物理学报 Acta Physica Sinica

Institute of Physics, CAS

飞秒脉冲抽运掺镱微结构光纤产生超连续谱的实验研究

王伟 左玉婷 董婷婷 朱维震 林天旭 徐海东 卿源 韩颖 齐跃峰 侯蓝田

Experimental study of supercontinuum generation in Yb³⁺-doped microstructure fiber pumped by femtosecond pulses

Wang Wei Zuo Yu-Ting Dong Ting-Ting Zhu Wei-Zhen Lin Tian-Xu Xu Hai-Dong Qing Yuan Han Ying Qi Yue-Feng Hou Lan-Tian

引用信息 Citation: Acta Physica Sinica, 68, 134206 (2019) DOI: 10.7498/aps.68.20182051 在线阅读 View online: https://doi.org/10.7498/aps.68.20182051

当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

新型高双折射微结构纤芯光子晶体光纤的可调谐超连续谱的特性研究

Experimental and numerical study of tuneable supercontinuum generation in new kind of highly birefringent photonic crystal fiber 物理学报. 2017, 66(9): 094204 https://doi.org/10.7498/aps.66.094204

温度对飞秒激光脉冲在NaCl溶液中成丝产生的超连续谱的影响

Influence of temperature on supercontinuum generation induced by femtosecond laser filamentation in NaCl solution 物理学报. 2018, 67(18): 184206 https://doi.org/10.7498/aps.67.20180686

掺镱硼酸钙氧钇飞秒激光器及在拉锥光纤中产生跨倍频程超连续光

Generation of octave-spanning super-continuum in tapered single mode fibre pumped by femtosecond Yb:YCOB laser 物理学报. 2015, 64(5): 054206 https://doi.org/10.7498/aps.64.054206

石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波

 $Dark \ pulses \ and \ harmonic \ mode \ locking \ in \ graphene-based \ passively \ mode-locked \ Yb 3+-doped \ fiber \ laser \ with \ all-normal \ dispersion \ cavity$

物理学报. 2015, 64(19): 194205 https://doi.org/10.7498/aps.64.194205

基于固体薄片超连续飞秒光源驱动的高次谐波产生实验

High harmonic generation experiments based on solid-state supercontinuum 物理学报. 2017, 66(13): 134207 https://doi.org/10.7498/aps.66.134207

微结构光纤近红外色散波产生的研究

Study of near-infrared dispersion wave generation for microstructured fiber 物理学报. 2015, 64(3): 034215 https://doi.org/10.7498/aps.64.034215

飞秒脉冲抽运掺镱微结构光纤产生 超连续谱的实验研究^{*}

王伟¹⁾²⁾³⁾ 左玉婷¹⁾²⁾ 董婷婷¹⁾²⁾ 朱维震¹⁾²⁾ 林天旭¹⁾²⁾ 徐海东¹⁾²⁾ 卿源¹⁾²⁾ 韩颖^{1)2)†} 齐跃峰¹⁾²⁾ 侯蓝田¹⁾²⁾

(燕山大学信息科学与工程学院,秦皇岛 066004)
 (河北省特种光纤与光纤传感重点实验室,秦皇岛 066004)
 (南京信息工程大学,江苏省气象探测与信息处理重点实验室,南京 210044)
 (2018年11月19日收到;2019年5月6日收到修改稿)

本文利用钛蓝宝石飞秒激光器抽运自制的掺镱微结构光纤,对微结构光纤中的非线性效应及超连续谱 产生机理进行了实验研究.研究发现,当抽运光偏离 Yb³⁺吸收最高峰 85 nm 时,仍具有较高的发光效率.在 飞秒脉冲抽运下,位于反常色散区的发射光首先被位于正常色散区的抽运光激发、放大并俘获,然后演化为 超短脉冲,随后在微结构光纤中产生非线性效应.微结构光纤1发射光位于零色散波长附近,产生基阶孤子 并在拉曼作用下红移,微结构光纤2发射光位于距离零色散波长较远的反常色散区,产生高阶孤子分裂效应 形成超连续谱,但是1380 nm 处的 OH-吸收限制了超连续谱的进一步展宽.忽略抽运光耦合效率、微结构光 纤损耗等因素的影响,输出光谱中超连续谱的产生效率最高可以达到98%以上,意味着几乎所有的残余抽运 光和发射光均展宽为超连续谱.在0.50 m 长的微结构光纤中,获得了较高的波长转换效率和较宽的超连续 谱.通过拉锥处理,零色散波长发生蓝移,最终产生的超连续谱相在短波处范围展宽,而在长波处范围缩短. 因此利用钛蓝宝石飞秒激光器抽运 Yb³⁺掺杂微结构光纤,可以获得可调谐的超连续谱.

