# 物理学报 Acta Physica Sinica



考虑对流和扩散两种动力学起源的连续时间随机行走模型

杨晓荣 王琼 叶唐进 土登次仁

Continuous time random walk model with advection and diffusion as two distinct dynamical origins Ye Tang-Jin Yang Xiao-Rong Wang Qiong **Tudeng Ci-Ren** 引用信息 Citation: Acta Physica Sinica, 68, 130501 (2019) DOI: 10.7498/aps.68.20190088 在线阅读 View online: https://doi.org/10.7498/aps.68.20190088

当期内容 View table of contents: http://wulixb.iphy.ac.cn

# 您可能感兴趣的其他文章

## Articles you may be interested in

广义Fibonacci时间准周期量子行走波包扩散的动力学特性

Dynamic behaviors of spreading in generalized Fibonacci time quasiperiodic quantum walks 物理学报. 2016, 65(16): 160501 https://doi.org/10.7498/aps.65.160501

逾渗分立时间量子行走的传输及纠缠特性

Properties of distribution and entanglement in discrete-time quantum walk with percolation 物理学报. 2017, 66(13): 130303 https://doi.org/10.7498/aps.66.130303

非线性阻尼驱动的莱维飞行动力学性质

Dynamical mechanism of L é vy flight driven by the nonlinear friction 物理学报. 2016, 65(16): 160502 https://doi.org/10.7498/aps.65.160502

电感电流伪连续导电模式下Buck变换器的动力学建模与分析

Dynamical modeling and analysis of buck converter operating in pseudo-continuous conduction mode 物理学报. 2015, 64(18): 180501 https://doi.org/10.7498/aps.64.180501

## 基于相位匹配的量子行走搜索算法及电路实现

Quantum walk search algorithm based on phase matching and circuit emplementation 物理学报. 2015, 64(24): 240301 https://doi.org/10.7498/aps.64.240301

二维随机蜂巢网格熔断动力学过程和熔断面标度性质的数值模拟

Numerical simulation of melting dynamic process and surface scale properties of two-dimensional honeycomb lattice 物理学报. 2019, 68(5): 050301 https://doi.org/10.7498/aps.68.20181774

# 考虑对流和扩散两种动力学起源的 连续时间随机行走模型\*

杨晓荣1)† 王琼1) 叶唐进2) 土登次仁1)

(西藏大学理学院,拉萨 850000)
 (西藏大学工学院,拉萨 850000)
 (2019 年 1 月 17 日收到; 2019 年 4 月 9 日收到修改稿)

本文建立了考虑两种动力学起源的连续时间随机行走模型,特别是在模型中明确区分了对流和扩散两种因素对粒子输运过程的影响.通过改变各因素的相对权重,描述了从正常输运到反常输运的过渡,并建立了相应的输运方程.该模型成功描述了复杂孔隙介质中溶质输运过程随着 Péclet 数的变化而经历的定性改变.

关键词:动力学起源,连续时间随机行走,反常输运,宏观输运方程
 PACS: 05.40.Fb, 05.60.Cd, 47.56.+r
 DOI: 10.7498/aps.68.20190088

# 1 引 言

近年来,反常输运的研究受到了极大的关注. 人们发现在很多地质和生物系统中广泛存在反常 输运现象并提出了相应的研究模型[1-9]. 与经典的 正常输运过程不同,反常输运通常表现出1)非高 斯的传播子,以及可能带来的2)粒子均方位移与 时间的非线性标度关系.比如,一系列研究孔隙介 质中示踪剂粒子输运过程的实验和数值模拟结 果<sup>[10-13]</sup>表明:当 Péclet 数 (Pe) 较大时,即对流相 比于扩散对粒子输运行为的影响重要得多时,上述 两种反常性质其实是"正常"的,它们是一般孔隙介 质输运过程的"典型"特征. 近期的研究表明这种反 常输运的典型性是流体动力学与孔隙结构耦合的 结果[14-17]. 由于边界层的影响, 孔隙介质的壁面附 近存在较大的速度梯度,引起了非均匀的空间速度 分布,而孔隙空间的结构复杂性加剧了速度分布的 异质性. 当流场对输运过程起主要影响, 并且流场 的速度分布具有强烈的异质性时, 粒子的输运行为 将严重偏离经典的对流扩散方程所做出的预测,出现反常行为.反之,当Pe变小,即扩散的作用变得大于对流的作用时,上述的反常现象逐渐消失,粒子的输运行为表现为正常的,可以由达西尺度的对流扩散方程描述,同时传播子为高斯型,且粒子的均方位移与时间呈线性标度关系<sup>[18-20]</sup>.

