物理学报 Acta Physica Sinica

Institute of Physics, CAS

低温生长铝镓砷光折变效应的研究

钟梓源 何凯 苑云 汪韬 高贵龙 闫欣 李少辉 尹飞 田进寿

Photorefractive effect of low-temperature-grown aluminum gallium arsenide Zhong Zi-Yuan He Kai Yuan Yun Wang Tao Gao Gui-Long Yan Xin Li Shao-Hui Yin Fei Tian Jin-Shou

引用信息 Citation: Acta Physica Sinica, 68, 167801 (2019) DOI: 10.7498/aps.68.20190459 在线阅读 View online: https://doi.org/10.7498/aps.68.20190459 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

低温生长砷化镓的超快光抽运-太赫兹探测光谱

Study on ultrafast dynamics of low-temperature grown GaAs by optical pump and terahertz probe spectroscopy 物理学报. 2017, 66(8): 087801 https://doi.org/10.7498/aps.66.087801

铝纳米晶的低温导电特性研究

Electrical resistivity of nanostructured aluminum at low temperature 物理学报. 2016, 65(13): 137303 https://doi.org/10.7498/aps.65.137303

基于分布式布拉格反射器结构的空间三结砷化镓太阳能电池抗辐照研究 Anti-radiation of space triple-junction solar cell based on distributed Bragg reflector structure 物理学报. 2016, 65(10): 108801 https://doi.org/10.7498/aps.65.108801

抽运-检测型非线性磁光旋转铷原子磁力仪的研究

Rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation 物理学报. 2017, 66(16): 160701 https://doi.org/10.7498/aps.66.160701

极化检测型铷原子磁力仪的研究

Research on an pump-probe rubidium magnetometer 物理学报. 2016, 65(21): 210702 https://doi.org/10.7498/aps.65.210702

抽运--自旋定向--探测技术及其应用

Pump-orientation-probe technique and its applications 物理学报. 2018, 67(9): 097201 https://doi.org/10.7498/aps.67.20180244

低温生长铝镓砷光折变效应的研究*

钟梓源¹⁾²
 何凯^{1)†}
 苑云³)
 汪韬¹)
 高贵龙¹)
 闫欣¹)
 李少辉¹)
 尹飞¹)
 田进寿^{1)4)‡}

1) (中国科学院西安光学精密机械研究所, 超快诊断技术重点实验室, 西安 710119)

2) (中国科学院大学,北京 100049)

3) (火箭军研究院,北京 100101)

4) (山西大学,极端光学协同创新中心,太原 030006)

(2019年3月31日收到; 2019年5月21日收到修改稿)

三元化合物铝镓砷 (AlGaAs) 是一种可用于全光固体超快诊断技术的重要材料.基于低温外延技术的 AlGaAs 材料不仅具有低温生长砷化镓 (low-temperature grown GaAs, LT-GaAs) 超短载流子寿命的特点, 并 且可以调整材料的禁带宽度, 为超快诊断系统的设计增加了极大的灵活性. 泵浦-探测实验结果表明, 低温外 延生长可以有效加速 AlGaAs 材料的非平衡载流子复合, 非平衡载流子弛豫时间小于 300 fs, 而非平衡载流子 的复合时间低至 2.08 ps. 由于经过特殊的钝化工艺处理, 极大地降低了表面复合对载流子衰退过程的影响, 而低温外延生长引入的 As 原子团簇, 形成了深能级缺陷, 是加速载流子复合的主要因素. 基于单复合中心的 间接复合理论, 建立 LT-AlGaAs 载流子演化模型, 获得与复合速率相关的关键物理参量: 载流子俘获面积 $\sigma_e =$ 6.6×10^{-14} cm², $\sigma_h = 4.7 \times 10^{-15}$ cm², 计算结果与实验相符. 该方法可用于半导体材料载流子演化特性定量分 析, 有助于推进超快响应半导体材料的优化改进.

关键词:光折变,铝镓砷,泵浦-探测,载流子寿命 PACS: 78.20.Mg, 78.30.Fs, 72.20.Jv

DOI: 10.7498/aps.68.20190459

1 引 言

传统的电真空超快诊断技术因为受探测物理 机理的限制,性能的提升已经遇到了瓶颈:变像管 条纹相机的理论极限时间分辨率为 10 fs,但目前 实际能达到的时间分辨力在 200 fs 左右^[1],且仅能 分辨一维空间变化,无法获取超快二维图像信息. 行波选通型分幅相机虽然具有二维空间分辨能力, 但其时间分辨率受微通道板电子渡越时间弥散的 限制,通常时间分辨在 60—100 ps^[2,3].基于半导体 超快光折变效应的全光固体超快诊断技术^[4-7]直 接对信号光进行调制,能够有效避免空间电荷效应 的影响,有望应用于惯性约束核聚变研究中^[4,5].该 技术中的全光固体分幅相机(下称"成像系 统")^[6]能够实现皮秒级二维超快成像.2013年,美 国劳伦斯-利弗莫尔国家实验室率先采用硒化镉(CdSe) 实现了两分幅超快成像^[4].中国科学院超快诊断重 点实验室采用载流子寿命为2.5 ps的低温生长砷 化镓/铝镓砷(GaAs/AlGaAs)多量子阱结构半导 体作为成像系统的响应材料,获得时间分辨率为 3 ps的六分幅成像结果^[7].

