物理学报 Acta Physica Sinica

Institute of Physics, CAS

类硼S离子K壳层激发共振态的辐射和俄歇跃迁

孙言 胡峰 桑萃萃 梅茂飞 刘冬冬 苟秉聪

Radiative and Auger transitions of K-shell excited resonance states in boron-like sulfur ion Sun Yan Hu Feng Sang Cui-Cui Mei Mao-Fei Liu Dong-Dong Gou Bing-Cong 引用信息 Citation: Acta Physica Sinica, 68, 163101 (2019) DOI: 10.7498/aps.68.20190481 在线阅读 View online: https://doi.org/10.7498/aps.68.20190481 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

硼原(离)子内壳激发高自旋态能级和辐射跃迁

Energy levels and radiative transitions of the core-excited high-spin states in boron atom (ion) 物理学报. 2017, 66(12): 123101 https://doi.org/10.7498/aps.66.123101

近玻尔速度氙离子激发钒的K壳层X射线

Vanadium K-shell X-ray emission induced by xenon ions at near the Bohr velocity 物理学报. 2016, 65(2): 027901 https://doi.org/10.7498/aps.65.027901

AlK壳层等离子体辐射谱模型的比对

Comparisons and analyses of the aluminum K-shell spectroscopic models 物理学报. 2015, 64(20): 205201 https://doi.org/10.7498/aps.64.205201

高能脉冲C6+离子束激发Ni靶的K壳层X射线

K-shell X-ray emission from high energy pulsed C6+ ion beam impacting on Ni target 物理学报. 2017, 66(14): 143401 https://doi.org/10.7498/aps.66.143401

ZnH分子激发态的电子结构和跃迁性质的理论计算

Theoretical study on the electronic structure and transition properties of excited state of ZnH molecule 物理学报. 2017, 66(6): 063103 https://doi.org/10.7498/aps.66.063103

6Li32S双原子分子的光谱和辐射跃迁理论研究

Theoretical study of the spectra and radiative transition properties of 6Li32S 物理学报. 2016, 65(3): 033101 https://doi.org/10.7498/aps.65.033101

类硼 S 离子 K 壳层激发共振态的 辐射和俄歇跃迁^{*}

孙言1)† 胡峰1) 桑萃萃2) 梅茂飞1) 刘冬冬1) 苟秉聪3)

(徐州工程学院数学与物理科学学院,徐州 221018)
 2)(兰州理工大学理学院,兰州 730050)
 3)(北京理工大学物理学院,北京 100081)

(2019年4月2日收到; 2019年6月11日收到修改稿)

采用多组态鞍点变分方法计算了类硼 S 离子 K 壳层激发共振态 1s2s²2p², 1s2s2p³, 1s2p^{4 2, 4}L (L = S, P, D) 的非相对论能量和波函数,利用截断变分方法饱和波函数空间,改进体系的非相对论能量.利用微扰理论 计算了相对论修正和质量极化效应,利用屏蔽的类氢公式计算了 QED (quantum electrodynamics) 效应和高 阶相对论修正.进一步,考虑闭通道和开通道相互作用,计算了由俄歇共振效应引起的能级移动,从而得到了 共振态的精确相对论能级.利用优化的波函数,计算了类硼 S 离子 K 壳层激发共振态的电偶极辐射跃迁的线 强度、振子强度、跃迁率和跃迁波长.计算的振子强度和辐射跃迁率均给出了长度规范、速度规范、加速度规 范的结果.三种规范结果的一致性表明了本文计算的波函数是足够精确的.利用鞍点复数转动方法计算了类 硼 S 离子 K 壳层激发共振态的俄歇跃迁率、俄歇分支率和俄歇电子能量.本文的计算结果与其他文献数据符 合较好.