由此可以看出:当孔隙介质结构给定时,对流 与扩散作用的相对重要性变化可以引起输运性质 的定性改变<sup>[13,17]</sup>.本文的目的即是对这种改变进行 初步探索,提出理论上的定性和半定量 (如均方位 移与时间的标度指数)理解.本文的结果对于地下 水污染物运移行为的认识、模拟以及预测具有一定 的理论和现实意义.

2 考虑对流和扩散两种动力学起源的连续时间随机行走模型

#### 2.1 建模原则

采取经典的连续时间随机行走模型对孔隙介 质中的输运过程进行建模.之前的工作表明该模型

<sup>\*</sup> 国家自然科学基金(批准号: 11465017)资助的课题.

<sup>†</sup> 通信作者. E-mail: xzdxyr@sina.com

<sup>© 2019</sup> 中国物理学会 Chinese Physical Society

可以成功描述一系列反常输运过程,包括有机大分 子在细胞内的扩散过程,以及溶质分子在孔隙介质 中的输运等. 对于我们感兴趣的岩土介质中的输运 过程,近年来发展起一种新的技术,即对岩土孔隙 介质进行扫描,并对扫描图像进行处理得到相应的 孔隙空间.在孔隙空间上,人们可以进行流体动力 学模拟,直接求解 Navier-Stokes 方程和对流扩散 方程来考察输运过程[13,17];或者可以进一步对孔隙 空间进行简化抽象,将其看成一个网络,这样可以 利用复杂网络研究的一些结果考察网络结构对输 运性质的影响[21]. 对于前者, 人们发现连续时间随 机行走模型可以成功解释观察到的输运现象;对于 后者,孔隙网络提供了一个天然的框架,把经典的 建立在规则晶格上的连续时间随机行走模型推广 到网络上. 孔隙网络中的节点为较大的"孔", 而连 边为相对狭长的"喉道". 孔隙空间的结构, 特别是 孔和喉道的形成与具体的物理过程相关. 比如对于 典型的沉积岩, 孔喉的形成是颗粒物质沉降后在长 期的地质作用下形成的,不同类型岩石的孔隙结构 也有不同的特征.图1给出了取自拉萨周围地区的 一块岩心样本的 CT 扫描图像, 以及相应的孔隙空 间. 通过这些图像信息, 可以建立相应的孔隙网络. 我们发现连续时间随机行走理论仍然可以对网络 上的输运性质进行解释.关于这方面的具体数值模 拟结果我们将在另外的工作中报道,本文主要讨论 与此相关的理论建模方面的问题.



图 1 拉萨周边地区某岩心样本的 CT 扫描图像 (左) 及 其对应的孔隙空间 (右)

Fig. 1. Left: Micro-CT image of a rock sample from Lhasa; Right: the corresponding pore space extracted from the left image.

在孔隙网络上,粒子从一个节点向另一个相邻 节点进行跳跃,相邻两次跳跃的空间位移矢量为相 应的连边,而时间间隔物理上等于粒子通过该连边 所需要的时间.统计上看,粒子的跃迁过程是随机 的,由两个概率密度分布函数决定:一个为位移矢 量的分布,包括位移大小和方向,另一个为等待时 间分布 ω(t).本文不考虑前者可能带来的反常结 果,如 Lévy 飞行<sup>[6,7]</sup>,因为当孔隙介质不存在宏观 天然裂缝的时候,不会出现长距离的输运.因此只 考虑后者可能带来的影响.众所周知,理论上当等 待时间的一阶矩发散,或者一阶矩有限而二阶矩发 散时,会出现反常输运现象<sup>[4,18]</sup>.生物大分子在细 胞内的反常扩散是第一种情况的典型代表;而在存 在对流的情况下孔隙介质中的溶质输运过程是后 者的典型代表.在此过程中,粒子的输运过程明显 受到对流和扩散的共同影响,具有双重的动力学起 源,但是在传统的连续时间随机行走模型中,等待 时间分布并未区分这两者分别的影响,从而物理意 义不是特别明确,无法用于考察对流和扩散两种机 制对输运过程影响的区别.