© 2019 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金青年科学基金 (批准号: 71705255) 资助的课题.

[†] 通信作者. E-mail: hekai@opt.ac.cn

[‡] 通信作者. E-mail: tianjs@opt.ac.cn

半导体光折变效应是成像系统的设计基础[4-7], 对其光折变效应进行系统的研究尤为重要. 半导体 在受到光激发后产生非平衡载流子,导致其折射率 等光学性质发生变化¹⁸,该变化的时间由光生载流 子寿命决定. 低温生长的铝镓砷 (LT-AlGaAs) 同 时具备超短载流子寿命和能带可调节的优点⁹,是 全光固体超快诊断技术中响应器件的理想材料. LT-AlGaAs 在低温外延生长过程中会引入大量的 As 沉淀形成缺陷, 在材料中充当深能级施主, 材料 的掺杂类型和浓度将影响深能级施主的电离水平, 这部分电离的深能级施主形成载流子的有效复合 中心^[10-12]. 此外, 泵浦光与 LT-AlGaAs 的相互作 用强度和深度、光生载流子浓度与折射率变化量的 关系、光生载流子寿命等都将影响成像系统的时间 分辨率、响应灵敏度等关键指标[4-7].因而,深入研 究 LT-AlGaAs 中载流子的产生与复合机制、光生 载流子对折射率的调节机制、缺陷与杂质对复合过 程的贡献显得尤为重要.

本文采用飞秒时间分辨的泵浦-探测技术对 LT-AlGaAs的超快光折变效应进行系统的研究, 分析折射率突变与恢复这两个阶段的机理.理论计 算载流子浓度与折射率变化量的关系,基于间接复 合(Shockley-Read-Hall, SRH 复合)理论^[13]计算 LT-AlGaAs光生载流子浓度变化过程.本文所建 立的俘获面积和物理模型可为进一步研究和利用 LT-AlGaAs或其他半导体材料的超快光折变效应 提供理论依据.

2 实 验

2.1 实验样品

采用低温分子束外延方法在 GaAs 衬底上生 长 LT-AlGaAs, 结构如图 1(a) 所示, 其中 0.5 µm 的中间层为缓冲层 (Buffer), 2 µm 响应层 LT-AlGaAs 的生长温度为 450 ℃, 掺 Be 的浓度 $N_{Be} =$ 5 × 10¹⁷ cm⁻³. 生长过程中由高分辨 X 射线衍射仪 对 LT-AlGaAs 的晶体质量和成分进行监测和分 析, 发现其 As 沉淀的浓度 $N_{As} = 3.5 \times 10^{18}$ cm⁻³. 对生长好的 LT-AlGaAs 表面采取硫钝化, 可极大 地降低其表面复合速率^[14].

飞秒时间分辨的泵浦-探测实验用于研究 LT-AlGaAs 的超快光折变效应,光源采用自锁模钛宝 石飞秒激光器,输出脉宽约为 200 fs,中心波长为 800 nm,脉冲重复频率为 87 MHz,平均功率 10 mW— 10 W 范围内可调.

实验光路如图 1(b) 所示, 飞秒激光经过二倍 频晶体后变为中心波长为 400 nm 的泵浦光与中 心波长为 800 nm 的探测光, 经过二向色镜后, 不 同波长的光被空间分离. 泵浦光被与锁相放大器相 连的斩波器调制, 经聚焦透镜入射到实验样品上, 激发材料的光折变效应. 与此同时, 探测光经延迟 线产生时间延迟后, 依次经 1/4 波片、偏振分光棱 镜和聚焦透镜入射到实验样品, 被样品反射, 再经 过 1/4 波片、偏振分光棱镜和滤波器后被探测器接

Fig. 1. (a) Structure of experimental sample; (b) pump-probe experiments optical path.

收. 锁相放大器将探测器中读取的信号处理后, 由 计算机读取存储. 数据处理后得到实验中 LT-AlGaAs 折射率 n的变化规律. 实验样品前放置 CCD 用于监测光斑大小及位置, 方便调节泵浦光 与探针光重合.

2.2 实验结果与讨论

LT-AlGaAs 能隙为 1.55 eV, 小于 400 nm 泵 浦光的光子能量 (3.1 eV), 能有效吸收泵浦光并激 发光生载流子, 其对 400 nm 光的反射率 R =0.47, 吸收系数 $\alpha = 4.8 \times 10^5$ cm^{-1[15]}, 泵浦光的入 射深度可通过吸收系数的定义计算得到. 测试过程 所使用的激光参量如表 1 所列.

表 1 实验激光参量 Table 1 Learn representations in comparison

Table 1. Laser parameters in ex	perment.
参量	数值
单脉冲泵浦光能量 $E_{\rm s}/{ m nJ}$	2
泵浦光斑直径dpump/µm	75
泵浦光入射深度l/nm	20
探测光斑直径dprobe/µm	70

实验测得 LT-AlGaAs 折射率变化量与延迟时间的关系,如图 2 中散点所示,材料受泵浦光激发, 折射率快速下降,变化达到极值后快速恢复,初始 变化过程与恢复过程的变化规律不相同.

