析场上叠加M(M = 5)个初始随机扰动,扰动的模与真实分析误差 $|X_{a96i} - X_{t96i}|$ 相等,分布服从[-1, 1]上均匀随 机分布;从叠加扰动后的分析场出发,分别进行周 期为1 d,总时长为5 d的繁殖循环,到 T_0 时刻,产 生M个NLLV和BGM扰动;在 T_0 预报时刻的分 析上分别叠加和扣除M个扰动后得到2M个扰动 场,将扰动场和分析场分别向前积分12 d,对所有 预报成员采取等权平均,得到集合平均预报.

3 结果与讨论

3.1 集合平均预报的整体表现

首先以均方根误差 (root mean square error, RMSE)^[38]和型异常相关 (pattern anomaly correlation, PAC)^[38]为标准,通过与单一预报的比 较,评估 Lorenz63模型和 Lorenz96模型集合平均 的整体预报表现.图2给出了所有实验个例的平均 RMSE和PAC演化过程.比较发现,对 Lorenz63和 Loren96模型而言,随着时间推移,NLLV和BGM 两种集合平均的预报技巧较单一预报都有明显 的改善,而NLLV比BGM表现更优. 在预报初期 (图2((a),(b))中0.6 tus 前;(图2(c),(d))中5 d 前),NLLV和BGM集合平均与单一预报结果接近,随着时间的推移,曲线开始出现分离,意味着集合 平均的优势开始显现. 在预报初期,误差主要以线 性增长为主,使得叠加的正负扰动预报对相互抵 消. 但随着预报时间的延长,非线性作用增强,误 差逐渐进入非线性增长阶段,集合平均的非线性滤 波作用减小了预报误差^[10,39,40].

图 2 Lorenz63 模型 10⁴ 个个例的平均 RMSE (a) 和平均 PAC (b), Lorenz96 模型 10⁴ 个个例的平均 RMSE (c) 和平均 PAC (d) 随时间的变化 (黑色实线, 单一预报; 蓝色实线, BGM 集合预报; 红色实线, NLLV 集合预报) Fig. 2. (a) Mean RMSE and (b) mean PAC of 10⁴ cases of the Lorenz63 model and (c) mean RMSE and (d) mean PAC of 10⁴ cases of the Lorenz96 model as a function of lead time (black solid curve, single forecast; blue solid curve, BGM ensemble forecast; red solid curve, NLLV ensemble forecast).

3.2 个例集合预报表现

3.1节的结果表明, 集合平均的预报技巧高于 单一预报. 但对具体实验个例而言, 集合预报是否 一定优于单一预报仍不确定. 为此, 我们从预报误 差的角度, 分析上述个例的集合预报表现.

Lorenz63模型(图3(a)—(b)), Lorenz96模型 (图3(d)—(f))所有实验个例的NLLV 集合平均和 单一预报误差如图3所示.两模型的结果基本一 致,预报初期,集合平均和单一预报的预报误差主 要集中在"对角线"附近,意味着多数实验个例,其 集合平均和单一预报误差大致相当.随时间的增 加,单一预报误差大于集合平均的实验个例数逐渐 增多,多数实验个例落入单一预报一侧(BGM的结 果与NLLV一致). 进一步集合平均误差小于单一预报误差的实 验个例占总实验数的比例(k)如图4所示. 在预 报开始阶段, $k \approx 50\%$.随时间推移, k逐渐增大, 集合平均的优势愈发显著. Lorenz63模型第5 tus 时刻的NLLV和BGM集合平均预报的k值分别为 65%和62%. Lorenz96模型第12 d时刻的NLLV和 BGM集合平均预报的k值分别为95%和86%. 值 得注意的是,对所有预报时刻,NLLV集合平均占 优的百分比都较高于BGM,这可能是由于NLLV 的严格正交,导致其能捕捉更多的误差分量,从而 更准确地刻画初始误差向量^[20,21].正如图5所示, 对于Lorenz63模型而言,当 $\gamma > 24.74$ 时,系统表 现出不同复杂程度的混沌行为,计算表明,NLLV 的这一优势不随 γ 值的变化而变化.

图 3 Lorenz63 和 Lorenz96 模型 10⁴ 个个例在第 (a) 1 tus, (b) 3 tus, (c) 5 tus 和在第 (d) 1 d, (e) 7 d, (f) 12 d 时刻的 NLLV 集合平均和单一预报的预报误差

Fig. 3. Forecast error of NLLV ensemble mean and the single forecast of 10^4 cases of Lorenz63 and Lorenz96 model at time (a) 1 tus, (b) 3 tus, (c) 5 tus and at time (d) 1 d, (e) 7 d, (f) 12 d, respectively.

