物理学报 Acta Physica Sinica

基质材料对Yb³⁺浓度调控的上转换荧光红绿比的影响 张翔宇 王丹 石焕文 王晋国 侯兆阳 张力东 高当丽

Effect of host matrix on Yb³⁺ concentration controlled red to green luminescence ratio Zhang Xiang-Yu Wang Dan Shi Huan-Wen Wang Jin-Guo Hou Zhao-Yang Zhang Li-Dong Gao Dang-Li

引用信息 Citation: Acta Physica Sinica, 67, 084203 (2018) DOI: 10.7498/aps.67.20171894 在线阅读 View online: http://dx.doi.org/10.7498/aps.67.20171894 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I8

您可能感兴趣的其他文章 Articles you may be interested in

共掺杂 Ce^{3+} 调控 β -NaLuF₄:Yb³⁺/Ho³⁺ 纳米晶体的上转换荧光发射

Tuning upconversion fluorescence emission of β -NaLuF₄:Yb³⁺/Ho³⁺ nanocrystals through codoping Ce³⁺ ions 物理学报.2017, 66(20): 204206 http://dx.doi.org/10.7498/aps.66.204206

交流作用下电润湿液体透镜动态过程的测试与分析

Test and analysis of the dynamic procedure for electrowetting-based liquid lens under alternating current voltage

物理学报.2016, 65(22): 224202 http://dx.doi.org/10.7498/aps.65.224202

NaYF₄:Tm³⁺纳米棒中激光脉宽调控的荧光选择输出特性

Luminescence selective output characteristics tuned by laser pulse width in Tm³⁺ doped NaYF₄nanorods 物理学报.2016, 65(20): 204205 http://dx.doi.org/10.7498/aps.65.204205

Er^{3+}/Yb^{3+} 共掺 NaYF₄/LiYF₄ 微米晶体的上转换荧光特性

Upconversion flourescence characteristics of Er³⁺/Yb³⁺ codoped NaYF₄ and LiYF₄ microcrystals 物理学报.2016, 65(8): 084205 http://dx.doi.org/10.7498/aps.65.084205

 Gd^{3+}/Y^{3+} 共掺对 Nd:CaF₂ 晶体光谱性能的影响

Effects of Gd^{3+}/Y^{3+} codoping on the spectral properties of Nd:CaF₂ crystals 物理学报.2016, 65(5): 054207 http://dx.doi.org/10.7498/aps.65.054207

基质材料对Yb³⁺浓度调控的上转换 荧光红绿比的影响*

张翔宇^{1)†} 王丹²⁾ 石焕文¹⁾ 王晋国¹⁾ 侯兆阳¹⁾ 张力东²⁾ 高当丽^{2)‡}

1)(长安大学理学院,西安 710064)

2) (西安建筑科技大学理学院, 西安 710055)

(2017年8月25日收到;2018年1月1日收到修改稿)

控制 Yb³⁺ 掺杂浓度是一种重要的调控红绿荧光比率的方法. 然而,关于不同基质中 Yb³⁺ 浓度对红绿 上转换荧光调控的敏感度仍缺少定量的对比研究,而且调控机理尚不清晰. 本文通过乙二胺四乙酸辅助的水 热法,合成了形貌可控的 NaYF4 微米棒、LiYF4 微米八面体和 YF3 微米砖三种氟化物晶体. 通过激光共聚 焦显微镜系统对比研究了 Yb³⁺/Er³⁺ 掺杂的三种不同基质和形貌的单颗粒氟化物微米晶体的上转换荧光行 为和红绿比率对 Yb³⁺ 变化的敏感度. 研究结果表明: NaYF4:Er³⁺ 微米棒的红绿比率对 Yb³⁺ 的掺杂浓度 响应最为敏感,各种 Yb³⁺ 浓度掺杂的 LiYF4:Er³⁺ 微米八面体上转换荧光被绿光主控,而不同 Yb³⁺ 掺杂的 YF3:Er³⁺ 微米砖表现出了稳定的黄光发射. 通过分析荧光发射谱和比较上下转换荧光动力学过程结合荧光 强度-功率依赖关系, 基于拥有不同声子能量的基质辅助的 Er³⁺ 离子中间态的不同消布居途径, 揭示了不同 基质中红绿比率对 Yb³⁺ 变化响应的物理机制, 并提供了一种研究上转换机理的思路.