Fig. 2. Experimental data and fitting results.

为了研究泵浦-探测实验中折射率的变化规律, 需要对折射率变化初始过程和恢复过程分别做数 据拟合.初始变化阶段采用高斯函数拟合,该过程 折射率变化量Δn_{in}表达式为

$$\Delta n_{\rm in} = -A {\rm e}^{-\left(\frac{t_0 - t}{\tau_{\rm in}}\right)^2},\tag{1}$$

其中, $A \, \pi_{\rm in}$ 分别表示折射率变化幅度和初始变 化时间常量. t_0 是材料被激发后信号达到幅值所需 的时间, 与泵浦光强有关. 信号达到幅值后的恢复 过程采用指数衰减函数拟合, 折射率变化量 $\Delta n_{\rm re}$ 为

$$\Delta n_{\rm re} = -A {\rm e}^{-\left(\frac{t_0 - t}{\tau_{\rm re}}\right)},\tag{2}$$

*τ*_{re}表示折射率恢复时间常量. 拟合如图 2 实线所示,相关拟合参量如表 2 所列.

表 2 实验数据的拟合结果 Table 2. Fitting results of experimental data.

物理参量	数值
A	0.0082
t_0/ps	0.5
$ au_{ m in}/ m ps$	0.44
$ au_{ m re}/{ m ps}$	2.08

结果表明, LT-AlGaAs 受到泵浦光激发产生 光生载流子,导致其对探测光折射率变小. 折射率 减小阶段的时间为 440 fs, 对应光生载流子的产生 时间,该时间由泵浦光脉宽、光生载流子弛豫时间 共同决定,由于泵浦光平均功率不高,因此发生非 线性效应的概率较低,故而泵浦光脉冲几乎不变^[16]. 用高斯函数表示泵浦光,其脉宽为 200 fs,将实验 数据△n(t) 与泵浦光脉冲函数做去卷积运算,得到 半导体与泵浦光相互作用的响应函数^[17]:

$$f(t) = \frac{e^{-t/\tau_{\rm r}}}{1 - \tau_{\rm g}/\tau_{\rm r}} [1 - e^{-(1 - \tau_{\rm g}/\tau_{\rm r})t/\tau_{\rm g}}], \qquad (3)$$

(3) 式中, τ_r 为载流子复合时间, 与表 2 中的 τ_{re} 一 致, 即 $\tau_r = 2.08$ ps; 而 τ_g 则是半导体与载流子相 互作用后产生载流子所需的时间, 即非平衡载流子 弛豫时间, 根据去卷积计算结果得到 $\tau_g = 280$ fs. 对载流子调制折射率机理和载流子复合过程进行 理论分析和计算, 给出相关参数, 建立 LT-AlGaAs 的光折变效应模型.

3 理论模型

3.1 载流子调制折射率模型

光折变效应主要是由带填充效应 (band filling, BF) 与带隙收缩效应 (band gap shrinkage, BGS) 引起的^[8].

激发过程中,半导体价带电子吸收光子能量 后,跃迁至导带产生非平衡载流子,其结果是:导 带部分能级被电子占据,以及价带部分能级被空穴 占据,从而减小载流子在各能带中的占有概率,即 分布函数 *f*_c, *f*_v减小,这种载流子导致的分布函数 变化的现象即为 BF.导带中的电子与价带中的空 穴服从各自的费米分布,则相应的费米分布函数与 各能带的准费米能级之间的关系为^[18]

$$\begin{cases} f_{\rm c}(E_{\rm Fc}, E_{\rm cl,ch}) = \left(1 + e^{\frac{E_{\rm cl,ch} - E_{\rm Fc}}{k_{\rm B}T}}\right)^{-1} \\ f_{\rm v}(E_{\rm Fv}, E_{\rm vl,vh}) = \left(1 + e^{\frac{E_{\rm vl,vh} - E_{\rm Fc}}{k_{\rm B}T}}\right)^{-1}, \quad (4) \end{cases}$$

其中, $k_{\rm B}$ 为玻尔兹曼常数, 室温下 $k_{\rm B}T \approx 0.026$ eV; $E_{\rm cl, ch}$ 和 $E_{\rm vl, vh}$ 为电子受光激发后跃迁到的能 级能量, 由能量守恒可以得到其表达式:

$$\begin{cases} E_{\rm cl,ch} = (E - E_{\rm g}) \left(\frac{m_{\rm lh,hh}}{m_{\rm e} + m_{\rm lh,hh}} \right) \\ E_{\rm vl,vh} = (E_{\rm g} - E) \left(\frac{m_{\rm e}}{m_{\rm e} + m_{\rm lh,hh}} \right) - E_{\rm g} \end{cases}$$
(5)

准费米能级 *E*_{Fc} 和 *E*_{Fv} 与载流子浓度 *N*, *P* 的 关系由 (6) 式给出^[19]:

$$\begin{cases} E_{\rm Fc} = \left\{ \ln\left(\frac{N}{N_{\rm c}}\right) + \frac{N}{N_{\rm c}} \left[64 + 0.05524 \frac{N}{N_{\rm c}} \left(64 + \sqrt{\frac{N}{N_{\rm c}}} \right) \right]^{-1/4} \right\} k_{\rm B}T, \\ E_{\rm Fv} = \left\{ -\ln\left(\frac{P}{N_{\rm v}}\right) + \frac{P}{N_{\rm v}} \left[64 + 0.05524 \frac{P}{N_{\rm v}} \left(64 + \sqrt{\frac{P}{N_{\rm v}}} \right) \right]^{-1/4} \right\} k_{\rm B}T - E_{\rm g}, \end{cases}$$
(6)

其中, N_c, N_v分别是导带和价带的有效态密度. 根据 (4)—(6) 式计算可得到 f_c, f_v与载流子浓度 N 的关系.