关键词: K 壳层激发共振态, 辐射跃迁, 俄歇跃迁, 俄歇电子 PACS: 31.15.A-, 32.30.Rj, 32.80.Zb

DOI: 10.7498/aps.68.20190481

1 引 言

多电子原子内壳激发共振态的研究有助于考察原子的结构,分析离子(电子)与原子(分子)的碰撞过程,探究原子高激发态的退激发机制.S作为天体物理中的重要的元素之一,其离子高激发态研究研究与天体物理、等离子体物理、化学物理以及X射线物理等学科都密切相关^[1,2].类硼S离子的K壳层激发共振态,其K壳层的1s电子被激发,存在着"空洞",能级较高并位于多重离化阈之上,可以通过辐射跃迁或俄歇跃迁进行退激发衰

变. 在辐射跃迁过程中产生 X 射线波段的光谱, 在 俄歇跃迁过程中, 能够释放出俄歇电子, 具有"指 纹"特性, 其研究对等离子诊断、光谱线鉴定、软 X 射线激光器设计、元素鉴定和成分分析具有重要 的应用价值^[3,4].

近年来,理论和实验工作者对类硼离子 K 壳 层激发共振态的辐射跃迁光谱和俄歇电子谱开展 了系列研究.实验方面,实验物理学家利用高能离 子碰撞实验和束箔碰撞实验技术对 B 原子^[5], C^{+[5,6]},O^{3+[7]},Ne^{5+[7-9]}离子俄歇电子谱进行了测 量,报道了精确测量的俄歇电子谱线.在 K 壳层激 发态的辐射跃迁光谱实验中,Armour 等^[10,11]利用

* 国家自然科学基金 (批准号: 11604284, 51506184)、江苏省高等学校自然科学研究面上项目 (批准号: 17KJB140025) 和江苏省青 蓝工程资助课题.

© 2019 中国物理学会 Chinese Physical Society

[†] 通信作者. E-mail:suenyangu@163.com

束箔实验技术测量了高离化 Mg, Al, Si离子的 X 射线谱. Faenov^[12]利用 CO₂ 激光等离子体实验 测量了 Mg, Al, Si, P, S 离子的伴线波长, 其中部 分谱线来源于类硼离子的 K 壳层激发共振态的辐 射跃迁. 利用合并光子-离子束技术, Schlachter 等^[13]利用 1s→2p 内壳层光激发实验测量 C⁺离子 K 壳 层激发态 (1s2s²2p²、1s2s(³S)2p³)^{2,4}L 的线宽度和能 级寿命. Gharaibeh 等^[14]测量了 N²⁺离子 K 壳层 激发光电离截面. Müller 等^[15,16]研究了 C⁺离子 K 壳层电离区域附近的自电离过程, 分析了其单电 子俄歇、双电子俄歇、三电子俄歇的自电离机制.

理论方面, Chen和 Crasemann^[17,18]利用 MCDF-AL(multiconfiguration Dirac-Fock with average-level) 方法系统计算了类硼等电子序列 (Z= 6-54) 离子 K 壳激发共振态 1s2s²2p², 1s2s2p³, 1s2p^{4 2, 4}L的俄歇电子能量、俄歇跃迁率、X射线波 长和跃迁强度. Safronova 和 Shlyaptseva^[19]利用 1/Z微扰理论计算了类硼等电子序列(Z=6-54) K 売层激发态 $ls2s^22p^n$, $ls2s2p^n$, $ls2p^n$ (n = 1— 3) 的能级和自电离跃迁率. Zhou 等^[20] 利用微扰理 论计算了 C+离子 K 壳层激发共振态 1s2s²2p² ²D, ²P 的单电子俄歇、双电子俄歇和三电子俄歇跃迁 率.利用 SCUNC (screening constant by unit nuclear charge) 模型, Sako 等^[21] 计算了类 B 等电 子序列 (Z = 5—18) 的 K 壳层激发共振态 1s2p⁴ (²S, ^{2,4}P, ²D)的 X 射线波长和俄歇电子能量. 目 前,人们对类硼离子的 K 壳层高激发共振态的能 级、辐射跃迁和俄歇过程开展了相关研究,得到了 一些精确的理论和实验数据结果. 然而, 与类硼 S离子 K 壳层激发共振态的相关报道还甚少. 理论 上主要有 MCDF 方法^[17,18] 和 1/Z 微扰理论^[19] 对 类硼 S 离子的 K 壳层激发共振态的能级、辐射光 谱和俄歇跃迁数据进行了计算. 然而受限于早期的 计算条件,这些计算仅考虑了很少组态相互作用, 数据的精确度不够高.