关键词: 红绿比率, 光谱调控, 基质材料, Yb³⁺ 浓度 **PACS:** 42.70.-a, 76.30.kg, 78.55.-m, 78.67.-n

DOI: 10.7498/aps.67.20171894

1引言

稀土微/纳荧光材料凭借其独特的光学性质如 锐线发射、大的斯托克斯位移和无背景荧光等使其 在激光、照明、三维显示及生物医学等领域独具优 势^[1-7].众所周知,稀土微纳荧光材料在应用过程 中,实现光谱调控和荧光增强是首要的考虑因素. 目前的应用研究表明:近红外或红色发射适于深 层生物组织成像^[8,9];紫外或蓝色光子用于触发光 化学反应^[10];高纯度单带光谱适用于多色成像^[11]; 而纯双色带发射则在荧光探针领域备受青睐^[12]. 然而,荧光发射谱带被掺杂稀土离子的电子能级结 构和光谱选律所严格制约^[13,14].换言之,我们不能随心所欲地在任意频率波谱段创造荧光发射.这种形势引发的问题是:在稀土离子的电子能级结构上,哪些因素能干扰荧光发射能级的布居和消布居过程;在上转换系统中,能在多大程度上放大或抑制某一波段的荧光发射.为了解决这些本质问题,研究具有良好荧光性质的氟化物体系材料的红绿光谱调控,并进一步在微/纳米尺度上揭示光谱调控的物理机制,对促进稀土荧光材料走向市场应用具有重要的意义.

稀土氟化物基质材料由于具有低声子能量而 在稀土上转换荧光材料的研究中备受关注^[15-21], 但研究对象大多局限于粉末、溶胶和玻璃态物质,

^{*} 国家自然科学基金(批准号: 11604253, 51771033)、陕西省青年科技新星项目(批准号: 2015KJXX-33)、陕西省自然科学基金(批 准号: 2016JM5055)、中央高校基本科研业务费(批准号: 310812171004, 301812172001)、2017年省级大学生创新创业训练计划 (批准号: 1229)和西安建筑科技大学本科生科研训练(SSRT)计划资助的课题.

[†]通信作者. E-mail: xyzhang@chd.edu.cn

[‡]通信作者. E-mail: gaodangli@163.com

^{© 2018} 中国物理学会 Chinese Physical Society

这使得一些物理机制由于颗粒间及颗粒和溶液 间的相互作用而导致本征效应未能体现. 最近, 我们课题组将光谱研究对象推广到了单颗粒级 别^[22,23],这无疑减少了颗粒间的相互作用,使激 发、迁移和荧光边界可视,为研究相关机理提供了 物质基础. 同时,相对于纳米系统,微米材料也提 供了更强的荧光强度和在器件应用方面的可操作 性. 基于此目的,本文利用乙二胺四乙酸辅助的 水热法^[23-25]合成了Yb³⁺/Er³⁺掺杂的氟化物微 米晶体,通过调控pH值和氟源合成了长方体砖形 YF₃,八面体LiYF₄和一维棒NaYF₄微米晶体.选 取Yb³⁺/Er³⁺掺杂的三种不同形貌和晶相的氟化 物单颗粒晶体作为研究对象,采用激光共聚焦光谱 采集装置系统地对比研究了在三种氟化物单颗粒 体系内, Yb³⁺离子掺杂浓度对荧光光谱的调控.并 进一步通过比较上下转换荧光动力学过程,结合荧 光强度-功率关系揭示了光谱调控隐藏的机理.

2 实 验

2.1 实验原料

实验所用试剂HNO₃(含量65.00%—68.00%), NaF (优级纯, 99.00%), LiF (分析纯, 98.00%), Er₂O₃ (分析纯, 99.99%), Yb₂O₃ (分析纯, 99.99%), Y₂O₃ (分析纯, 99.99%)和乙二胺四乙 酸 (EDTA)(分析纯, 99.5%)均购于国药集团化学 试剂有限公司.实验中所用水为去离子水.

2.2 样品制备

稀土硝酸盐溶液的制备:将Y₂O₃,Yb₂O₃和 Er₂O₃分别溶解在适量稀硝酸中,加热、搅拌,至 溶液变成透明的胶状物时,继续搅拌,直至胶状物 质变澄清,加入定量的去离子水,配成0.2 mol·L⁻¹ Y(NO₃)₃,Yb(NO₃)₃和Er(NO₃)₃硝酸盐溶液作为 储备液备用.

LiYF₄:Yb³⁺/Er³⁺ 微米八面体 (NaYF₄:Yb³⁺/ Er³⁺ 微米棒) 的制备:称取一定量的LiF(NaF)加 入到50 mL的烧杯中,再加入20 mL的去离子水搅 拌20 min.按所需的掺杂浓度,分别添加一定量的 Y(NO₃)₃,Yb(NO₃)₃和Er(NO₃)₃溶液缓慢滴入烧 杯中,并持续不断地搅拌,再加入一定量的EDTA, 最后加入一定量的NH₄F溶液;用氨水或硝酸将 pH值调到4.0,持续搅拌30 min 至溶液完全混合均 匀后,倒入反应釜并且加入去离子水使前驱物的 填充比为反应釜容积的80%,继续搅拌形成均匀的 前驱物;将所得前驱物倒入聚四氟乙烯内衬的高 压反应釜中,拧紧釜盖,放入电热鼓风干燥箱内于 200°C下反应24 h. 待高压反应釜温度降至室温 后,打开反应釜取出反应产物,倒入50 mL 的离心 管中,加入去离子水,超声5 min 后进行离心,待反 应物完全沉淀在离心管底时,倒出上面清液,分别 用水和无水乙醇交替洗涤并离心3—4次,最后将 所得白色粉末产物在70°C下干燥12 h 后,即得 LiYF₄:Yb³⁺/Er³⁺(NaYF₄:Yb³⁺/Er³⁺)白色粉末 晶体.