载流子浓度 N的增加,还将伴随能隙 E_g 的减小,称这种现象即为 BGS,能带的收缩量 ΔE_g 是载流子浓度 N的函数^[20]:

$$\Delta E_{\rm g}(N) = -\left(\frac{e}{2\pi\varepsilon_0\varepsilon_{\rm s}}\right) \left(\frac{3N}{\pi}\right)^{1/3} \times \left[1 - \exp(-N/N_{\rm th})\right]. \tag{7}$$

LT-AlGaAs 带 隙 收 缩 的 载 流 子 浓 度 阈 值 $N_{\rm th} = 1 \times 10^{17} \text{ cm}^{-3}$ [8],相对介电常数 $\varepsilon_{\rm s} = 12^{[15]}$. $f_{\rm c}$, f_v 和 E_g 的改变将导致吸收系数 α 发生变化^[8], 吸收系数的变化量 $\Delta \alpha$ 由 (8) 式给出:

$$\Delta \alpha_{\rm BF+BGS} = \sum_{i=\rm lh, hh} \frac{C_i}{h\nu} \sqrt{h\nu - (E_{\rm g} - \Delta E_{\rm g})} [f_{\rm v}(E_{\rm Fv}, E_{\rm vi}) - f_{\rm c}(E_{\rm Fc}, E_{\rm ci}) - 1], \qquad (8)$$

其中,比例系数 C_h和 C_{hh}与 C成比例关系,由 (9)式给出^[21]:

$$\begin{cases} C_{\rm lh} = C \left(\frac{\mu_{\rm elh}^{3/2}}{\mu_{\rm elh}^{3/2} + \mu_{\rm ehh}^{3/2}} \right) \\ C_{\rm hh} = C \left(\frac{\mu_{\rm ehh}^{3/2}}{\mu_{\rm elh}^{3/2} + \mu_{\rm ehh}^{3/2}} \right) , \qquad (9)$$

其中, $\mu_{eh} = (m_e^{-1} + m_{h}^{-1})^{-1} \pi \mu_{ehh} = (m_e^{-1} + m_{hh}^{-1})^{-1}$ 是分别对应轻空穴带和重空穴带的电子-空穴对有 效质量的约化量; m_e , $m_{hh} \pi m_{hh}$ 分别为电子有效 质量、轻空穴带和重空穴带中空穴的有效质量.比 例系数 C由吸收系数 $\alpha_0(E)$ 表达式计算:

$$\alpha_0(E) = \frac{C}{h\nu} \sqrt{h\nu - E_{\rm g}}.$$
 (10)

根据 (4)—(10) 式可以计算吸收系数 α 与载流 子浓度 N 的关系,再由 Kramers-Kronig(K-K) 关 系^[22]

$$\Delta n(N, P, E) = \frac{\hbar c}{\pi} P \int_0^\infty \frac{\Delta \alpha_{\rm BF+BGS}(N, P, E)}{E'^2 - E^2} dE'$$
(11)

将吸收系数的变化量换算为折射率的变化量,其中 ħ是普朗克常量, c是真空中光速,符号 P表示柯 西主值积分.基于 LT-AlGaAs 的基本性质给出相 关参量,便可由(4)—(11)式计算得到折射率 n 随 载流子浓度 N 的变化.为了模拟泵浦光诱导 LT-AlGaAs 折射率变化的过程,还需要对泵浦过程中 载流子浓度的变化进行计算.

3.2 载流子浓度演化模型

LT-AlGaAs 在受到泵浦光激发后,产生大量的光生载流子,被复合中心俘获而衰减,该过程称为间接复合 (SRH 复合)^[13].本文以 LT-AlGaAs 中深能级施主作为载流子复合中心,采用有激励项的 SRH 过程来分析载流子浓度的演化过程,如图 3 所示.

其中,I是泵浦光激发载流子发生带间跃迁的 激励过程,相对于复合中心能级 E_t 而言,电子-空

图 3 带激励的 SRH 过程 Fig. 3. SRH process diagram with excitation.