基于此,本文发展了经典的连续时间随机行走 模型[3,4],在等待时间分布中明确引入了对流和扩 散对粒子跃迁过程的影响. 为了引入等待时间分 布,我们先考虑复杂孔隙介质中的流速场分布.假 设孔隙介质的复杂结构可以使得流速场足够"随 机"(通常是可以接受的),并且我们主要关注的是 宏观压力降方向的输运过程,那么可以考虑速度绝 对大小的分布 f(v). 对于一个局域特征长度 lc, 粒 子跃迁该长度所需要的时间是  $t = \frac{l_c}{v}$ . 不失一般 性, 令  $l_{e} = 1$ , 以此定义粒子的等待时间, 则有  $\omega\left(t\right) = f\left(\frac{1}{t}\right) \left|\frac{\mathrm{d}v\left(t\right)}{\mathrm{d}t}\right| = f\left(\frac{1}{t}\right)t^{-2}.$  注意该公式实 际上考虑的是 Pe 为无穷大的情况下等待时间的分 布,即只考虑对流,并没有考虑扩散的影响.然而 数值计算的结果表明,当 Pe 增加到一定程度时, 即对流相对于扩散的作用强到一定程度时,该幂律 分布即可以达到很好的近似[17]. 文献中一般以此 时的 ω(t) 分布来分析反常输运的均方位移随时间 变化的幂律指数. 但粒子实际上同时受到对流和扩 散作用的影响,一般来说,速度大小的概率分布式 是比较复杂的,并且显式依赖于流场的边界条件、 孔隙结构、温度、流体黏度等. 但在此并不关注其 可能的精确表达式,而是研究在一阶近似下这些可 能的分布函数的共性特征.为此,作为对经典模型 的一个直接推广,本文把 f(v) 写成一个混合模型的 形式:

$$f(v) = a_1 f_1(v) + a_2 f_2(v),$$

其中  $a_1 \ge 0$ ,  $a_2 \ge 0$ , 且  $a_1 + a_2 = 1$ ,  $f_1$  为对流引

起的粒子跃迁速度大小的概率密度分布函数,而 ƒ2为由扩散引起的粒子跃迁速度大小的概率密度 分布函数.该模型形式上区分了对流和扩散的不同 影响,在物理上,不同的输运机制体现为ƒ1和ƒ2统 计性质的定性区别.对流和扩散对输运过程的相对 影响力体现在权重因子 a1和 a2上.当 a1→1,对流 起主导作用;当 a2→1,扩散起主导作用.考虑到基 于对流与基于扩散的输运过程呈现出定性上完全 不同的特点,本文在一阶近似下把总的速度分布写 成这两种因素的线性叠加,这就是本文分析的基本 出发点.基于该模型,可以定性和半定量地研究输 运过程统计特征的变化.

相应地,可以把粒子等待时间的分布写成如下 形式:  $\omega(t) = a_1\omega_1(t) + a_2\omega_2(t)$ , 其中  $\omega_1(t) =$  $f_1\left(\frac{1}{t}\right)t^{-2}, \ \omega_2(t) = f_2\left(\frac{1}{t}\right)t^{-2}.$ 根据其物理意义,  $\omega_1$ 和 $\omega_2$ 也具有定性上完全不同的统计特征. 实验 和数值模拟结果表明ω1一般会表现出幂律分布, 特别是在我们所关心的砂岩等典型的岩土介质模 型中  $\omega_1(t) \sim t^{-1-\alpha} (1 < \alpha < 2)$ . 这即是说, 该分布 的一阶矩有限而二阶矩发散.而ω,对应着正常的 扩散过程,满足一、二阶矩均有限.在此强调,本文 不关注这些分布函数的特定形式,因为在定性和半 定量上重要的是上述的统计特征,而具体形式上的 区别只会带来定量的区别. 对于  $0 < \alpha < 1$  的情 况,虽然实验上尚不明确其在岩土介质中是否典 型,但也可以在本文的理论框架内研究,本文第 2.4 节将对其进行讨论. 图 2 定性描绘了 ω(t) 的标 度形式如何影响了输运行为的定性特征.

#### 2.2 理论分析

仍然保留经典的连续时间随机行走模型的理 论分析框架,考虑在 *t* = 0 时刻粒子位于 *x* = 0,可 以写出粒子的跃迁方程<sup>[3,10]</sup>:

$$\eta(x,t) = \int_{-\infty}^{\infty} dx' \int_{0}^{\infty} dt' \eta(x',t)$$
$$\times \lambda(x-x') \omega(t-t') + \delta_{x,0} \delta_{t,0}, \qquad (1)$$

其中  $\eta(x,t)$  是粒子"刚刚"在 t 时刻到达 x 点的概率 密度,  $\lambda$  是跃迁位移的概率密度. 那么粒子在 t 时 刻仍处于 x 点的概率密度为

$$W(x,t) = \int_{0}^{t} dt' \eta(x,t') \psi(t-t'), \qquad (2)$$



图 2 等待时间分布  $\omega(t) \sim t^{1-\alpha}$ 示意图,不同统计特征导 致定性上不同的输运行为. 以  $\alpha = 2$  为界,当  $\alpha > 2$  时输运 行为是正常的,当  $0 < \alpha < 2$  时为反常.本文尤其关注  $1 < \alpha < 2$  的情况

Fig. 2. Schematic of the waiting time distribution  $\omega(t) \sim t^{1-\alpha}$ . The value of  $\alpha$  qualitatively determines the transport dynamics. When  $\alpha > 2$ , the transport behavior is normal; while when  $0 < \alpha < 2$ , anomalous transport appears. In this work, we focus on the case  $1 < \alpha < 2$ .