YF₃:Yb³⁺/Er³⁺立方砖的制备:制备过程和制备LiYF₄微米八面体过程完全相同,只需在制备过程中将 pH 调到2.5即可.

2.3 样品的表征方法

样品结构采用D/Max2550 VB+/PC X射线 衍射仪(XRD, Cu靶Ka (40 kV, 40 mA), 波长 0.15406 nm)进行分析, 扫描速度10°/min, 步长 为0.1°. 颗粒的形貌和尺寸通过日本日立公司 (S-4800, Hitachi)型扫描电子显微镜(SEM)进行 观察. 上转换激光共聚焦光谱学表征利用一 台 Quanta Ray Lab-170 YAG:Nd³⁺ 脉冲激光器 (SHG: 532 nm, Spectra Physics) 和一台钛宝石飞 秒激光器 (Mira 900-F, Coherent) 作为激发光源. 单颗粒样品的共聚焦荧光信号采集通过光学显微 镜聚焦系统输送到 CCD 摄谱系统 (CCD, ACTON, SP2750i, 0.008 nm) 以及 0.75 m 单光栅单色仪和光 电倍增管 PD471 (PMT, ACTON), 最后光谱信号 输送到电脑分析完成. Tektronix TDS 5000B 数字 荧光示波器用于荧光衰减过程的测量记录,荧光照 片通过共聚焦显微镜捆绑Canon 75 600D相机俘 获. 所有的光谱测量均在室温下进行.

3 实验结果与讨论

图 1 为采用水热方法合成的 Yb³⁺/Er³⁺ 掺杂 的三种氟化物晶体的 XRD 图. 三种氟化物样品的 XRD 图谱分别与六方相 NaYF₄(JCPDS No. 28-1192),四方相 LiYF₄(JCPDS No. 17-0874) 和正交 相的 YF₃(JCPDS No. 32-1431) 标准谱一致. 即 当反应溶液的pH值为4.0、氟源为NaF时,制备的样品为六方相的NaYF4结构(图1(a));不改变溶液pH值,当把氟源变为LiF时,制备的样品由六方相的NaYF4结构演变为四方相的LiYF4结构(图1(b)),这与先前的报道一致^[26];当保持LiF氟源不变,仅把溶液的pH值通过加入一定量的稀硝酸调节到2.5时,由于Li⁺离子溶解度的提高而导致制备的氟化物由四方相LiYF4变为正交相的YF3结构(图1(c))^[25].

Fig. 1. XRD patterns of $Yb^{3+}/Er^{3+}(20/2\%)$ codoped NaYF₄(a), LiYF₄ (b) and YF₃ (c) microcrystals. Therein, the pH values of mother solutions are 4.0 (a), (b) and 2.5 (c); the fluorine sources of the solutions are NaF (a) and LiF (b), (c), respectively.

为了研究晶相结构对样品形貌的影响, 对三种 氟化物样品做了SEM表征, 如图2所示. SEM 照 片显示:制备的六方相的NaYF4为微米棒结构, 棒 长和直径分别约为6 μm 和1.5 μm. 而四方相的 LiYF4则显示为八面体结构, 边长大约20 μm. 有 趣的是, 其他水热条件保持不变, 在制备LiYF4微 晶时, 仅将pH 调为2.5, 得到的产品形貌变为长方 体砖形结构, 长宽高分别约为5, 4和12 μm. 以上 结果暗示:调控氟源和溶液 pH 值是一种调控稀土 微纳晶体材料晶相和形貌的有效方法.

图 3 展示了三种基质中各种 Yb³⁺ 掺杂浓度的 上转换荧光发射谱、实色荧光照片和荧光红绿比率. 从图中可以看出, 三种不同基质的上转换荧光材料 均表现出了 Er³⁺ 离子 的特征发射, 各发射峰分别

图 2 Yb^{3+/}Er³⁺(20/2%) 共掺杂的 NaYF₄ (a), LiYF₄ (b) 和 YF₃ (c) 微晶的 SEM 照片,其中,前驱液的 pH 值 分别为 4.0 (a), (b) 和 2.5 (c); 溶液中氟源分别为 NaF (a) 和 LiF (b), (c)

Fig. 2. SEM images of Yb^{3+}/Er^{3+} (20/2%) codoped NaYF₄(a), LiYF₄ (b) and YF₃ (c) microcrystals. Therein, the pH values of mother solutions are 4.0 (a), (b) and 2.5 (c); the fluorine sources of the solutions are NaF (a) and LiF (b), (c), respectively.