穴对的俘获与发射可分为四个微观过程: II, 电子 俘获过程; III, 电子发射过程; IV, 空穴俘获过程; V,空穴发射过程. 其中 II 与 III, IV 与 V 互为逆过 程, 将这五个过程相叠加, 并将载流子浓度随时间 变化率以微分的形式给出, 即可得到载流子浓度变 化的速率方程组:

$$\begin{cases} \frac{dN}{dt} = \frac{I(r,t)}{h\nu} (1-R)\alpha - r_{\rm e}N(N_{\rm T} - N_{\rm t}) + s_{\rm e}N_{\rm t}, \\ \frac{dP}{dt} = \frac{I(r,t)}{h\nu} (1-R)\alpha - r_{\rm h}PN_{\rm t} + s_{\rm h}(N_{\rm T} - N_{\rm t}), \\ \frac{dN_{\rm t}}{dt} = r_{\rm e}N(N_{\rm T} - N_{\rm t}) - s_{\rm e}N_{\rm t} + r_{\rm h}PN_{\rm t} - s_{\rm h}(N_{\rm T} - N_{\rm t}), \end{cases}$$
(12)

其中, I(r, t) 是泵浦光脉冲光斑在时域上的光强分 布; $h\nu$ 是泵浦光的光子能量; R 是反射率; α 为半 导体材料对泵浦光的吸收系数; $N_{\rm T}$ 和 $N_{\rm t}$ 分别表示 深能级施主浓度和未被电离的深能级施主浓度; N和 P分别为导带中电子浓度和价带中空穴浓度, 其平衡时的初始值可用霍尔效应测得; $r_{\rm e}$ 和 $r_{\rm h}$ 分 别是复合中心对电子和空穴的俘获系数,反映了复 合中心对载流子的俘获能力,由俘获面积和载流子 热运动速率的乘积来计算, $r_{\rm e} = \sigma_{\rm e}\nu_{\rm e}$, $r_{\rm h} = \sigma_{\rm h}\nu_{\rm h}$, 俘获面积 $\sigma_{\rm e}$, $\sigma_{\rm h}$ 是由复合中心杂质决定的,载流子 热运动速率 $\nu_{\rm e}$ 和 $\nu_{\rm h}$ 可由有效质量求得; $s_{\rm e}$ 和 $s_{\rm h}$ 分 别为复合中心发射电子和空穴的激发系数,反映了 复合中心生成载流子的能力.而且 $s_{\rm e}$ 与 $r_{\rm e}$,以及 $s_{\rm h}$ 与 $r_{\rm h}$ 之间的关系可由 (13) 式表示:

$$\begin{cases} s_{\rm e} = r_{\rm e} N_{\rm c} \exp\left(\frac{E_{\rm T} - E_{\rm c}}{k_{\rm B}T}\right), \\ s_{\rm h} = r_{\rm h} N_{\rm v} \exp\left(\frac{E_{\rm v} - E_{\rm T}}{k_{\rm B}T}\right). \end{cases}$$
(13)

掌握俘获系数与激励信号的参量,便可由 (12)和(13)式求出泵浦前后载流子浓度的变化.

3.3 模拟计算结果与讨论

3.3.1 折射率变化量与载流子浓度的关系

LT-AlGaAs的相关物理参量如表 3 所列,其 中 C值可根据 (10) 式,由吸收系数 α^[15] 计算得到, 电子与空穴的有效质量由参考文献 [9] 给出.

表 3 LT-AlGaAs 载流子浓度导致折射率变化的 相关参量

Table 3.Parameters related to carrier-mediated re-
fractive index change in LT-AlGaAs.

物理参量	数值	物理参量	数值
$m_{\rm e}/m_0$	0.088	$E_{\rm g}/{\rm eV}$	1.79
$m_{ m lh}/m_0$	0.102	$C/\mathrm{cm}^{-1}{\cdot}\mathrm{s}^{-1/2}$	4.6×10^{12}
$m_{\rm hh}/m_0$	0.59	$C_{ m lh}/ m cm^{-1}{\cdot}s^{-1/2}$	$1.5 imes 10^{12}$
$\mu_{\rm elh}/m_0$	0.047	$C_{ m hh}/ m cm^{-1}{\cdot}s^{-1/2}$	$3.1 imes10^{12}$
$\mu_{\rm ehh}/m_0$	0.076	ε_{s}	12

将表 3 参量代入 (4)—(11) 式, 计算载流子浓 度 $N \approx 10^{17}$ —10¹⁹ cm⁻³ 时LT-AlGaAs 对于 800 nm 探测光的折射率变化量 Δn 与载流子浓度 N 的关 系, 如图 4 所示. 当载流子浓度低于 10¹⁸ cm⁻³ 时, 折射率变化量为正值且非常小, 可以忽略; 当载流 子浓度大于 10¹⁸ cm⁻³ 时, 折射率发生明显变化.

图 4 基于理论模型计算的折射率变化量与载流子浓度 关系

Fig. 4. Relationship between refractive index change and carrier concentration based on theoretical model.

实验中泵浦光在被探测区域产生的总载流子 浓度 $N_{\rm s}$,可以通过泵浦光在半导体中激发光生载 流子的效率 $\xi = 3E_{\rm g}^{[23]}$ 、以及其沉积能量 $E_{\rm d} =$ $(1 - R)E_{\rm s}$ 和激发区域的体积 $V = \pi l \left(\frac{1}{2} d_{\rm pump}\right)^2$ 进 行计算:

$$N_{\rm s} = \frac{E_{\rm d}}{\xi} \cdot \frac{1}{V}.\tag{14}$$

将表 1 中的激光参量代入 (14) 式, 计算得到 实验中单次泵浦脉冲在 LT-AlGaAs 中产生的载流 子浓度约 $N_{\rm s} = 3.65 \times 10^{18}$ cm⁻³, 略高于图 4 中 $\Delta n = -0.0082$ 时的载流子浓度 $N_{\rm peak} = 3.5 \times 10^{18}$ cm⁻³. 分析认为在泵浦产生光生载流子的同时, 复 合过程已在同步进行, 因此当信号达到幅值时, 剩 余的载流子浓度比 $N_{\rm s}$ 要小.