其中  $\psi(t) = 1 - \int_0^t \omega(t') dt' 为粒子在 t 这么长一$ 段时间仍未离开 x 的概率. 对空间变量 x 进行Fourier 变换, 对时间变量 t 进行 Laplace 变换, 得到

$$W(k,u) = \frac{1 - \omega(u)}{u} \frac{1}{1 - \lambda(k)\omega(u)}, \qquad (3)$$

其中  $\lambda(k) = \int_{-\infty}^{\infty} e^{ikx} \lambda(x) dx$ ,  $\omega(u) = \int_{0}^{\infty} \omega(t) e^{-ut} dt$ , 则

$$W(k,u) = \int_{-\infty}^{\infty} \mathrm{d}x \int_{0}^{\infty} \mathrm{d}t W(x,t) \,\mathrm{e}^{\mathrm{i}kx - ut}.$$
 (4)

假定  $\lambda(k)$  具有良好的性质,不会导致反常输运.这在岩土类孔隙介质中是合理的假设,因为溶质粒子的跃迁距离因为孔隙结构的限制而不会具有特别大的差异.则可以在 k = 0的邻域将  $\lambda(k)$ 展开为

$$\lambda(k) \approx 1 + ikl - k^2 \sigma^2 / 2 \quad (k \ll 1), \qquad (5)$$
  

$$\ddagger \psi \ l = \int_{-\infty}^{\infty} \lambda(x) x dx, \ \sigma^2 = \int_{-\infty}^{\infty} \lambda(x) x^2 dx.$$

接着考虑  $\omega(u) = a_1\omega_1(u) + a_2\omega_2(u)$ . 如前所 述,研究  $\omega_1(t) \sim t^{-1-\alpha} (1 < \alpha < 2)$ 的情况,类似 地,在 u = 0的邻域将其渐进展开得到:

$$\omega_1(u) \approx 1 - \langle t \rangle_1 u - C_\alpha u^\alpha \quad (u \ll 1), \qquad (6)$$

其中  $\langle t \rangle_1 = \int_0^\infty t \omega_1(t) dt$ ,  $C_\alpha$  为某个常数. 对于  $\omega_2$ , 其具有有限的一、二阶矩, 同样将其展开得到 这即是

$$1 - \omega (u) = (a_1 \langle t \rangle_1 + a_2 \langle t \rangle_2) u + a_1 C_\alpha u^\alpha$$
$$= (a_1 \langle t \rangle_1 + a_2 \langle t \rangle_2) u$$
$$\times \left( 1 + \frac{a_1 C_\alpha}{a_1 \langle t \rangle_1 + a_2 \langle t \rangle_2} u^{\alpha - 1} \right).$$

所以有

$$\frac{1}{1-\omega(u)} = \frac{1}{(a_1\langle t \rangle_1 + a_2\langle t \rangle_2) u} \\ \times \frac{1}{1+\frac{a_1 C_\alpha}{a_1 \langle t \rangle_1 + a_2 \langle t \rangle_2} u^{\alpha-1}} \\ \approx \frac{1}{a_1 \langle t \rangle_1 + a_2 \langle t \rangle_2} \frac{1}{u} \left( 1 - \frac{a_1 C_\alpha u^{\alpha-1}}{a_1 \langle t \rangle_1 + a_2 \langle t \rangle_2} \right) \\ = \frac{A}{u} + \frac{B}{u^{2-\alpha}} + \cdots,$$
(7)

其中  $A = \frac{1}{a_1 \langle t \rangle_1 + a_2 \langle t \rangle_2}$ ,  $B = -a_1 C_{\alpha} A^2$ . 注意  $A = A(a_1, a_2)$ 是权重因子  $a_1, a_2$ 的函数, 而  $B = B(a_1)$ 只是  $a_1$ 的函数. 这意味着当对流起主导时, A 和 B同时不为 0; 当扩散起主导时, 只有 A 不为 0, 而 B为 0, 即所有含有 B的表达式此时应该都趋近于 0. 这点在下面的分析中会用到.