关键词: 掺镱微结构光纤, 超连续谱产生, 波长转换 **PACS**: 42.72.Bj, 42.81.-i, 42.81.Bm, 42.81.Cn

DOI: 10.7498/aps.68.20182051

1 引 言

超连续谱 (supercontinuum, SC) 是指抽运光 经过非线性介质后光谱得到极大展宽的现象,具有 输出光谱宽、亮度高、空间相干性好等特点^[1].而微 结构光纤 (microstructure fiber, MSF) 因兼具色 散可控性及高非线性,成为产生 SC 的有效非线性 介质^[2-4],其所激发出的 SC 在脉冲压缩、光学频率 梳、光学相干层析成像技术、干涉测量仪^[5-8]等方 面均有重要应用.

根据抽运方式的不同,将 SC 的产生方式分为 以下两种. 一种是利用单束光抽运 MSF 产生 SC. 当抽运光位于 MSF 的不同色散区时 SC 的产生机 理有所不同,抽运光位于正常色散区时 SC 的产生 机理以自相位调制作用为主^[9–11],位于反常色散区 时产生机理以高阶孤子分裂、拉曼孤子自频移、色 散波为主^[12–14]. 另一种是抽运光和种子光同时耦 合进活性光纤,利用活性离子的波长转换和放大作 用产生 SC. 活性光纤通常为掺镱微结构光纤

* 国家自然科学基金 (批准号: 61405173, 61735011)、河北省自然科学基金 (批准号: F2016203389) 和江苏省气象探测与信息处理 重点实验室 (批准号: KDXS1107) 资助的课题.

© 2019 中国物理学会 Chinese Physical Society

[†] 通信作者. E-mail: hanyingysu@163.com

(Yb³⁺-doped microstructure fiber, Yb³⁺-MSF), 种 子光在非线性作用下产生 SC, 而 Yb3+吸收抽运光 并放大种子光,使得种子光在光纤中传输时维持较 高峰值功率. 2007年, Roy 等[15]利用 975 nm 的连 续光和 1062 nm 的纳秒脉冲同时耦合进具有双包 层的 Yb³⁺-MSF 中, 种子光在非线性效应的作用下 于正常色散区产生波长范围为 500—900 nm 的 SC. 2016年, Louot 等^[16]利用 980 nm 的连续光 和 1064 nm 的皮秒脉冲同时耦合进 Yb³⁺-DPCF, 产生波长范围为 1064—1600 nm 的 SC 并应用于 CARS 光谱. 2016年, Baselt 等^[17]利用 976 nm 的 连续光和 1064 nm 的纳秒脉冲同时耦合进 Yb3+-MSF,得到平坦、高功率密度的波长范围为1100-1370 nm 的 SC. 2017年, Baselt 等^[18]又建立了微 分效率较高的全光纤 SC 系统并得到波长范围为 1.1—1.4 μm 的 SC. 为保证 Yb³⁺-MSF 的吸收效 率,选择输出波长为 975, 976 或 980 nm 的激光器 作为抽运光源,这些激光器的输出光通常为连续 光,但连续光的峰值功率较低.而为了在较短 MSF 内产生 SC, 需在 MSF 中同时注入种子光以增加 非线性转换效率,但这同时也增加了实验系统的复 杂性. 文献 [19] 证明了可以采用钛蓝宝石飞秒激光 器抽运 Yb3+-MSF 产生 SC, 抽运波长位于 MSF 的正常色散区, Yb3+的发射峰位于 MSF 的反常色 散区,利用飞秒脉冲的高峰值功率,结合 Yb3+的波 长转换和放大的作用产生 SC.

本文首先对自制 Yb³⁺-MSF1 和 Yb³⁺-MSF2 的色散特性进行数值模拟并得到了两 MSFs 的零 色散点波长;然后利用连续光分别抽运两 MSFs, 研究了抽运光偏离 Yb³⁺吸收峰的程度对两 MSFs 发光效率的影响; 接着利用钛蓝宝石飞秒激 光器分别抽运两 MSFs, 研究了抽运功率、发射光 与零色散点的相对位置对超连续谱的影响,以及抽 运波长、MSF长度对超连续谱的影响:最后对 Yb3+-MSF2进行拉锥,对锥区处色散特性变化对 色散波蓝移的影响以及光能量泄露对拉曼孤子红 移的影响进行了研究. 与同时将抽运光与种子光耦 合进 Yb3+掺杂 MSF 的实验方案相比, 采用钛蓝宝 石飞秒激光器作为唯一的抽运源,减小了实验系统 的复杂性,同时还可以利用钛蓝宝石飞秒激光器的 波长可调特性,得到在一定波长范围之内的可调 谐 SC.

2 色散模拟及发射光谱特性研究

2.1 色散模拟

图 1 为自制 Yb³⁺-MSF1 和 Yb³⁺-MSF2 的基 模 色 散 曲 线 图,插 图 (a)和 图 (b)分 别 为两 MSFs 端面图.Yb³⁺-MSF1 和 Yb³⁺-MSF2 纤芯采 用同种掺 Yb³⁺玻璃,纤芯材料的质量百分比为 1.5Yb₂O₃-3.0Al₂O₃-0.5K₂O-95.0SiO₂,用阿贝折射 仪测得在波长 589 nm 处纤芯折射率为 1.519.由 数字显微镜测得 Yb³⁺-MSF1 的空气孔平均直径 为 4.29 μm,平均孔间距为 5.16 μm,纤芯掺杂区域 直径为 3.75 μm,空气孔层数为 8 层,MSF 外径为 153.34 μm.Yb³⁺-MSF2 的空气孔平均直径为 3.78 μm, 平均孔间距为 4.03 μm,纤芯掺杂区域直径为 3.14 μm, 空气孔层数为 8 层,MSF 外直径为 109.69 μm.利 用多极法模拟得到 Yb³⁺-MSF1 和 Yb³⁺-MSF2 的 零色散波长分别位于 1027 和 950 nm 处.