对应于Er³⁺离子的²H_{11/2} → ⁴I_{15/2} (520 nm), ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ (550 nm) 和⁴F_{9/2} → ${}^{4}I_{15/2}$ (630— 670 nm) 跃迁^[27-29]. 但实色荧光照片显示荧光 色彩的调控程度不同. 荧光红绿比率图表明在 NaYF4基质中, 红绿比从0.48升高到6.11, 荧光实 色照片从绿色经黄色变到红色. 而通过提升Yb³⁺ 浓度,在LiYF4基质中, 红绿比率从0.16升高到 1.88,荧光实色照片显示为绿色.在YF3 基质中, 红绿比率从1.48升高到4.57,荧光实色照片显色从 黄色到红色.图3研究结果表明:三种基质中,通 过简单的提升Yb³⁺离子浓度, NaYF4基质对光谱 调控的范围更广.

基于研究三种基质中红绿荧光上转换机理的 目的,选择20%的相对较低浓度Yb³⁺掺杂(尽量避 免能量反向传递带来干扰)的三种氟化物单颗粒的 光谱进行谱峰归属和位置对照研究(图4).图4(a) 是三种Yb³⁺/Er³⁺掺杂的氟化物单颗粒在980 nm 激光共聚焦激发下的上转换发射光谱,从图中可以 看出,三种材料均表现出了Er³⁺离子的特征发射, 结合Er³⁺离子能级图(图5),各发射峰分别对应于

图 3 不同 Yb³⁺ 离子浓度时, Yb³⁺/Er³⁺ 离子掺杂的三种基质材料的发射谱、荧光照片及红绿荧光强度比率 (a) NaYF₄ 基质; (b) LiYF₄ 基质; (c) YF₃ 基质; (d) 红绿强度比率图

Fig. 3. The emission spectra, luminescence images and ratios of red to green intensities of Yb^{3+}/Er^{3+} doped three kinds of matrix materials with different Yb^{3+} ion doping concentrations: (a) $NaYF_4$; (b) $LiYF_4$; (c) YF_3 ; (d) red to green intensity ratios.

图 4 源自于 Yb³⁺/Er³⁺ (20/2 mol%) 共掺杂的三种 不同氟化物单颗粒微晶的上转换荧光发射谱 (a) 及其实 色荧光成像照片 (b), 其中, 激发波长和激发功率分别为 980 nm 和 40 mW

Fig. 4. Upconversion luminescence emission spectra derived from Yb^{3+}/Er^{3+} (20/2 mol %) doped three different single particle fluoride microcrystals (a) and their real color luminescence images (b). Therein, the excitation wavelength and the excitation power are 980 nm and 40 mW, respectively.

图 5 Yb³⁺ 和 Er³⁺ 离子能级及相应的上转换荧光的跃迁机理图 Fig. 5. The energy levels and transitions diagram of Yb³⁺ and Er^{3+} ions.

 Er^{3+} 离子的²H_{11/2} \rightarrow ⁴I_{15/2} (520 nm), ⁴S_{3/2} \rightarrow $^4\mathrm{I}_{15/2}~(550~\mathrm{nm})\,\,\mathrm{\ensuremath{\overline{\#}}}\,^4\mathrm{F}_{9/2}\,\rightarrow\,^4\mathrm{I}_{15/2}~(630\text{---}670\text{ nm})$ 跃迁. 对比三种基质的发射谱, 发现谱峰位置基本 保持不变,但斯托克斯能级分裂和谱峰相对强度发 生了明显的变化,导致三种基质中谱带形貌和荧 光峰相对强度均不同. 由图4(b)中三种单颗粒样 品的实色荧光成像图案可以看出,Yb³⁺/Er³⁺掺杂 的YF3长方体砖形微米晶体显示强烈的黄色上转 换荧光, 尤其有趣的是其荧光强度空间分布显示出 了罕见的双扇子形状图案,这种图案可能来源于砖 形微晶障碍物对光的衍射^[30].而Yb³⁺/Er³⁺掺杂 的LiYF4 微米八面体却展现出强烈的绿色上转换 荧光,绿色上转换荧光空间分布轮廓和材料八面体 形貌一致. Yb³⁺/Er³⁺掺杂的NaYF₄微米棒展示 了强烈的绿黄色荧光发射,在激发棒一端条件下基 于波导效应的荧光强度空间分布展示了全亮的哑 铃状图案. 三种基质在同样激发条件下展示了不 同的红绿荧光强度比率. 在YF3基质中, 黄光主控 了上转换荧光发射,在LiYF4基质中,绿色荧光则 主控了荧光发射. 而在 NaYF4 基质中, 红光和绿光 具有相同量级的荧光强度.光谱与实色荧光成像 (图4(b))的测量结果一致,从YF3基质到NaYF4 基质,荧光色彩从黄到绿再到绿黄色转变.