接下来考虑粒子的平均位移  $\langle x(t) \rangle$ ,其 Laplace 变换  $\langle x(u) \rangle = -i \left. \frac{\partial W}{\partial k} \right|_{k=0} \approx \frac{l}{u \left[ 1 - \omega(u) \right]},$ 所以  $\langle x(u) \rangle \approx \frac{l}{u} \left( \frac{A}{u} + \frac{B}{u^{2-\alpha}} \right) = \frac{lA}{u^2} + \frac{lB}{u^{3-\alpha}}.$  (8)

逆变换可得  $\langle x(t) \rangle \approx lAt + \frac{lB}{\Gamma(3-\alpha)} t^{2-\alpha} \sim t(t \rightarrow \infty)$ ,所以不论  $a_1$ 是否为零,即不论是对流还是扩散主导输运行为,粒子的平均位移与时间的标度关系总是线性的.

同理,可以计算粒子的平均位移平方 $\langle x^2(t) \rangle$ , 它的 Laplace 变换为  $\langle x^2(u) \rangle = -\frac{\partial^2 W}{\partial k^2} \Big|_{k=0} \approx \frac{2l^2}{u[1-\omega(u)]^2} + \frac{\sigma^2}{u[1-\omega(u)]}$ ,经过推导可得:

$$\langle x^{2}(u) \rangle \approx \frac{2l^{2}A^{2}}{u^{3}} + \frac{4l^{2}AB}{u^{4-\alpha}} + \frac{2l^{2}B^{2}}{u^{5-2\alpha}} + \frac{\sigma^{2}A}{u^{2}} + \frac{\sigma^{2}B}{u^{3-\alpha}},$$
(9)

进行逆变换得到  $\langle x^2(t) \rangle \approx l^2 A^2 t^2 + \frac{4l^2 A B}{\Gamma(4-\alpha)} t^{3-\alpha} + \frac{2l^2 B^2}{\Gamma(5-2\alpha)} t^{4-2\alpha} + \sigma^2 A t + \frac{\sigma^2 B}{\Gamma(3-\alpha)} t^{2-\alpha}.$ 

综上可得粒子的均方位移随时间的关系为

$$\begin{split} \left\langle \Delta x^2 \right\rangle &= \left\langle x^2 \right\rangle - \left\langle x \right\rangle^2 \approx \frac{2\left(\alpha - 1\right)}{\Gamma\left(4 - \alpha\right)} l^2 A B t^{3 - \alpha} \\ &+ \frac{2l^2 B^2}{\Gamma\left(5 - 2\alpha\right)} t^{4 - 2\alpha} + \sigma^2 A t + o\left(t\right). \end{split}$$
(10)

由 (10) 式可见, 当  $a_1 \to 0$ , 即  $B \to 0$ ,  $\langle \Delta x^2 \rangle \sim t$ , 否则  $\langle \Delta x^2 \rangle \sim t^{3-\alpha}$ . 物理上,  $a_1 \to 0$  意味着对流的 作用 被极大削弱, 扩散为主导项, 所以表现出  $\langle \Delta x^2 \rangle \sim t$  的标度律, 即此时为正常扩散. 反之, 若  $a_2 \to 0$ , 则对流占据主导, 此时表现出反常输运的特 征  $\langle \Delta x^2 \rangle \sim t^{3-\alpha}$ . 而在一般情况下, 两者都不可以 被忽略时,  $\langle \Delta x^2 \rangle$ 随着时间的变化关系介于 $t^{3-\alpha}$ 和 t之间, 取决于 (10) 式右边各项的相对大小关系.

根据方程 (10) 式, 在定性和半定量上, 我们提出的考虑对流和扩散两种动力学起源的连续时间随机行走模型给出了输运过程的合理理论解释.

#### 2.3 宏观输运方程

基于上述结果,还可以进一步发展具有工程意 义的宏观输运方程,用于描述地下水污染物的运移 行为.通过对感兴趣的地理区域的岩石进行扫描分 析建模,计算流体力学模拟<sup>[13,17]</sup>,可以理论上得到 反常幂指数 α;通过岩心物理实验结果,可以对下 述方程中的各项系数进行拟合<sup>[3]</sup>,最终可以得到符 合该地区岩土介质特点的输运方程.