图 1 Yb³⁺-MSF1、Yb³⁺-MSF2 基模色散曲线图 (插图 (a)和(b)分别为Yb³⁺-MSF1,Yb³⁺-MSF2 端面图) Fig. 1. Dispersion curve of the fundamental mode of Yb³⁺-MSF1 and Yb³⁺-MSF2, respectively (the inset figures show the cross section of the Yb³⁺-MSF1 (a) and the Yb³⁺-MSF2 (b)).

2.2 发射光谱特性

图 2 为 Yb³⁺-MSF2 在不同波长的连续光抽运 下测得的发射光谱图,其中实验用 MSF 长度为 0.70 m,功率为0.40 W,波长分别为850,870,890 nm. 图 2 插图中实线和虚线分别表示的是 Yb³⁺在石英 光纤中的吸收和发射截面^[20].由图 2 插图可知, Yb³⁺存在两个强烈的吸收峰,中心波长分别为 915 和 975 nm,同时也可以看出,Yb³⁺的吸收光谱 很宽,波长覆盖 850—1050 nm,Yb³⁺的发射光谱 覆盖 900—1150 nm, 在该区间内也有两个比较明显的发射峰, 中心波长分别位于 975 和 1035 nm 处.

图 2 抽运波长为 850, 870, 890 nm 时 Yb³⁺-MSF2 的发射 光谱图 (插图为 Yb³⁺在石英光纤中的吸收和发射光谱图^[20]) Fig. 2. Emission spectrum of the Yb³⁺-MSF2 when pump wavelength is 850, 870 and 890 nm, respectively (the inset figure shows the absorption and emission spectrum of Yb³⁺ in silica fiber^[20]).

对于 Yb³⁺-MSF2, 当抽运波长由 850 nm 逐渐 增大至 890 nm 时,发射峰的中心波长均位于 1035 nm 处,同时抽运光的峰值在逐渐下降,发射峰峰值逐 渐增高.采用输出光谱中发射光占总光谱面积百分 比 γ 来进行 Yb³⁺的发光效率的定量描述.当抽运 波长由 850 nm 增长至 890 nm 时,其γ值由 46.7% 增至 96.9%,所以当抽运波长为 890 nm 时,虽然 偏离吸收最高峰达 85 nm,但仍然有较高的发光效 率.由图 2 还可得知,当抽运波长从 850 nm 变化 至 890 nm 时,其在 MSF 出射端的光谱并未发生 展宽.这是因为利用连续光抽运 Yb³⁺-MSF 时,发 射光也为连续光,尽管其功率沿 MSF 纵向逐渐积 累,但由于连续光峰值功率低,因此没有明显的非 线性效应产生. Yb³⁺-MSF1 在纤芯区域的掺杂材 料与 Yb³⁺-MSF2 相同, 因此在发射光谱特性上与 图 2 展示的结果相同, 发射峰中心波长同样位于 1035 nm 处, 同时当抽运波长由 850 nm 增至 890 nm 时, 其 γ 值由 45.2% 增至 84.8%, 同样具有较高发 光效率.

3 实验装置

图 3 为飞秒脉冲抽运 Yb3+-MSF 的实验装置 图. 抽运光源为美国 Coherent 公司的 Mira900 钛 蓝宝石飞秒激光器, 其输出光脉冲宽度为 120 fs, 重复率为 76 MHz, 脉冲形状为双曲正割形. 飞秒 脉冲通过隔离器、衰减片及 40 倍透镜耦合进 Yb³⁺-MSF 中. 加入隔离器的目的是防止器件表面 和 MSF 端面反射的光回到激光器内损坏激光器. 衰减片用于调节抽运光平均功率以研究功率对 SC产生的影响.隔离器、衰减片、40倍透镜的透过 率和 Yb³⁺-MSF 端面的反射会造成抽运光功率的 衰减, 40 倍透镜与 Yb3+-MSF 的数值孔径匹配会 造成抽运光的耦合效率降低,通过实验测量抽运光 耦合进 Yb³⁺-MSF 的效率为 60%. MSF 尾端放置 的 CCD 用于观察 Yb³⁺-MSF 中的光场位置以确 认飞秒脉冲是否耦合进纤芯. 从 Yb3+-MSF 尾端出 射的光被二分叉尾纤接收后同时耦合进光谱仪 OSA1和 OSA2, 其中 OSA1 的型号为 Avaspec-256, 接收的波长范围为 200-1100 nm, 分辨率为 0.1 nm, OSA2 的型号为 Avaspec-NIR-256, 接收 的波长范围为 900-2500 nm, 分辨率为 6 nm. 实 验之前已使用卤钨灯对两光谱仪的响应进行了校 准,故连接两光谱仪的光谱可得到 200-2500 nm 的输出光谱.