为了进一步揭示上转换机理,测量了 Yb³⁺/Er³⁺共掺杂的三种基质的上转换荧光强 度对功率的函数关系. 众所周知, 在低激发功率密 度激发下,对应于上转换机理的n值代表发射一个 可见或紫外光子需要吸收的红外光子数目. 对于 双光子过程, n 应该等于或接近于2. 对于三光子或 多光子过程, n 值应该大于 2. 图 6 给出了三种样品 中绿光和红光发射强度对激发功率的函数关系,其 中,横轴表示激发功率密度,纵轴表示该功率密度 激发下红色荧光或绿色荧光的积分强度. 图6曲线 的斜率n在三种基质中显示了较大的区别.在YF₃ 和LiYF4 基质中, n 值等于或接近于 2, 暗示了典型 的双光子过程. 而在 NaYF4 基质中, 红光的功率依 赖关系中n值接近于3,暗示了三光子过程,绿光的 功率依赖关系中, n 值稍大于2, 暗示了双光子过程 被三光子过程污染.

图 6 荧光强度与激光功率密度的函数关系 (a) NaYF₄:Yb³⁺/Er³⁺ (20/2 mol%); (b) LiYF₄:Yb³⁺/Er³⁺ (20/2 mol%); (c) YF₃: Yb³⁺/Er³⁺ (20/2 mol%); 绿色荧光源自于 Er³⁺ 离子的 ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ 跃迁, 红色荧光源自于 Er³⁺ 离子的 ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ 跃迁

Fig. 6. Log-log plots of green emission and red emission intensities as a function of excitation power densities with 980 nm excitation from NaYF₄:Yb³⁺/Er³⁺ (20/2 mol%) (a), LiYF₄:Yb³⁺/Er³⁺ (20/2 mol%) (b) and YF₃:Yb³⁺/Er³⁺ (20/2 mol%) (c) microcrystals. Green and red luminescence are derived from ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ and ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ transition, respectively.

在NaYF4基质中, 蓝色荧光的出现也暗示了 三光子上转换荧光过程. 只是在同为双光子过 程的LiYF4和YF3基质中, 为什么荧光分别被绿 色荧光和黄色荧光主控? 为了进一步揭示基质 调控的光谱机理, 我们进一步测试了其荧光动力 学过程. 图7显示了在三种基质中红色和绿色上 转换荧光的动力学衰减过程,图中所有荧光寿命 曲线均由上升和下降两部分组成. 上升部分暗示 了在三种基质中,上转换过程均为能量转移机理. 下降部分为荧光衰减过程,能够用单指数进行拟 合. 从图7 可知, 在三种基质中, 绿色荧光寿命为 $\tau_{G(LiYF_4)} > \tau_{G(YF_3)} > \tau_{G(NaYF_4)}$, 而红色的荧光寿 命为 $\tau_{R(YF_3)} > \tau_{R(LiYF_4)} > \tau_{R(NaYF_4)}$, 我们知道, 上转换荧光寿命由 Yb³⁺离子的激发态能级寿命、 Er^{3+} 离子荧光能级的本征寿命及其中间态能级的 本征寿命共同决定^[27]. 在图7中, 荧光在不同基质 中显示了不同的寿命. 影响荧光寿命的原因是复杂 的, 包括各能级辐射弛豫概率、多声子无辐射弛豫 和能量迁移到猝灭中心的概率等^[18].

基于基质内部各种因素协同调控的荧光宏观 过程导致寿命不同的情形主要有以下三种: 1)在 三种基质中, 上转换荧光过程完全相同, 但三种基 质中,荧光能级的本征寿命不同导致荧光寿命不 同; 2) 在三种基质中, 荧光能级的本征寿命几乎相 同,但上转换过程不同(具有不同中间态和中间态 本征寿命)导致荧光寿命不同; 3)在三种基质中, 荧 光能级本征寿命和上转换过程均不同导致荧光寿 命不同. 荧光强度-功率关系(图6)暗示, 在LiYF4 和YF3基质中,红色和绿色荧光能级过程为传统 的双光子上转换荧光过程, 而在 NaYF4 基质中, 红 绿荧光过程均被三光子上转换过程污染. 也就是 说, 三种基质中, 荧光上转换过程在 NaYF4 基质中 不同于另外两种基质是导致NaYF4 基质中荧光寿 命最小的原因. 事实上, 红色和绿色荧光能级到其 下最邻近能级约3000 cm⁻¹, 三种氟化物基质声子 能量均小于400 cm⁻¹, 依据多声子无辐射弛豫理 论^[31,32].