注意到 $1 - \lambda(k)\omega(u) = 1 - [1 - (1 - \lambda(k))] \times [1 - (1 - \omega(u))]$  $\approx (1 - \lambda(k)) \times (1 - \omega(u)),$ 

则  $W(k,u) \approx \frac{1}{u} \frac{1}{1 + \frac{1 - \lambda(k)}{1 - \omega(u)}}$ . 将之前的 $1 - \lambda(k)$ 与 $1 - \omega(u)$ 代入得:

$$W(k,u) \approx \frac{1/u}{1 + \frac{-iv_1k + D_1k^2}{u} + \frac{-iv_\alpha k + D_\alpha k^2}{u^{2-\alpha}}},$$
(11)

其中  $v_1 = lA$ ,  $D_1 = \frac{\sigma^2 A}{2}$ ,  $v_\alpha = lB$ ,  $D_\alpha = \frac{\sigma^2 B}{2}$ . 进行逆变换得:

$$\frac{\partial W(x,t)}{\partial t} = -v_1 \frac{\partial W}{\partial x} + D_1 \frac{\partial^2 W}{\partial x^2} + {}_0 D_t^{\alpha-1} \left( -v_\alpha \frac{\partial W}{\partial x} + D_\alpha \frac{\partial^2 W}{\partial x^2} \right),$$
(12)

其中  $_0D_t^{\alpha-1}$ 为 Riemann-Liouville 算子<sup>[4]</sup>.

当  $a_1$ →0, 即 B→0 时,  $v_\alpha$ , $D_\alpha$ →0, 得到了经典 的对流扩散方程, 反之, 则得到了用于描述反常输 运的分数阶对流方程. 注意 (12) 式在形式上与以 前得到过的方程一致<sup>[17,18]</sup>, 但本文是在区分对流和 扩散的物理效果上重观此结果, 具有更清楚的物理 意义. 这些系数 ( $v_1$ ,  $D_1$ ,  $v_\alpha$ ,  $D_\alpha$ ) 一方面由对流和扩 散的相对重要性决定, 另一方面也和孔隙空间的结 构紧密相关. 特别是后两者, 它们实际上都依赖于  $\alpha$ , 而如上所述,  $\alpha$  由流体动力学和孔隙结构给出<sup>[17]</sup>.

#### 2.4 讨论

以上主要研究的是在连续时间随机行走模型 中,由对流决定的那部分等待时间分布函数  $\omega_1(t) \sim t^{-1-\alpha}$ 中  $\alpha$  的取值范围是  $1 < \alpha < 2$ . 这个 取值范围是由之前工作的数值模拟结果决定的[17], 具有明确的物理对应. 然而, 从理论完整性角度出 发,在这里接着讨论  $0 < \alpha < 1$  的情况.虽然在模 拟中暂时并没有观察到这种情况出现的明确证据, 在理论上它仍是值得考虑的.在这种情况下,  $\omega_1(t)$ 的一阶矩发散, 而 $\omega_2(t)$ 的一阶矩却仍然是有 限的. 这与 $1 < \alpha < 2$ 的情况不同, 后者的  $\omega_1(t)$ 和 $\omega_2(t)$ 都是直到(1+ $\alpha$ )阶矩为有限,所以 可以统一得到展开式 (7), 而现在不能简单套用类 似的展开. 将  $\omega_1(t)$  和  $\omega_2(t)$  分别进行 Laplace 变 换,可以得到  $\omega_1(u) \approx 1 - C'_{\alpha} u^{\alpha}$ ,其中 $C'_{\alpha}$ 为一常 数, 以及  $\omega_2(u) \approx 1 - \langle t \rangle_2 u$ , 进而可知  $1 - \omega(u) \approx$  $a_1 C'_{\alpha} u^{\alpha} + a_2 \langle t \rangle_2 u \equiv A'(a_1) u^{\alpha} + B'(a_2) u, \ \ddagger \Phi A'$ 和 B'为两个分别依赖于权重 a1 和 a2 的常数,并且 效应主导时,即  $a_1 = 0$ ,则  $A'(a_1) = 0$ ;而如果对流 主导, 即  $a_2 = 0$ , 则  $B(a_2) = 0$ . 重复上文的推导可得:

$$\begin{aligned} \left\langle x\left(u\right)\right\rangle \approx &\frac{l}{A'\left(a_{1}\right)u^{1+\alpha}+B'\left(a_{2}\right)u^{2}},\\ \left\langle x^{2}\left(u\right)\right\rangle \approx &\frac{2l^{2}}{u[A'\left(a_{1}\right)u^{\alpha}+B'\left(a_{2}\right)u]^{2}}\\ &+\frac{\sigma^{2}}{u\left[A'\left(a_{1}\right)u^{\alpha}+B'\left(a_{2}\right)u\right]}\end{aligned}$$