Fig. 3. The experimental setup.

4 飞秒脉冲抽运 Yb³⁺-MSF1和 Yb³⁺-MSF2的实验结果及分析

4.1 抽运功率、发射光与零色散波长相对 位置对超连续谱产生的影响

图 4和图 5分别为 Yb³⁺-MSF1和 Yb³⁺-MSF2在不同抽运功率下产生的光谱图,其中MSF长度为0.70m,抽运波长为890nm,抽运功率分别为0.10,0.20、0.30,0.40W.图4与图5中的点划线(绿色)、虚线(蓝色)和实线(红色)的位置分别代表了抽运光波长、零色散波长和发射光波长.从图4中可以看出,抽运光均位于两根MSFs的正常色散区,而发射光分别位于Yb³⁺-MSF1的零色散波长附近以及Yb³⁺-MSF2的反常色散区. 插图分别为 CCD 接收到的两 MSFs 光场位置图,从图4可以看出抽运光已经耦合进纤芯.

由图 4 得知,当抽运功率为 0.10 W 时,抽运 光相对于入射光谱来说有了一定程度的展宽,这种 展宽由自相位调制作用产生的. 与图 2 中连续光抽 运情况相比, 位于 1035 nm 的发射光的半高宽并 没有明显变化,这是由于发射光沿 MSF 积累的功 率较弱,并没有非线性效应产生.本实验中,稀土 离子的吸收再发射和超连续谱展宽效应共同参与 飞秒抽运光的能量转移,为了衡量超连续谱产生效 率,同时去除抽运光耦合效率、MSF 损耗等因素的 影响, 定义输出光谱中超连续谱的产生效率 $\eta=$ 1-S_{rp}/S, 其中 S_{rp} 为接收到光谱中的残余抽运光面 积,包含飞秒抽运光和发射光两部分,S为接收到 光谱的总面积. 当抽运功率增加到 0.20 W时, 抽 运光的自相位调制作用进一步增强,但由于波长大 于 870 nm 的部分被 Yb3+完全吸收, 故只观察到 输出端光谱蓝移;对于发射光,其强度随抽运功率 增加而增强,但仍没有明显的非线性效应产生.当 抽运功率增加到 0.30 W时, 在反常色散区出现基 阶孤子. 孤子是反常色散及非线性平衡作用下的结 果,然而抽运光位于正常色散区,所以孤子并非由 抽运光产生, 而是由位于零色散波长附近的发射光 产生, η=87.4%. 与图 2 对比可以发现, 虽然抽运 功率为 0.40 W 的连续光平均功率高于 0.30 W 的 飞秒脉冲,但是利用连续光抽运 MSF 时,并未在 反常色散区产生孤子.因此此处产生孤子的原因可 以解释为: 位于 1035 nm 的发射光在被飞秒脉冲

抽运激发、放大的同时被俘获并演化成超短脉冲, 尽管飞秒脉冲平均功率较低,但是其峰值功率很高,可于反常色散区在非线性作用下产生基阶孤 子.基阶孤子在拉曼作用下红移至1112 nm,与此 同时,在满足相位匹配条件的相应波长下产生色散 波并蓝移至 692 nm.当抽运功率增加至 0.40 W 时,拉曼孤子进一步红移至 1256 nm,并伴随着色 散波蓝移至 621 nm, η达到 93.5%.

图 4 抽运功率分别为 0.10, 0.20, 0.30, 0.40 W 时 Yb³⁺⁻MSF1产生的光谱图 (插图为光场位置图) Fig. 4. The optical spectrum of Yb³⁺-MSF1 when pump power is 0.10, 0.20, 0.30 and 0.40 W, respectively (the inset figure shows optical field position).