 $W_{\rm MPR}(\Delta E) = W_{01} e^{(-a\Delta E)}, \qquad (1)$

其中, W_{MPR} 是多声子无辐射弛豫概率, ΔE 是能级间距, $p = \frac{\Delta E}{\hbar\omega_{\text{max}}}$ 是参与此过程的声子阶数, ω 是声子频率, $\hbar\omega_{\text{max}}$ 是基质材料最大声子能量, $a = -\ln(\gamma)/(\hbar\omega)$ 是基质参数, 主要取决于最大基质声子能量. 依据(1)式, 在氟化物体系内, 红色和绿色荧光能级的多声子无辐射弛豫概率很小甚至可以忽略. 对于微米级别尺寸的材料而言, 表面缺陷导致的无辐射弛豫可以忽略. 而Yb³⁺离子激发态荧光能级本征寿命在ms量级, 由基质微扰造成的激发态Yb³⁺荧光寿命的变化也可忽略. 因此, 很容易理解在NaYF4基质中, 荧光能级的中间态(高激发态能级⁴G_{9/2}等)具有较小寿命是导致其荧光能级寿命最小的原因, 这间接支持了NaYF4基质中的三光子上转换机理.

为了进一步探究红色荧光寿命在YF₃和 LiYF₄基质中 $\tau_{R(LiYF_4)} < \tau_{R(YF_3)}$,而绿色荧光 寿命却表现为 $\tau_{G(LiYF_4)} > \tau_{G(YF_3)}$ 的原因,首先 测量三种基质红色和绿色荧光能级的本征荧 光寿命,如图8所示.结果显示红色和绿色能 级的本征荧光寿命在三种基质中分别表现为 $\tau_{RI(NaYF_4)} > \tau_{RI(LiYF_4)} > \tau_{RI(YF_3)}$ 和 $\tau_{GI(NaYF_4)} >$ $\tau_{GI(LiYF_4)} > \tau_{GI(YF_3)}$.该结果表明LiYF₄基质中 荧光寿命应该大于YF₃基质中的荧光寿命,在两 种基质中上转换绿色荧光寿命与下转换本征荧光 寿命的测试结果一致,即本征荧光能级寿命负责在 LiYF₄和YF₃基质中的荧光寿命的相对大小.

图 7 在 980 nm 激光激发下, 三种基质中 Er³⁺ 绿色 (a) 和红色 (b) 荧光的衰减曲线

Fig. 7. Temporal evolutions from green (a) and red (b) luminescence of the Er^{3+} upon excitation at 980 nm.

相对于上转换绿色荧光而言,在980 nm激发 下, 上转换红色荧光的荧光过程要复杂和丰富得 多. 一般认为, 绿色上转换荧光为双光子过程(见 图5), 处于激发态的Yb³⁺离子将能量传递给处 于基态的 Er^{3+} 离子, 使 Er^{3+} 离子由²I_{15/2}跃迁到 ²I_{11/2},处于低激发态²I_{11/2}能级的离子一部分继续 吸收Yb³⁺的传递能量,跃迁到⁴F_{7/2}态,⁴F_{7/2}态 电子快速无辐射弛豫到 $^{2}H_{11/2}$ 和 $^{4}S_{3/2}$ 态上,发射 绿色荧光. 而红色上转换荧光有三光子说和双光 子说. 而对于双光子说, 也有不同的能级布居过程. 基于荧光功率关系显示在YF₃和LiYF₄基质中,红 色荧光为双光子过程,我们重点叙述双光子途径. 布居途径1): 处于激发态的Yb3+离子将能量传递 给处于基态的 Er³⁺ 离子, 使 Er³⁺ 离子由²I_{15/2} 跃 迁到²I_{11/2},处于低激发态²I_{11/2}能级的一部分离 子快速无辐射弛豫到4I13/2态,继续吸收Yb3+的 传递能量直接布居⁴F_{9/2}态,发射红色荧光.布居 途径2): 处于激发态的Yb³⁺离子将能量传递给处 于基态的 Er³⁺ 离子, 使 Er³⁺ 离子由²I_{15/2} 跃迁到 ²I_{11/2},处于低激发态²I_{11/2}能级的离子继续吸收 Yb^{3+} 的传递能量到 ${}^{4}S_{3/2}$ 态, ${}^{4}S_{3/2}$ 态的一部分离 子无辐射弛豫布居⁴F_{9/2}态,发射红色荧光. 在单 一基质中研究红色上转换荧光过程,很难确定其真 实的上转换机理. 基于在两种基质中, 红色荧光能 级的本征寿命在LiYF4基质中大于YF3基质,而上 转换荧光寿命却恰恰相反,因此,根据上转换荧光 衰减寿命由荧光能级本征寿命和中间态寿命共同 决定的理论可以推出,在两种基质中,红色荧光的

上转换过程不同.对应于两种不同的上转换过程, 中间态能级分别为 ${}^{4}I_{13/2}$ 和 ${}^{4}S_{3/2}$,而 ${}^{4}I_{13/2}$ 能级的 寿命远大于 ${}^{4}S_{3/2}$ 态的寿命.因此,可以推断在YF₃ 基质中, ${}^{4}I_{13/2}$ 态为主控红色荧光上转换过程的中 间能级;而在LiYF₄基质中, ${}^{4}S_{3/2}$ 态为主控红色荧 光过程的中间能级.