直接对上述两式进行逆 Laplace 变换得不到解析 解,只能进行数值求解. 但不难看出在扩散主导,  $a_1 = 0$ 的极限下  $\langle x(u) \rangle \approx \frac{l}{B'(a_2)u^2}$ ,即  $\langle x(t) \rangle \approx$  $\frac{l}{B'(a_2)}t$ ,而  $\langle x^2(u) \rangle \approx \frac{2l^2}{u[B'(a_2)u]^2} + \frac{\sigma^2}{u[B'(a_2)u]}$ , 即  $\langle x^2(t) \rangle \approx \frac{l^2}{[B'(a_2)]^2}t^2 + \frac{\sigma^2}{B'(a_2)}t$ ,所以 $\langle \Delta x^2 \rangle \approx$  $\frac{\sigma^2}{B'(a_2)}t \sim t$ ,这即是重现了正常输运的结果. 另一 方面,在对流主导, $a_2 = 0$ 的极限下  $\langle x(u) \rangle \approx$  $\frac{l}{A'(a_1)u^{1+\alpha}}$ ,即  $\langle x(t) \rangle \approx \frac{l}{A'(a_1)\Gamma(1+\alpha)}t^{\alpha}$ ,而  $\langle x^2(u) \rangle \approx \frac{2l^2}{u[A'(a_1)]^2\Gamma(1+2\alpha)}t^{2\alpha} + \frac{\sigma^2}{[A'(a_1)]\Gamma(1+\alpha)}t^{\alpha}$ ,所以

$$\begin{split} \left\langle \Delta x^2 \right\rangle \approx & \left( \frac{2l^2}{\left[A'\left(a_1\right)\right]^2 \Gamma\left(1+2\alpha\right)} - \left[\frac{l}{A'\left(a_1\right) \Gamma\left(1+\alpha\right)}\right]^2 \right) t^{2\alpha} + \\ & \frac{\sigma^2}{\left[A'\left(a_1\right)\right] \Gamma\left(1+\alpha\right)} t^{\alpha} \sim t^{2\alpha}, \end{split}$$

这是因为  $\frac{2}{\Gamma(1+2\alpha)} - \frac{1}{\Gamma(1+\alpha)^2} > 0 \pm 0 < \alpha < 1$  的情况下总是成立的,所以  $\langle \Delta x^2 \rangle$  的主导项是  $t^{2\alpha}$ .这体现了另一种反常输运的特征,这种类型的 反常输运在岩土类孔隙介质中的普遍性还需要实 验和数值模拟上的进一步探索.当  $a_1$ 和  $a_2$ 都非零 时,输运行为介于这两者之间.

类似地, 在  $a_1 = 0$  的极限下, 可以得到描述正 常输运过程的经典对流扩散方程, 而在  $a_2 = 0$  的 极限下,  $W(k,u) \approx \frac{1/u}{1 + \frac{-iv'_{\alpha}k + D'_{\alpha}k^2}{u^{\alpha}}}$ , 其中  $v'_{\alpha} = \frac{l}{C'_{\alpha}}$ , 而  $D'_{\alpha} = \frac{\sigma^2}{2C'_{\alpha}}$ , 其逆变换得到相应的输 运方程为  $\frac{\partial W\left(x,t\right)}{\partial t}={}_{0}D_{t}^{1-\alpha}\left(-v_{\alpha}^{\prime}\frac{\partial W}{\partial x}+D_{\alpha}^{\prime}\frac{\partial^{2}W}{\partial x^{2}}\right).$ 

在两者极限之间,得不到时间空间域的显式解,但 可以利用数值模拟进行逆变换求解.

所以,尽管本文的关注点是 1 < α < 2 的情况,但是原则上可以把 0 < α < 1 的情况也包含进来.因此推广的连续时间随机行走模型可以用来模拟一般的反常输运行为.

# 3 总 结

本文通过考察复杂孔隙介质中输运过程的特征,考虑了对流和扩散的不同效果,提出具有不同动力学起源的等待时间分布函数,补充了经典的连续时间随机行走模型,得到了一般情况下溶质输运的长时间渐进行为,讨论了对流和扩散效应的相对强弱对输运行为的定性和半定量影响,并针对正常和反常输运分别得到了相应的宏观输运方程.本文的结果有助于进一步认识和模拟复杂孔隙介质中的输运行为,对于研究地下水污染物的运移行为具有一定的现实意义和工程价值.