图 4 Lorenz63 模型 (a) 和 lorenz96 模型 (b) 集合平均预报比单一预报误差小的实验个例百分比随时间的演变 (点虚线, BGM 集合平均; 点实线, NLLV 集合平均)

Fig. 4. Ratio of the cases of the NLLV (dot-dashed line) and BGM (dot-solid line) ensemble mean forecast with smaller error compared with the single forecast as a function of time from (a) Lorenz63 model and (b) Lorenz96 model.

图 5 Lorenz63 模型 NLLV(实线) 和 BGM(虚线) 10^4 个 实验个例在预报第 5 tus 时的 k 值随 γ 的变化

Fig. 5. Ratio of the NLLV (solid line) and BGM (dashed line) ensemble mean forecast with smaller error compared with the single forecast at 5 tus as a function of γ of Lorenz63 model.

3.3 吸引子概率分布特征

吸引子的概率分布反映了系统的长期行为特征. 吸引子上不变的概率分布是其基本特征^[41]. 图 6 给出了 Lorenz96 模型的变量 *X*(*X* 为任意变量) 在不同长度的积分序列下的概率分布. 很明显可以看出,随着演化时间趋于无穷,变量 *X* 的空间概率分布趋向不变,这意味着系统轨迹会以不变的概率在吸引子上演化.

图7给出了不同预报时刻Lorenz96模型变量 X的集合平均预报状态和单一预报状态的概率分 布.对单一预报状态而言,其概率分布在各预报时 刻都与真实状态的概率分布基本保持一致,这是因 为在理想模型条件下,单一预报状态同样位于参考 状态的吸引子上,其大样本集合等于参考状态的吸 引子集;而集合平均预报,其概率分布随时间呈现

图 6 Lorenz96 模型变量 X 概率分布,图中标注为积分 步长,黑色虚线为变量 X 的平均值

Fig. 6. Probability (%) distribution of variable X of Lorenz96 model with different lengths of integration series. The mean state value (black dashed line) of X is 2.33.

图 7 Lorenz96 模型 10⁴ 个实验个例对应的变量 X 的真实状态 (黑线)、单一预报状态 (蓝线) 及 NLLV 集合平均预 报状态 (红线) 的概率随时间的变化

Fig. 7. Probability (%) distribution of the true states (black line, left hand scale), single (blue line, left hand scale) and NLLV ensemble mean (red line, right hand scale) of variable X of Lorenz96 model over the total 10^4 cases as a function of time.

出值域变窄、峰值变大的特点,这是由于集合平均 的非线性滤波作用,使得集合平均预报状态的取值 缩小到吸引子上的较小区域内(即吸引子的一个子 集上).意味着随预报时间的推移,单一预报倾向于 选择混沌吸引子上的随机状态进行预报,而集合平 均预报则倾向于选择吸引子子集上的随机状态进 行预报.

4 结 论

本文利用 Lorenz63 和 Lorenz96 理想模型,通 过选取吸引子上不同状态作为实验个例,研究了不 同实验个例的集合预报与单一预报的预报表现,并 分析了集合平均具有较小预报误差的可能原因,主 要研究结论如下.

1) 从平均效果看, NLLV 和BGM 集合平均预 报的均方根误差和型异常相关较单一预报有明显 的改善. 预报初期, 集合平均与单一预报结果接近; 随着时间的推移, 集合平均对预报的改善效果越 显著.

2)不同的实验个例,其集合预报与单一预报 的表现不同.预报早期,集合预报与单一预报的预 报技巧相当,随着时间的推移,集合预报优于单一 预报的实验个例数逐渐增多.在Lorenz63模型中, 预报第5 tus时刻,NLLV和BGM集合平均优于单 一预报的实验个例数分别为65%和62%左右;在 Lorenz96模型中,预报第12 d时刻,NLLV和BGM 集合平均优于单一预报的实验个例数分别为95% 和86%左右.

3) 就概率分布 (f) 而言, 单一预报状态的 f 和 真实状态基本一致, 不随时间变化, 而集合平均预 报状态 f 随时间呈现出值域变窄、峰值变大的特点, 意味着随预报时间的延长, 单一预报倾向于选择混 沌吸引子上的随机状态进行预报, 而集合平均预报 倾向于选择吸引子子集上的随机状态进行预报, 这 可能是集合平均误差小于单一预报的原因, 但具体 的物理机制仍需进一步探讨.