综上,基于三种基质中不同的上转换机理,很 容易解释三种基质中光谱调控对Yb³⁺离子浓度 的响应不同,多光子上转换过程比双光子光程对 Yb³⁺浓度的响应更敏感;红绿荧光能级的不同布 居路径有利于荧光调控.

4 结 论

通过简单的水热法成功合成了 NaYF4:Yb³⁺/ Er³⁺, YF3:Yb³⁺/Er³⁺ 和 LiYF4:Yb³⁺/Er³⁺ 三种 具有不同晶相和形貌的氟化物微米晶体.利用激光 共聚焦光谱手段证实了基质辅助的上转换荧光光 谱调控.光谱测量结果显示, YF3 基质拥有强烈的 黄色上转换荧光, LiYF4 基质拥有强烈的绿色上转 换荧光.相比其他两种基质, NaYF4 基质中荧光红 绿比率对 Yb³⁺浓度变化更敏感,提升 Yb³⁺浓度 从 5% 到 98%, 上转换荧光输出可以方便地从绿色 到黄色到红色调控.在 NaYF4 基质中, 上转换机理 为三光子过程; 而在 YF3 和 LiYF4 基质中, 上转换 机理为传统的双光子过程, 在此两种基质中, 绿色 荧光源自于相同的上转换过程, 而红色荧光能级却 拥有不同的布居途径和中间态能级.通过对比研究 三种基质的上转换特性和荧光动力学过程, 不仅调 控了上转换光谱形貌和荧光强度的相对比例,而且 提供了一种研究上转换机理的途径.

参考文献

- [1] Zhou B, Shi B, Jin D, Liu X 2015 Nat. Nanotechnol. 10 924
- [2] Kaminskii A A, Lux O, Hanuza J, Rhee H, Eichler H J, Zhang J, Shirakawa A 2014 *Phys. Status Solidi* 251 1579
- [3] Li K, Liu X, Zhang Y, Li X, Lian H, Lin J 2015 Inorg. Chem. 54 323
- [4] Reddy A A, Das S, Goel A, Sen R, Siegel R, Mafra L, Ferreira J M 2013 AIP Adv. 3 022126
- [5] Chen G, Qiu H, Prasad P N, Chen X 2014 Chem. Rev. 114 5161
- [6] Deng R, Qin F, Chen R, Huang W, Hong M, Liu X 2015 Nat. Nanotechnol. 10 237
- [7] Yang D, Hou Z, Cheng Z, Li C, Lin J 2015 Chem. Soc. Rev. 44 1416
- [8] Sun L D, Wang Y F, Yan C H 2014 Acc. Chem. Res. 47 1001
- [9] Gai S, Li C, Yang P, Lin J 2013 Chem. Rev. 114 2343
- [10] Yuan Y, Min Y, Hu Q, Xing B, Liu B 2014 Nanoscale 6 11259
- [11] Chen G, Shen J, Ohulchanskyy T Y, Patel N J, Kutikov A, Li Z, Song J, Pandey R K, Agren H, Prasad P N, Han G 2012 ACS Nano 6 8280
- [12] Chen R, Ta V D, Xiao F, Zhang Q Y, Sun H D 2013 Small 9 1052
- [13] Auzel F 2004 Chem. Rev. 104 139
- [14] Tanabe S, Ohyagi T, Soga N, Hanada T 1992 *Phys. Rev.* B 46 3305

- [15] Li P, Peng Q, Li Y 2009 Adv. Mater. 21 1945
- [16] Zhang X Y, Wang J G, Xu C L, Pan Y, Hou Z Y, Ding J, Cheng L, Gao D L 2016 Acta Phys. Sin. 65 204205 (in Chinese) [张翔宇, 王晋国, 徐春龙, 潘渊, 侯兆阳, 丁健, 程琳, 高当丽 2016 物理学报 65 204205]
- [17] Li X M, Zhang F, Zhao D Y 2013 Nano Today 8 643
- [18] Zhang X, Gao D, Li L 2010 J. Appl. Phys. 107 123528
- [19] Gao D, Zheng H, Tian Y, Cui M, Lei Y, He E, Zhang X 2010 J. Nanosci. Nanotechnol. 10 7694
- [20] Chen G Y, Yang C H, Prasad P N 2013 Acc. Chem. Res. 46 1474
- [21] Gao D, Tian D, Chong B, Li L, Zhang X 2016 J. Alloys Compd. 678 212
- [22] Gao W, Wang R, Han Q, Dong J, Yan L, Zheng H 2015
 J. Phys. Chem. C 119 2349
- [23] Gao D, Tian D, Zhang X, Gao W 2016 Sci. Rep. 6 22433
- [24] Zhang X, Wang M, Ding J, Deng J, Ran C, Yang Z 2014 Dalton Trans. 43 5453
- [25] Zhang X, Wang M, Ding J 2014 RSC Adv. 4 29165
- [26] Zhang X, Wang M, Ding J, Gao D, Shi Y, Song X 2012 CrystEngComm 14 8357
- [27] Gao D, Zhang X, Chong B, Xiao G, Tian D 2017 Phys. Chem. Chem. Phys. 19 4288
- [28] Yang J Z, Qiu J B, Yang Z W, Song Z G, Yang Y, Zhou D C 2015 Acta Phys. Sin. 64 138101 (in Chinese) [杨健 芝, 邱建备,杨正文,宋志国,杨勇,周大成 2015 物理学报 64 138101]
- [29] Gao D, Zhang X, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732
- [30] Gao D, Wang D, Zhang X, Feng X, Xin H, Yun S, Tian D 2018 J. Mater. Chem. C 6 622
- [31] Orlovskii Y V, Reeves R J, Powell R C, Basiev T T, Pukhov K K 1994 Phys. Rev. B 49 3821
- [32] Fong F K, Naberhuis S L, Miller M M 1972 J. Chem. Phys. 56 4020