#### 参考文献

- Li N, Ren L 2012 Adv. Water Sci. 23 881 (in Chinese) [李 娜,任理 2012 水科学进展 23 881]
- [2] Bao J D 2005 Prog. Phys. 25 259 (in Chinese) [包景东 2005 物理学进展 25 259]
- [3] Berkowitz B, Cortis A, Dentz M, Scher H 2006 Rev. Geophys. 44 RG2003
- [4] Metzler R, Klafter J 2000 Phys. Rep. **339** 1
- [5] Metzler R, Barkai E, Klafter J 1999 Phys. Rev. Lett. 82 3563
- [6] Ai B Q, He Y F 2010 J. Chem. Phys. 132 094504
- [7] Ai B Q, Shao Z G, Zhong W R 2012 J. Chem. Phys. 137 174101
- [8] Xu J, Jiang G 2018 Phys. Rev. E 97 052132
- [9] Zhang H, Li G H 2016 Chin. Phys. B 25 110504
- [10] Adams E E, Gelhar L W 1992 Water Resour. Res. 28 3293
- [11] Levy M, Berkowitz B 2003 J. Contam. Hydrol. 64 203
- $[12]\$ Cortis A, Berkowitz B 2004 Soil Sci. Soc. Am. J. 68 1539
- [13] Bijeljic B, Mostaghimi P, Blunt M J 2011 Phys. Rev. Lett. 107 204502
- [14] de Anna P, Quaife B, Biros G, Juanes R 2017 *Phys. Rev. Fluids* **2** 124103
- [15]~Nissan A, Berkowitz B $2018~Phys.~Rev.~Lett.~\mathbf{120}~054504$
- [16] Nissan A, Berkowitz B 2019 *Phys. Rev. E* 99 033108
- [17] Yang X R, Wang Y 2019 Sci. Rep. 9 4601
- [18] Wang Y 2013 Phys. Rev. E 87 032144
- [19] Reis F D A A, di Caprio D 2014 Phys. Rev. E 89 062126
- [20] Liu J, Zhu Y, He P, Chen X, Bao J D 2017 Eur. Phys. J. B 90 70
- [21] Wang Y, Yang X R 2015 Chin. Phys. B 24 118902

# Continuous time random walk model with advection and diffusion as two distinct dynamical origins<sup>\*</sup>

Yang Xiao-Rong  $^{1)\dagger}$  Wang Qiong  $^{1)}$  Ye Tang-Jin  $^{2)}$  Tudeng Ci-Ren  $^{1)}$ 

1) (School of Science, Tibet University, Lhasa 850000, China)

2) (College of Engineering, Tibet University, Lhasa 850000, China)

( Received 17 January 2019; revised manuscript received 9 April 2019 )

#### Abstract

Modeling the solute transport in geological porous media is of both theoretical interest and practical importance. Of several approaches, the continuous time random walk method is a most successful one that can be used to quantitatively predict the statistical features of the process, which are ubiquitously anomalous in the case of high Péclet numbers and normal in the case of low Péclet numbers. It establishes a quantitative relation between the spatial moment of an ensemble of solute particles and the waiting time distribution in the model. However, despite its success, the classical version of this model is a "static" one in the sense that there is no tuning parameter in the waiting time distribution that can reflect the relative strength of advection and diffusion which are two mechanisms that underlie the transport process, hence it cannot be used to show the transition from anomalous to normal transport as the Péclet numbers decreases. In this work, a new continuous time random walk model is established by taking into account these two different origins of solute particle transport in a geological porous medium. In particular, solute transitions due to advection and diffusion are separately treated by using a mixture probability model for the particle's waiting time distribution, which contains two terms representing the effects of advection and diffusion, respectively. By varying the weights of these two terms, two limiting cases can be obtained, i.e. the advection-dominated transport and the diffusiondominated transport. The values of scaling exponent  $\beta$  of the mean square displacement versus time,  $(\Delta x)^2 \sim t^\beta$ , are derived for both cases by using our model, which are consistent with previous results. In the advection dominant case with the Péclet number going to infinity, the scaling exponent  $\beta$  is found to be equal to  $3-\alpha$  where  $\alpha \in (1,2)$  is the anomaly exponent in the advection-originated part of the waiting time distribution that  $\omega_1(t) \sim t^{-1-\alpha}$ . As the Péclet number decreases, the diffusion-originated part of the waiting time distribution begins to have a stronger influence on the transport process and in the limit of the Péclet number going to 0 we observe a gradual transition of  $\beta$  from  $3 - \alpha$  to 1, indicating that the underlying transport process changes from anomalous to normal transport. By incorporating advection and diffusion as two mechanisms giving rise to solute transport in the continuous time random walk model, we successfully capture the qualitative transition of the transport process as the Péclet number is varied, which is, however, elusive from the classical continuous time random walk model. Also established are the corresponding macroscopic transport equations for both anomalous and normal transport, which are consistent with previous findings as well. Our model hence fully describes the transition from normal to anomalous transport in a porous medium as the Péclet number increases in a qualitative and semi-quantitative way.

Keywords: dynamical origins, continuous time random walk, anomalous transport, macroscopic transport equation

PACS: 05.40.Fb, 05.60.Cd, 47.56.+r

**DOI:** 10.7498/aps.68.20190088

<sup>\*</sup> Project supported by the National Natural Science Foundation of China (Grant No. 11465017).

<sup>†</sup> Corresponding author. E-mail: xzdxyr@sina.com