上述基于Lorenz模型进行的对比研究结果, 对实际的预报业务启发包括:集合预报和单一预报 的预报技巧会随着事件的变化而变化,对不同事件 的预报,应该综合考虑集合预报与单一预报的预报 效果;由于集合平均更趋向于系统的平均状态,对 于系统中的极端事件,集合预报的预报效果可能会 弱于甚至是差于单一预报.

集合预报作为减小预报结果不确定的可行办 法,值得进一步利用更加复杂的模型(如Weather Research and Forecasting, WRF模式),以不同天 气事件为例,研究其预报表现,为集合预报理论发 展和预报技巧的改善提供科学依据.

参考文献

- [1] Lorenz E N 1963 J. Atmos. Sci. 20 130
- [2] Chou J F 1990 New Advances of Atmospheric Dynamic (Lanzhou: Lanzhou University Press) p214 (in Chinese)
 [田纪范 1990 大气动力学的新进展(兰州: 兰州大学出版社)
 第 214 页]
- [3] Li J P, Chou J 1996 Chin. Sci. Bull. 41 587
- [4] Epstein E S 1969 Tellus **21** 739
- [5] Leith C E 1974 Mon. Wea. Rev. **102** 409
- [6] Fritsch J M, Hilliker J, Ross J 2000 Wea. Forecasting 15 571
- [7] Visloscky R L, Fritsch J M 1995 Bull. Amer. Meteor. Soc. 76 1157
- [8] Hoffman R N, Kalnay E 1983 Tellus 35A 100
- [9] Toth Z, Kalnay E 1993 Bull. Amer. Meteor. Soc. 74 2317
- [10] Toth Z, Kalnay E 1997 Mon. Wea. Rev. 125 3297
- [11] Molteni F, Palmer T N 1993 Q. J. R. Meteorol. Soc. 119 269
- Molteni F, Buizza R, Palmer T N, Petroliagis T 1996 Q.
 J. R. Meteorol. Soc. 122 73
- [13] Buizza R 1996 Mon. Wea. Rev. 125 99
- [14] Houtekamer P L, Lefaivre L, Derome J, Ritchie H, Mitchell H L 1996 Mon. Wea. Rev. 124 1225
- [15] Houtekamer P L, Mitchell H L 1998 Mon. Wea. Rev.
 126 796
- [16]~ Mu M, Jiang Z N 2008 Chin. Sci. Bull. ${\bf 53}$ 2062
- [17] Duan W S, Mu M 2009 Sci. China Ser. D: Earth Sci.
 52 883
- [18] Evensen G 2003 Ocean Dyn. 53 343
- [19] Wang X, and Bishop C 2003 J. Atmos. Sci. 60 1140
- [20] Feng J, Ding R Q, Liu D Q, Li J P 2014 J. Atmos. Sci. 71 3554
- [21] Feng J, Ding R Q, Li J P, Liu D Q 2016 Adv. Atmos. Sci. 33 1036
- [22] Ding R Q, Li J P, Li B S 2017 Adv. Atmos. Sci. 34 1027
- [23] Anderson J L 1997 Mon. Wea. Rev. 125 2969
- [24] Feng G L, Dong W J 2003 Acta Phys. Sin. 52 2347 (in Chinese) [封国林, 董文杰 2003 物理学报 52 2347]
- [25] Bowler N E 2006 Tellus 58A 538
- [26] Li Z C, Chen D H 2002 J. Appl. Meteor. Sci. 13 1 (in Chinese) [李泽椿, 陈德辉 2002 应用气象学报 13 1]
- [27] He W P, Feng G L, Dong W J, Li J P 2006 Acta Phys. Sin. 55 969 (in Chinese) [何文平, 封国林, 董文杰, 李建平 2006 物理学报 55 969]
- [28] Ma J H, Zhu Y J, Wang P X, Duan M J 2011 Trans. Atmos. Sci. 34 370 (in Chinese) [麻巨慧, 朱跃建, 王盘兴, 段明铿 2011 大气科学学报 34 370]

- [29] Tan N, Chen J, Tian H 2013 Meteor. Mon. 39 543 (in Chinese) [谭宁, 陈静, 田华 2013 气象 39 543]
- [30] Zheng Z H, Feng G L, Huang J P, Chou J F 2012 Acta Phys. Sin. 61 199203 (in Chinese) [郑志海, 封国林, 黄建 平, 丑纪范 2012 物理学报 61 199203]
- [31] Zhang H B, Chen J, Zhi X F, Long K J, Wang Y N 2014 Trans. Atmos. Sci. 37 276 (in Chinese) [张涵斌, 陈静, 智协飞, 龙柯吉, 王亚男 2014 大气科学学报 37 276]
- [32] Ding R Q, Li J P 2009 Acta Meteor. Sin. 67 241 (in Chinese) [丁瑞强, 李建平 2009 气象学报 67 241]
- [33] Ding R Q, Li J P 2009 Acta Meteor. Sin. 67 343 (in Chinese) [丁瑞强, 李建平 2009 气象学报 67 343]
- [34] Ding R Q, Li J P, Ha K J 2008 J. Geophys. Res. 113 D24112