由图 5 可知, 当抽运功率为 0.10 W 时, Yb³⁺⁻MSF2 产生现象与 Yb³⁺⁻MSF1 类似, 只有抽运光 在一定程度上发生了展宽, 在反常色散区的发射光 谱并未出现明显展宽. 当抽运功率增加至 0.20 W 时, 发射光在反常色散及非线性效应的共同作用下 产生中心波长为 1111 nm 的基阶孤子及 761 nm 的色散波, η=83.3%. 当抽运功率增加至 0.30 W 时, 在反常色散区产生高阶孤子并分裂成多个基阶 孤子, 各基阶孤子在拉曼作用下发生红移, 同时在 满足相位匹配条件的波长处产生色散波并发生蓝 移, 在正常色散区由于自相位调制、色散波的作用 得到 645—878 nm 的 SC. 当抽运功率增加至 0.40 W时,拉曼孤子进一步红移,在反常色散区由于高 阶孤子分裂、拉曼孤子自频移的作用使得光谱展宽 合并得到 1016—1346 nm 的 SC, 在正常色散区 SC的蓝移边缘进一步蓝移至 623 nm 处. 上述两 种情况, η 均大于 98%. 由于自制的 Yb³⁺-MSF 并 未进行脱水处理,使得位于1380 nm 处的 OH 吸 收限制了拉曼孤子的红移以及色散波的蓝移,进而 影响了 SC 的展宽. 另外, 由于 Yb³⁺的强吸收作用 使得频谱分为两部分.对比图 4 及图 5 可以发现, Yb3+-MSF1的发射光位于零色散波长附近,利用 飞秒脉冲抽运 Yb³⁺-MSF1 时产生孤子效应; 而相 较于 Yb3+-MSF1 和 Yb3+-MSF2 的纤芯较小, 非 线性系数较大,且发射光位于距离零色散波长较远 的反常色散区,利用飞秒脉冲抽运 Yb3+-MSF2 时 更容易产生高阶孤子分裂效应得到 SC, 因此具有 更高的超连续谱产生效率.

图 5 抽运功率分别为 0.10, 0.20, 0.30, 0.40 W时 Yb³⁺-MSF2 产生的光谱图 (插图为光场位置图) Fig. 5. The optical spectrum of Yb³⁺-MSF2 when pump

power is 0.10, 0.20, 0.30 and 0.40 W, respectively (The inset figure shows optical field position).

图 6 和 图 7 分 别 为 Yb³⁺-MSF1 和 Yb³⁺-

MSF2在不同抽运波长下产生的光谱图,其中, MSF 长度为 0.70 m, 抽运功率为 0.40 W, 抽运波 长分别为 850, 870, 890 nm. 由图 6 可知, 当抽运 波长从 890 nm 蓝移至 870 nm 时, 拉曼孤子中心 波长从 1256 nm 移至 1161 nm, 色散波中心波长 从 621 nm 移至 662 nm, 这是由于抽运波长偏离 Yb³⁺吸收峰的程度增加, 使得 Yb³⁺吸收能力降低, 发射光沿程积累的功率较低,导致拉曼孤子的能量 较弱, 进而限制了孤子的红移以及色散波的蓝移; 而当抽运波长为 850 nm 时, Yb³⁺吸收效率更低, 使得发射光的功率更弱, 未产生孤子及色散波. 当 抽运波长为 850 和 870 nm 时, η 分别为 65.2% 和 91.9%.

图 6 抽运波长分别为 850, 870, 890 nm 时 Yb³⁺-MSF1 产 生的光谱图

Fig. 6. The optical spectrum of Yb³⁺-MSF1 when the pump wavelength is 850, 870 and 890 nm, respectively.

由图 7 可知,当抽运波长从 890 nm 变化至 870 nm 时, Yb³⁺-MSF2 的 SC 红移边缘从 1346 nm 移至 1249 nm, 蓝移边缘从 623 nm 移至 670 nm; 当抽运光为 850 nm 时, 在反常色散区没有非线性 效应,在正常色散区仅由于抽运光自相位调制的作 用使得光谱展宽至 771 nm. 结合图 6 及图 7 可知, 抽运光的吸收效率对于 SC 的产生极其重要, 当抽 运光波长靠近 Yb3+吸收峰时,两 MSFs 吸收效率 高,发射光积累的功率强,Yb3+-MSF1产生的拉曼 孤子红移距离远, Yb³⁺-MSF2 产生的 SC 范围宽. 同时还可得知,抽运波长可不必位于 Yb3+吸收峰 处,当抽运波长位于偏离吸收最高峰85 nm的890 nm 时, MSF仍有较高的吸收和发射效率, 并产生较宽 范围的 SC, 在抽运波长为 850 和 870 nm 时的 η分别为 65.3% 和 95.2%, 略高于 Yb³⁺-MSF1. 虽 然受本实验室激光器的限制,飞秒脉冲波长仅能调

至 890 nm, 但目前商用钛蓝宝石飞秒激光器的输 出波长可覆盖 660—1200 nm, 以钛蓝宝石飞秒激 光器作单抽运源, 结合超短脉冲高峰值功率和波长 可调谐特性对输出光谱进行灵活调节得到可调谐 SC, 利用飞秒脉冲抽运 Yb³⁺-MSF 是一种非常有 前景的 SC 产生方式.

图 7 抽运波长分别为 850, 870, 890 nm 时 Yb³⁺-MSF2 产 生的光谱图

Fig. 7. The optical spectrum of Yb³⁺-MSF2 when the pump wavelength is 850 and 890 nm, respectively.