Effect of host matrix on Yb³⁺ concentration controlled red to green luminescence ratio^{*}

Zhang Xiang-Yu^{1)†} Wang Dan²⁾ Shi Huan-Wen¹⁾ Wang Jin-Guo¹⁾ Hou Zhao-Yang¹⁾ Zhang Li-Dong²⁾ Gao Dang-Li^{2)‡}

1) (College of Science, Chang'an University, Xi'an 710064, China)

2) (College of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China)

(Received 25 August 2017; revised manuscript received 1 January 2018)

Abstract

Rare earth doped upconverting micro/nanoparticles with controlled size and structure, which are excited by nearinfrared light and emit the visible light, possess many applications especially in the areas of biomedicine and photonics devices. There is no universally favored spectral profile in a variety of specific applications. We expect upconversion (UC) nanoparticles with the tunable spectral behavior to meet the demand for actual applications. Although the UC emission wavelengths are strictly limited by the electronic structure of the dopant, the spectral profile could be varied by many factors such as the structure, size, and crystallization. Varying matrix host is the most convenient approach to dynamically tuning UC that is essential for a variety of studies. However, this approach suffers a significant constraint due to insensitive response of most dopant luminescence centers to matrix host. In this paper, a facile EDTA-assisted hydrothermal approach is developed to the shape-selective synthesis of fluoride microcrystals including $NaYF_4$ rods, $LiYF_4$ octahedrons, and YF_3 cuboid brick, by only tuning the pH of the mother liquid. The UC spectra of a series of Yb^{3+}/Er^{3+} -doped fluoride particles with the different shapes and phases are investigated in detail under a near-infrared co-focused laser excitation . The effects of matrix hosts on UC luminescence attributed to the 4f-4f transitions of the Er^{3+} ions in a single particle are amplified through elevating Yb^{3+} concentration. The associated tuning mechanisms are explored by using the power dependent UC luminescence and the temporal evolutions of up/down-conversion emission spectra. Mechanistic investigation reveals that the sensitive response of Er^{3+} UC emission to matrix host stems from maximal use of the various channels populated luminescence levels. It is well known that the population and depopulation of the luminescence levels strongly depend on the excitation power density, the energy level structure of electron, the ratio of the population ions between the two levels, maximum phonon energy and phonon density. The matrix plays the most important role in both the population and depopulation of the luminescence levels mediated by modifying the radiation relaxation probability and non-radiation relaxation probability via varying lattice symmetry and phonon energy. However, the fine modification of the matrix by doping is not always effective to luminescence tuning. In the current study, comparing with $LiYF_4$ and YF_3 matrixes, it is interestingly found that $NaYF_4$ matrix can effectively tune the intensity ratio of red to green luminescence from 0.48 to 6.11 by varying Yb³⁺ concentration from 0 to 98% particle. The result indicates that the multiple aspects in the UC process could be influenced by Yb^{3+} doping $NaYF_4$ matrix structure. We believe that Yb^{3+}/Er^{3+} codoped NaYF₄ matrixes with various Yb^{3+} concentrations will result in applications in displays, biological imaging, chemical sensing and anticounterfeiting.

Keywords: red to green radio, spectral tuning, host matrix, Yb^{3+} concentration

PACS: 42.70.–a, 76.30.kg, 78.55.–m, 78.67.–n

DOI: 10.7498/aps.67.20171894

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11604253, 51771033), the Plan Project of Youth Science and Technology New Star of Shaanxi Province, China (Grant No. 2015KJXX-33), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2016JM5055), the Fundamental Research Fund for the Central Universities, China (Grant Nos. 310812171004, 301812172001), the Provincial Undergraduate Training Program for Innovation and Entrepreneurship, China (Grant No. 1229), and the Undergraduate Scientific Research Training Plan (SSRT) of Xi'an University of Architecture and Technology, China.

[†] Corresponding author. E-mail: xyzhang@chd.edu.cn

[‡] Corresponding author. E-mail: gaodangli@163.com