- [35] Li J P, Ding R Q 2011 Mon. Wea. Rev. 139 3265
- [36] Lorenz E N, Emanuel K A 1998 J. Atmos. Sci. 55 399
- [37] Lorenz E N 1995 Seminar on Predictability Shinfield Park, Reading, United Kingdom, September 4–8, 1995 p1
- [38] Buizza R, Houtekamer P L, Toth Z, Pellerin G, Wei M, Zhu Y 2005 Mon. Wea. Rev. 133 1076
- [39] Houtekamer P L, Derome J 1994 Mon. Wea. Rev. 122 2179
- [40] Zhuang Z R, Xue J S, Li X L 2011 Acta Meteor. Sin.
 69 620 (in Chinese) [庄照荣, 薛纪善, 李兴良 2011 气象学报 69 620]
- [41] Eckmann J P, Ruelle D 1985 Rev. Mod. Phys. 57 617

Comparative study of Lorenz model based ensemble forecasting and single forecasting^{*}

Liang $\operatorname{Ding}^{1|2|}$ Gu $\operatorname{Bin}^{1|3|}$ Ding Rui-Qiang^{2|†} Li Jian-Ping^{4|} Zhong Quan-Jia^{2|}

(Institute of Space Weather Research, Nanjing University of Information Science and Technology, Nanjing 210044, China)
 (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG, Institute of

Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China)

3) (College of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China)

4) (College of Global Change and Earth System Science (GCESS, Beijing Normal University, Beijing 100875, China)
 (Received 27 September 2017; revised manuscript received 17 January 2018)

Abstract

In the past two decades, the ensemble forecasting has gained considerable attention. The atmosphere is a chaotic system, and a small error in the initial conditions will result in an enormous forecast uncertainty with time. It is impossible to precisely predict the future state of the atmosphere by a single (or control) forecasting. The ensemble forecasting is a feasible method to reduce the forecast uncertainty and to provide the reliability information about forecast. Many studies showed that because of the nonlinear filtering effect, the ensemble forecasting is more skillful than the single forecasting according to the statistical average over a large number of numerical experimental cases. However, the forecast skill can vary widely from day to day according to the specific synoptic events. The dependence of the ensemble forecasting on specific event has not been fully addressed in previous studies. Therefore, the performances of the ensemble forecasting in specific experimental cases should be further studied, which is important for improving the forecast skill in weather and climate events. In this paper, the nonlinear local Lyapunov vectors (NLLVs), which indicate orthogonal directions in phase space with different perturbation growth rates, are introduced to generate the initial perturbations for the ensemble forecasting. The NLLVs span the fast-growing perturbation subspace efficiently, and thus may grasp more components in analysis errors than other ensemble methods. Meanwhile, the bred growing mode (BGM) method, which indicates the fastest growing perturbation mode, is also used for the ensemble forecasting. Based on the NLLV and BGM methods, the forecast performances of the ensemble forecasting and single forecasting are compared in the Lorenz63 and Lorenz96 models for specific experimental cases. Additionally, two practical measures, namely the root mean square error (RMSE) and pattern anomaly correlation (PAC), are used to assess the performances of the ensemble forecasting. The results indicate that each ensemble mean forecasting is more skillful than its single forecasting in terms of RMSE and PAC. For each experimental case, the proportion of the ensemble forecasting better than single forecasting gradually increases with time in Lorenz63 (Lorenz96) model by both NLLV and BGM methods, respectively. In addition, the variation of probability distribution of the ensemble mean states might be the reason why the forecast error of ensemble forecasting is less than that of the single forecast. The results based on simple model could provide a new perspective to understand ensemble forecasting and may be conducive to the weather and climate prediction.

Keywords: nonlinear local Lyapunov vector, ensemble forecasting, single forecasting, Lorenz modelPACS: 05.45.-a, 92.60.WcDOI: 10.7498/aps.67.20172144

^{*} Project supported by the National Natural Science Foundation of China for Excellent Young Scholars (Grant No. 41522502), the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2015BAC03B00), and the National Programe on Global Change and Air-Sea Interaction, China (Grant No. GASI-IPOVAI-06).

[†] Corresponding author. E-mail: drq@mail.iap.ac.cn