4.3 MSF 长度对超连续谱产生的影响

图 8 和 图 9 分 别 为 Yb³⁺-MSF1 和 Yb³⁺-MSF2 在不同 MSF 长度下产生的光谱图,其中, 抽运波长为 890 nm, 抽运功率为 0.40 W, MSF 长 度分别为 0.50 和 0.70 m. 从图 7 中可知,当 MSF 长度从 0.70 m 缩短至 0.50 m 时, Yb³⁺-MSF1 产 生的拉曼孤子中心波长从 1256 nm 移至 1102 nm, 色散波中心波长从 621 nm 移至 692 nm; Yb³⁺-MSF2 产生的 SC 红移边缘从 1346 nm 移至 1254 nm, 蓝移边缘从 623 nm 移至 661 nm. 分析其原因为:

图 8 MSF 长度为 0.50, 0.70 m 时 Yb³⁺-MSF1 的光谱图 Fig. 8. The optical spectrum of Yb³⁺-MSF1 when fiber length is 0.50 and 0.70 m, respectively.

MSF长度缩短使得 Yb³⁺作用距离缩短,发射光沿程积累的功率较弱,导致 Yb³⁺-MSF1 拉曼孤子红移距离及色散波蓝移距离减小, Yb³⁺-MSF2 产生的 SC 范围减小.

图 9 MSF 长度为 0.50, 0.70 m 时 Yb³⁺-MSF2 的光谱图 Fig. 9. The optical spectrum of Yb³⁺-MSF2 when fiber length is 0.50 and 0.70 m, respectively.

5 锥形 Yb³⁺-MSF2 色散模拟及结果 分析

5.1 色散模拟

拉锥可改变 MSF 的色散特性^[21], 但同时也会 产生光泄露, 为研究这些特性变化对 SC 产生的影 响, 本文对 Yb³⁺-MSF2 进行拉锥, 研究在不同锥 长下锥区处的色散变化及光泄露对 SC 产生的影 响. 当拉锥长度分别为 3, 5, 7 mm 时, 测得 Yb³⁺-MSF 锥腰处的直径分别为 81.08, 51.83, 35.62 µm, 相当于未拉锥 Yb³⁺-MSF 直径的 0.74, 0.48, 0.32 倍, 锥腰处的孔间距、空气孔直径及纤芯掺杂区域直径 均等比缩小. 图 10 为模拟得到的未拉锥 Yb³⁺-

图 10 未拉锥及锥形 Yb³⁺-MSF2 锥腰处的色散曲线图 Fig. 10. Dispersion curve of untapered Yb³⁺-MSF2 and tapered Yb³⁺-MSF2 at the taper waist.

MSF2及不同锥长 Yb³⁺-MSF 锥腰处的色散曲线 图,随着拉锥长度增加,零色散波长从 950 nm 蓝 移至 855,725,659 nm 处,当锥长为 7 mm 时在 1890 nm 出现第二个零色散点.

5.2 飞秒脉冲抽运锥形 Yb³⁺-MSF2 时的 实验结果及分析

图 11 为 Yb³⁺-MSF2 拉锥前后产生 SC 的光 谱图,其中抽运波长为 890 nm,抽运功率为 0.40 W, 拉锥前 Yb³⁺-MSF2 长度为 0.50 m,锥长分别为 3, 5,7 mm,锥腰距离 Yb³⁺-MSF 前端约 0.20 m.图 11 中的点划线 (绿色) 和实线 (红色)表示抽运光和发 射光的波长位置,而虚线 (蓝色) 为未拉锥 Yb³⁺-MSF 及锥形 MSF 锥腰处的零色散波长位置.当 Yb³⁺-MSF 拉锥后,MSF 的长度和非线性系数会 有一定的增加,但是同样会在锥区引入较大的损 耗,使得抽运光的能量产生泄露,同时因为锥区较 短,抽运光不能得到充分吸收,从而影响到抽运光 的转化效率.另外,锥区的零色散波长向短波方向 移动,使得抽运光位于锥区的反常色散区,与拉曼 孤子满足相位匹配条件的色散波波长发生蓝移,从

图 11 Yb3+-MSF2 拉锥前后光谱图

Fig. 11. Dispersion curve untapered and tapered $\rm Yb^{3+-}MSF2$ of the fundamental mode.

而使得短波处 SC 展宽, 而拉锥长度越长, 锥腰处 零色散波长越小, 短波处 SC 展宽越宽. 从图 11 也可以看出, 随拉锥长度的增加, SC 的红移边缘 从 1254 nm 分别移至 1243, 1177, 1159 nm, 长波 处的 SC 范围有所缩短; 但 SC 的蓝移边缘分别从 661 nm 移至 624, 563, 525 nm, 短波处的 SC 范围 增加.