3.3.2 受激发后载流子浓度的变化规律

LT-AlGaAs 中掺入的 Be 杂质浓度 $N_{\rm Be} = 5 \times 10^{17}$ cm⁻³, Be 杂质能级在 III—V 族化合物半导体 中靠近价带,为浅能级受主杂质^[24]; 低温生长导致 LT-AlGaAs 中形成深能级施主杂质^[11],其浓度即 为复合中心浓度 $N_{\rm T} = 3.5 \times 10^{18}$ cm⁻³,其未被电 离部分的浓度正是被电子占据的复合中心浓度 $N_{\rm t}$. 由于浅能级受主杂质浓度远小于深能级施主杂质 浓度,在室温下将完全电离,即 $N_{\rm Be} = 5 \times 10^{17}$ cm⁻³, 且所获得的电子将全部由施主杂质提供,即平衡时 价带中只有少量空穴,材料中多子为电子. 霍尔效 应测得平衡时电子浓度 $N = 10^{10}$ cm⁻³,再由平衡 时电中性条件: $N_{\rm Be} + N = P + (N_{\rm T} - N_{\rm t})$,近似地 认为 $N_{\rm Be} = N_{\rm T} - N_{\rm t}$,即可求出 $N_{\rm t} = 3 \times 10^{18}$ cm⁻³.

LT-AlGaAs 的载流子热运动速率 $\nu_{\rm e} = 3.93 \times 10^7 \,{\rm cm} \cdot {\rm s}^{-1} \, \pi \, \nu_{\rm h} = 1.54 \times 10^7 \,{\rm cm} \cdot {\rm s}^{-1}$. As 反位点缺 陷在半导体中形成的深能级施主能级比导带低 0.8 eV, 而它的俘获面积 σ 介于 10⁻¹⁴—10⁻¹³ cm² 之 间^[25], 根据实验结果计算得到电子与空穴的俘获面积 $\sigma_{\rm e} = 6.6 \times 10^{-14} \,{\rm cm}^2 \, \pi \, \sigma_{\rm h} = 4.7 \times 10^{-15} \,{\rm cm}^2$. 导 带和价带的有效态密度 $N_{\rm c} = 6.5 \times 10^{17} {\rm cm}^{-3} \, \pi N_{\rm v} = 1.1 \times 10^{19} \,{\rm cm}^{-3}$, 由此计算得到俘获系数和 发射系数如表 4 所列.

根据泵浦光的相关性质得到 I(r,t), 并将表 4

表 4	电子与空穴的俘获系数和发射系数
Table 4.	Capture and emission coefficients of ele

trons and holes.

物理参量	数值
$r_{ m e}/{ m cm^3 \cdot s^{-1}}$	$2.6 imes10^{-6}$
$r_{ m h}/{ m cm^3\cdot s^{-1}}$	$7.2 imes10^{-8}$
$s_{ m e}/{ m cm^3\cdot s^{-1}}$	640
$s_{ m h}/{ m cm^3\cdot s^{-1}}$	1400

中的参量以及 N_T 和 N_t 的值代入 (12) 式中, 获得 在泵浦光入射前后载流子浓度随时间的演化规律. 其中载流子浓度上升沿的时间常数 $\tau_{\rm up} = 0.4$ ps, 该时间与实验时折射率的初始改变时间 (0.44 ps) 相当. 由于 (12) 式中的 I(r, t) 是基于实验条件 给出的,因此载流子上升时间是由泵浦光的脉宽、 非平衡载流子弛豫时间决定. 非平衡载流子弛豫时 间在 200 fs 左右, 泵浦光脉宽为 200 fs, 因此载流 子上升时间应在 400 fs 左右, 这基本上与实验结果 中 440 fs 初始变化过程相符. 基于实验条件的 I(r, t), 理论上将产生的载流子总浓度 $N_s = 3.65 \times$ 10¹⁸ cm⁻³, 而由于激发过程实际伴随着复合, 达到 幅值时载流子浓度要略小于该值. 模拟计算还得到 载流子复合时间约为 2.1 ps, 这与实验结果的 2.08 ps相符.此外,模拟计算结果(图5)显示,激发过 程中电子浓度与空穴浓度的变化是一致的,但在载 流子复合阶段,电子浓度下降速率要略大于空穴浓 度下降速率,反映出复合中心对电子与空穴不同的 俘获能力.

3.4 超快光诱导折射率变化规律

将图 5 中载流子浓度变化规律代入 3.3.1 节载 流子浓度与折射率变化量的关系模型中,即可模拟 实验条件下折射率随泵浦-探测光延迟时间的变化 规律,将其与实验数据进行对比,如图 6 所示.