6 结 论

本文利用钛蓝宝石飞秒激光器抽运自制 Yb³⁺-MSF 产生超连续谱并研究其产生机理. 利用 连续光抽运 Yb³⁺-MSF1 和 Yb³⁺-MSF2 时,两 MSFs 的发射峰均位于 1035 nm; 随着抽运光偏离 Yb3+吸收峰的程度增加,两 MSFs 的发光效率减 小. 但当抽运波长为 890 nm 时, Yb3+-MSF1 和 Yb³⁺-MSF2 均有较高的发光效率, 分别为 84.8% 和 96.9%. 利用波长为 890 nm, 功率为 0.40 W 的 飞秒脉冲抽运两 MSFs 时,发射光首先被抽运光激 发、放大并俘获,然后演化成超短脉冲,最后产生 非线性效应. Yb3+-MSF1 的发射光位于零色散波 长附近,利用飞秒脉冲抽运 Yb3+-MSF1 时产生基 阶孤子并在拉曼作用下红移至1256 nm,同时色散 波蓝移至 621 nm; 对于 Yb3+-MSF2, 其纤芯较小、 非线性系数较高,而且其发射光位于反常色散区, 利用飞秒脉冲抽运 Yb3+-MSF2 时更容易产生高阶 孤子分裂效应,在反常色散区及正常色散区分别得 到波长范围为 1016—1346 nm 及 623—878 nm 的 超连续谱,而由于 Yb³⁺的吸收作用使得光谱分为 两部分,又由于1380 nm 处的 OH 吸收限制了超 连续谱的进一步展宽. 稀土离子的吸收再发射和 SC 展宽效应共同参与飞秒抽运光的能量转移,为 了衡量 SC 产生效率,同时去除抽运光耦合效率、 光纤损耗等因素的影响, Yb3+-MSF1 和 Yb3+-MSF2 的输出光谱中 SC 的产生效率最高可以达到 98% 以上. 对 Yb3+-MSF2 进行拉锥后, 锥腰处的 光泄露造成拉曼孤子的能量减小,导致长波处超连 续谱范围缩短, 随拉锥长度增加, 超连续谱红移边 缘从 1254 nm 移至 1159 nm, 而拉锥会令锥腰处 的零色散波长减小,与拉曼孤子满足相位匹配条件 的色散波波长蓝移,从而使得短波处超连续谱展 宽,随拉锥长度增加,超连续谱蓝移边缘从 661 nm 移至 525 nm. 实验证明拉锥有利于光谱向短波方

向展宽.

参考文献

- [1] Alfano R R, Shapiro S L 1970 Phys. Rev. Lett. 24 584
- [2] Ranka J K, Windeler R S, Stentz A J 2000 Opt. Lett. 25 25
- [3] Hartl I, Li X D, Chudoba C, Ghanta R K, Ko T H, Fujimoto J G, Ranka J K, Windeler R S 2001 Opt. Lett. 26 608
- [4] Hu M L, Wang Q Y, Li Y F, Wang Z, Zhang Z G, Chai L, Zhang R B 2004 Acta Phys. Sin. 53 4243 (in Chinese) [胡明 列, 王清月, 栗岩峰, 王专, 张志刚, 柴路, 章若冰 2004 物理学报 53 4243]
- [5] Konorov S, Zheltikov A 2003 Opt. Express 11 2440
- [6] Wang Z X, Liu J S, Li R X, Xu Z Z 2009 Opt. Express 17 13841
- [7] Moeser J T, Wolchover N A, Knight J C, Omenetto F G 2007 Opt. Lett. 32 952
- [8] Meng F, Cao S Y, Cai Y, Wang G Z, Cao J P, Li T C, Fang Z J 2011 Acta Phys. Sin. 60 125 (in Chinese) [孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军 2011 物理学报 60 125]
- [9] Chen Y Z, Xu W C, Cui H 2003 Acta Opt. Sin. 23 000297 (in Chinese) [陈泳竹, 徐文成, 崔虎 2003 光学学报 23 000297]
- [10] Li S G, Cheng T L, Zhang H P, Hou L T 2008 Chinese J. Lasers 35 1041 (in Chinese) [李曙光, 程同蕾, 张焕平, 侯蓝田 2008 中国激光 35 1041]
- [11] Alexander M H, Alexander H, Gurthwin W B, Patrizia K,

Erich G R, Heinrich S, Hartmut B 2011 Opt. Express 19 3775
[12] Jinendra K R, Robert S W, Andrew J S 2000 Opt. Letters 25 796

- [13] Han Y, Hou L T, Zhou G Y, Yuan J H, Xia C M, Wang W, Wang C, Hou Z Y 2012 Chin. Phys. Lett. 29 54208
- [14] Minkovich V P, Pereira M V, Villatoro J, Evgeny M, Alexander B S, Ivan S D, María A I, Joseba Z 2016 J. Lightwave Technol. 34 4387
- [15] Roy A, Auguste J L, Leproux P, Auguste J L, Couderc V 2007 J. Opt. Soc. Am. B 24 788
- [16] Louot C, Shalaby B M, Capitaine E, Hilaire S, Leproux P, Pagnoux D, Couderc V 2016 *IEEE Photonic. Tech. L.* 28 2011
- [17] Baselt T, Taudt C, Nelsen B, Lasagni A F, Hartmann P 2016 Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications XV San Francisco, California, United States, February 13—18, 2016 97310L
- [18] Baselt T, Taudt C, Nelsen B, Lasagni A F, Hartmann P 2017 Nonlinear Frequency Generation and Conversion: Materials and Devices XVI San Francisco, California, United States, January 28— February 2, 2017 100880E
- [19] Wang W, Meng F C, Qing Y, Qiu S, Dong T T, Zhu W Z, Zuo Y T, Han Y, Wang C, Qi Y F, Hou L T 2018 Chin. Phys. Lett. 35 104202
- [20] Paschotta R, Nilsson J, Tropper A C, Hanna D C 2001 IEEE J. Quantum Elect. 33 1049
- [21] Leon-Saval S G, Birks T A, Wadsworth W J, Russell P St J 2004 Opt. Express 12 2864