图 6 中实验数据与模拟计算结果的对比表明, 理论计算中在泵浦光激发后折射率初始变化与恢 复阶段都与实验结果拟合得较好.为了确认该模型 的准确性,对同一材料进行二次实验,仅改变泵浦 光的单脉冲能量至 1.5 nJ,其他实验条件均保持不 变.根据泵浦光的单脉冲信号能量,修改理论模型 中的 *I*(*r*, *t*),其他参量不变.将泵浦光的单脉冲能 量为 1.5 nJ 的结果与 2 nJ 的结果进行对比,如图 7 所示.结果表明,该参数模型能够有效模拟 LT-AlGaAs 在不同泵浦光功率下的折射率变化规律.

4 结 论

本文以 LT-AlGaAs 为样品,采用飞秒时间分 辨的泵浦-探测技术,系统研究其在辐射脉冲激发 下的光折变效应. LT-AlGaAs 的折射率随光生载 流子的注入而减小. 基于 LT-AlGaAs 的基本性质 求出 BF 与 BGS 效应的关键参量,建立 LT-AlGaAs

图 5 基于带激励项的 SRH 过程的载流子浓度变化模型 的计算结果

Fig. 5. Calculation results of carrier concentration variation model based on SRH process with excitation term.

图 6 泵浦-探测反射实验数据和基于光诱导折射率超快 变化模型计算结果

Fig. 6. Experimental data and calculation results based on light-induced refractive index ultrafast change model.

图 7 两次实验与模拟计算的结果对比

Fig. 7. Comparison of results between two experiments and simulation calculations.

的载流子调制折射率模型, 计算表明折射率随载流 子浓度的增加而减小, 与实验结果相一致. 实验中, 极短的非平衡载流子寿命, 是由载流子的快速俘获 造成的. 低温外延技术在 LT-AlGaAs 中引入的 As 沉淀形成了深能级施主, 其充当的复合中心加 速了光生载流子的俘获过程, 基于 SRH 复合理论, 建立泵浦光脉冲 I(r, t) 激发下的载流子浓度演化 模型, 该模型准确预测了载流子浓度的变化规律, 并且获得复合中心的俘获面积 $\sigma_{\rm e} = 6.6 \times 10^{-14}$ cm², $\sigma_{\rm h} = 4.7 \times 10^{-15}$ cm². 最后, 结合载流子调制折射 率模型与载流子浓度演化模型, 便可模拟出飞秒泵 浦光对折射率的调制过程, 模拟结果与实验结果相 符. 本文研究结果将有助于高性能超快光折变半导 体材料的优化改进.

参考文献

 Gu L, Zong F K, Li X, Zhang J J, Zhang C, Yang Q L 2015 *High Pow. Las. Part. Beam* 27 062011 (in Chinese) [顾礼, 宗 方轲, 李翔, 张敬金, 张驰, 杨勤劳 2015 强激光与粒子束 27 062011]

- [2] Pan J S, Qi L, Xiao H L, Zhang R, Zhou J X, Pu D D, Lü J W 2012 Acta Phys. Sin. 61 194211 (in Chinese) [潘京生, 亓鲁, 肖洪亮, 张蓉, 周建勋, 蒲冬冬, 吕景文 2012 物理学报 61 194211]
- [3] Bradley D K, Bell P M, Landen O L, Kilkenny J D, Oertel J 1995 Rev. Sci. Instrum. 66 716
- Baker K L, Stewart R E, Steele P T, Vernon S P, Hsing W W, Remington B A 2013 Appl. Phys. Lett. 103 151111
- [5] Liang L L, Tian J S, Wang T, Li F L, Gao G L, Wang J F, Wang C, Lu Y, Xu X Y, Cao X B, Wen W L, Xin L W, Liu H L, Wang X 2014 Acta Phys. Sin. 63 060702 (in Chinese) [梁玲亮, 田进寿, 汪韬, 李福利, 高贵龙, 王俊锋, 王超, 卢裕, 徐 向晏, 曹希斌, 温文龙, 辛丽伟, 刘虎林, 王兴 2014 物理学报 63 060702]
- [6] Wang B, Bau Y L, Cao W W, Xu P, Liu B Y, Gou Y S, Zhu B L, Hou X 2015 Acta Phys. Sin. 64 200701 (in Chinese) [王 博, 白永林, 曹伟伟, 徐鹏, 刘百玉, 缑永胜, 朱炳利, 候洵 2015 物理学报 64 200701]
- [7] Gao G, He K, Tian J, Zhang C, Zhang J, Wang T, Chen S, Jia H, Yuan F, Liang L, Yan X, Li S, Wang C, Yin F 2017 *Opt. Express* 25 8721
- [8] Bennett B R, Soref R A, Alamo J A D 1990 IEEE J. Quantum Electron. 26 113
- [9] Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
- [10] Dankowski S U, Streb D, Ruff M, Kiesel P, Kneissl M, Knüpfer B, Döhler G H, Keil U D, Sørensen C B, Verma A K

1996 Appl. Phys. Lett. 68 37

- [11] Lochtefeld A J, Melloch M R, Chang J C P, Harmon E S 1996 Appl. Phys. Lett. 69 1465
- [12] Fleischer S, Beling C D, Fung S, Nieveen W R, Squire J E, Zheng J Q, Missous M 1997 J. Appl. Phys. 81 190
- [13] Khanna V K 2005 Progress in Quantum Electronics 29 59
- [14] Xia N, Gang X, Rong T Y, Wan D K, Fang D, Tang J IL, Wang X W, Wang X H, Li Y F, Yao B, Wei Z P 2018 *Chin. J. Las.* 45 0603002 (in Chinese) [夏宁, 方铉, 容天宇, 王登魁, 房丹, 唐吉龙, 王新伟, 王晓华, 李永峰, 姚斌, 魏志鹏 2018 中国 激光 45 0603002]
- [15] Aspnes D E, Kelso S M, Logan R A, Bhat R 1986 J. Appl. Phys. 60 754
- [16] Lü T Z, Wang T Q, Qian L J, Lu X, Wei Z Y, Zhang J 2002
 Acta Phys. Sin. 51 1268 (in Chinese) [吕铁铮, 王韬, 钱列加,
 鲁欣,魏志义,张杰 2002 物理学报 51 1268]
- [17] Vernon S P, Lowry M E, Baker K L, Bennett C V, Celeste J R, Cerjan C, Haynes S, Hernandez V J, Hsing W W, Lacaille

G A 2012 Rev. Sci. Instrum. 83 193

- [18]~ Lasher G, Stern F 1964 Phys.~Rev.~133~553
- [19] Nilsson N G 1978 Appl. Phys. Lett. 33 653
- [20] Wolff P A 1962 Phys. Rev. 126 405
- [21] Moss T S, Burrell G J, Ellis B, Omar M A 1973 Semiconductor Opto - Electronics (London: Butterworths) pp48-94
- [22] Shen X C 2002 Semiconductor Spectroscopy and Optical Properties (Beijing: Science Press) p20 (in Chinese) [沈学础 2002 半导体光谱和光学性质(北京: 科学出版社)第20页]
- [23] Alig R C, Bloom S 1975 *Phys. Rev. Lett.* **35** 1522
- [24] Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (Version 7) p47 (in Chinese) [刘恩科, 朱秉升, 罗晋生 2011 半导体物理学(第7版) (北京: 电子工业出版社)第 47页]
- [25] Fang Z Q, Schlesinger T E, Milnes A G 1987 J. Appl. Phys. 61 5047

Photorefractive effect of low-temperature-grown aluminum gallium arsenide^{*}

1) (Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi'an Institute of Optics and

Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China)

2) (University of Chinese Academy of Sciences, Beijing 100049, China)

3) (Rocket Force Academy, Beijing 100101, China)

 $\label{eq:constraint} 4) \ (\ Collaborative \ Innovation \ Center \ of \ Extreme \ Optics, \ Shanxi \ University, \ Taiyuan \ 030006, \ China)$

(Received 31 March 2019; revised manuscript received 21 May 2019)

Abstract

The ternary compound aluminum gallium arsenide is an important material that can be used in all-optical solid-state ultrafast diagnostic technology. The low-temperature-epitaxially-grown AlGaAs (LT-AlGaAs) not only has the characteristics of ultra-short carrier lifetime of low-temperature-grown gallium arsenide (LT-GaAs), but also possesses the advantage of adjustability of band gap, which will provide great flexibility for the design of ultra-fast diagnostic systems. We use low-temperature epitaxial growth technology to grow AlGaAs on a GaAs substrate. The low-temperature-grown AlGaAs can effectively absorb 400 nm pump light to generate excess carrier. Therefore, we use a femtosecond laser with a wavelength of 800 nm and a pulse width of 200 fs as a light source to generate 400-nm pump light after passing through the BBO crystal, and 800 nm light without frequency doubling as the probe light. Using such a light source, we build a pump probe experimental platform to test the LT-AlGaAs. We normalize the experimental results and deconvolute it with the normalized laser pulses to obtain the response function of the semiconductor to the pump light. Therefore, we know that the nonequilibrium carrier relaxation time is less than 300 fs, and the nonequilibrium carrier recombination time is 2.08 ps. Due to the special passivation process, the effect of surface recombination on the carrier decay process is greatly reduced. The As clusters introduced by low-temperature epitaxial growth form deep level defects are the main factor for accelerating carrier recombination. In order to understand the complex process of photogenerated nonequilibrium carriers in depth, we use the indirect recombination theory of single recombination center to calculate the carrier recombination process, and establish an LT-AlGaAs carrier evolution model. Thus we obtain the key physical parameter related to the recombination rate, which is the carrier trapping area. We also use a theoretical model of carrier-regulated refractive index to calculate the effect of carrier concentration on the amount of change in refractive index. Combining our AlGaAs carrier evolution model, we simulate the refractive index change process of LT-AlGaAs after being illuminated by pump light. The simulation results are in good agreement with the experimental results. The method can be used for the quantitative analysis of carrier evolution characteristics of semiconductor materials, and it can conduce to the optimization and improvement of ultra-fast response semiconductor materials.

Keywords: photorefractive effect, AlGaAs, pump-probe, carrier lifetime

PACS: 78.20.Mg, 78.30.Fs, 72.20.Jv

DOI: 10.7498/aps.68.20190459

^{*} Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 71705255).

[†] Corresponding author. E-mail: hekai@opt.ac.cn

[‡] Corresponding author. E-mail: tianjs@opt.ac.cn