Experimental study of supercontinuum generation in Yb^{3+} doped microstructure fiber pumped by femtosecond pulses^{*}

Wang Wei $^{(1)2)3}$ Zuo Yu-Ting $^{(1)2)}$ Dong Ting-Ting $^{(1)2)}$ Zhu Wei-Zhen $^{(1)2)}$ Lin Tian-Xu $^{(1)2)}$ Xu Hai-Dong $^{(1)2)}$ Qing Yuan $^{(1)2)}$ Han Ying $^{(1)2)\dagger}$ Qi Yue-Feng $^{(1)2)}$ Hou Lan-Tian $^{(1)2)}$

1) (School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China)

2) (Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Qinhuangdao 066004, China)

3) (Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and

Technology, Nanjing 210044, China)

(Received 19 November 2018; revised manuscript received 6 May 2019)

Abstract

The nonlinear effects and supercontinuum generation by the concept of wavelength conversion and amplification are experimentally studied in two Yb^{3+} -doped microstructure fibers (Yb^{3+} -MSFs), with the Ti:

* Supported by the National Natural Science Foundation of China (Grant Nos. 61405173, 61735011), the Natural Science Foundation of Hebei Province, China (Grant No. F2016203389), and the Open Subject of Jiangsu Key Laboratory of Meteorological Observation and Information Processing, China (Grant No. KDXS1107).

 $[\]dagger~$ Corresponding author. E-mail: hanyingysu@163.com

sapphire femtosecond pulses used as pump. Firstly, two Yb³⁺-MSFs are pumped by continuous wave separately to obtain the emission spectrum. The relationship between the luminous efficiency and the deviation of pump light from the Yb^{3+} absorption peak is studied for each of the two fibers. The experimental results indicate that the luminous efficiency decreases as the deviation increases. However, both fibers still have high luminous efficiency even when the deviation reaches to 85 nm. Secondly, the supercontinuum spectrum is generated by the femtosecond laser pumping the cores of the two fibers. The influence of the pump power, relative position between emission light and zero-dispersion wavelength λ_0 , pump wavelength and fiber length on the supercontinuum generation are studied. The results demonstrate that the amplified emission light at 1035 nm is first captured by the pump light to evolve into ultrashort pulse, and nonlinear effects are subsequently generated. As the pump power increases, for Yb³⁺-MSF1 whose λ_0 is located near the emission light of Yb³⁺ irons, the fundamental soliton is generated and further shifts toward red region under Raman effect. Compared with Yb³⁺-MSF1, the Yb³⁺-MSF2 has a small core, which means that its λ_0 is short and the emission light is located in its anomalous dispersion region far from the λ_0 . Experimental results reveal that higher-order soliton and soliton fission are more likely to happen and supercontinuum spectrum can be formed. However, the further broadening of the supercontinuum spectrum is limited by OH- absorption at 1380 nm. Either increasing the deviation of pump light from the Yb^{3+} absorption peak or shortening the fiber length reduces the accumulated power of the emission light, so the experimental results show that red-shift of Raman soliton is reduced and the supercontinuum spectrum is narrowed for both fibers. The supercontinuum generation efficiency in the output spectrum can reach 98% when the effect of pump light coupling efficiency and microstructure fiber loss are neglected. It means that almost all the residual pump light and emission light of Yb³⁺ contribute to the generation of supercontinuum. Finally, the Yb³⁺-MSF2s are tapered to different taper lengths to study their influence on supercontinuum generation. The results indicate that the leakage after tapering weakens the energy of the Raman soliton, which further results in the decrease of red-shift. Eventually, the red edge of supercontinuum spectrum shrinks seriously with the increase of the taper length. However, the decreasing of λ_0 at the taper waist leads to blue-shift of dispersive wave that satisfies the phase matching condition with Raman soliton. This contributes to the blue-shift of the short wavelength boundary and widens the range of supercontinuum spectrum at short wavelength. Therefore, tapering is a promising method of expanding supercontinuum spectrum towards short wavelength. In conclusion, the supercontinuum spectrum is generated in Yb^{3+} -doped microstructure fiber pumped by the Ti: sapphire femtosecond laser. The output spectrum can be adjusted flexibly by combining the merit of high peak power and wavelength tunability of Ti: sapphire femtosecond laser and the characteristics of wavelength conversion and amplification of Yb^{3+} irons. Thus, the method presented in the paper provides a promising way to obtain tunable supercontinuum spectrum.

Keywords: Yb^{3+} -doped microstructure fiber, supercontinuum generation, wavelength conversion

PACS: 42.72.Bj, 42.81.-i, 42.81.Bm, 42.81.Cn

DOI: 10.7498/aps.68.20182051