在前期的工作中^[22,23],我们利用鞍点变分方法 和鞍点复数转动方法对类硼离子 K 壳层激发共振 态的辐射跃迁和俄歇跃迁开展了相关计算,得到了 较为精确的理论结果.本文采用该方法对类硼 S 离 子 K 壳层激发共振态 1s2s²2p², 1s2s2p³, 1s2p^{4 2,4}L (*L* = S, P, D) 进行研究,在本文计算过程中,进一 步考虑了 QED(quantum electrodynamics)效应 和高阶相对论的修正,得到了精确的理论数据.利 用鞍点变分方法计算类硼 S 离子 K 壳层激发共振 态的能级和波函数.利用优化的波函数计算这些 K 壳层激发共振态的电偶极辐射跃迁线强度、振子 强度、辐射跃迁率、跃迁波长.利用鞍点复数转动 方法计算这些 K 壳层激发共振态的俄歇跃迁率、 俄歇分支率及俄歇电子能量.本文计算结果与相关 的实验理论数据进行对比,符合较好.

2 理论计算方法

./. (1 0

在 LS 表象下, 类硼五电子体系的非相对论哈 密顿算符为

$$H_0 = \sum_{i=1}^{5} \left[-\frac{1}{2} \nabla_i^2 - \frac{Z}{r_i} \right] + \sum_{\substack{i,j=1\\i< j}}^{5} \frac{1}{r_{ij}}.$$
 (1)

内壳层激发共振态的波函数可写成如下形式:

۲)

$$\psi_b(1, 2, \cdots, 5) = A \sum_{i}^{n} C_i [1 - P_j] \phi_{n(i), l(i)}(R) Y_{l(i)}^{\text{LM}}(\Omega) \chi_{ss_z}, \quad (2)$$

式中, A 为反对称算符, C_i 为线性参数, $\phi_{n(i),l(i)}$ 代表径向波函数, $Y_{l(i)}^{LM}$ 代表轨道角动量波函数, χ_{ss_z} 为自旋波函数. 径向部分采用 Slater 基函数进行展开,

$$\phi_{n(i),l(i)} = \prod_{j=1}^{5} r_j^{n_j} \exp(-\alpha_j r_j), \qquad (3)$$

 α_j 为每个电子对应的非线性参数;五个电子对应的非线性参数 $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5\}$ 构成非线性参数 集; l_i 表示一组 $l_1, l_2, l_3, l_4, l_5; n_i$ 为对应的一组主量子数. 角向部分的波函数为

$$Y_{\rm LM}(\Omega) = \sum_{m_j} \langle l_1 l_2 m_1 m_2 | l_{12} m_{12} \rangle \\ \times \langle l_{12} l_3 m_{12} m_3 | l_{123} m_{123} \rangle \\ \times \langle l_{123} l_4 m_{123} m_4 | l_{1234} m_{1234} \rangle \\ \times \langle l_{1234} l_5 m_{1234} m_5 | l_{12345} m_{12345} \rangle \prod_{j=1}^5 Y_{l_j m_j}(\Omega_j),$$
(4)

展开系数

 $\langle l_1 l_2 m_1 m_2 | l_{12} m_{12} \rangle, \langle l_{12} l_3 m_{12} m_3 | l_{123} m_{123} \rangle \cdots$ $\langle l_{1234} l_5 m_{1234} m_5 | l_{12345} m_{12345} \rangle$ 为 C.G.系数. 为简便 表示,将角动量波函数表示为

$$l(i) = [((l_1, l_2)l_{12}, l_3)l_{123}, l_4]l_{1234}, l_5;$$
(5)
自旋部分波函数表示为

$$\chi_{ss_z} = [((s_1, s_2)s_{12}, s_3)s_{123}, s_4]s_{1234}, s_5.$$
 (6)

对于 K 壳层激发共振态,由于能级高,在计算过程 中很容易产生变分崩溃.因此,在波函数中引入空 轨道,在 (2)式中,投影算符表示为

$$P_j = \left|\phi_o(r_j)\right\rangle \left\langle\phi_o(r_j)\right|,\tag{7}$$

空轨道可表示为

$$\phi_o(r) = N \mathrm{e}^{-qr},\tag{8}$$

q为空轨道的有效核电荷数, N为归一化常数. 在 鞍点变分计算过程中,首先对非线性参数集 { $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ }以及线性参数 C_i 变分优化能量 极小,之后再对 q参数优化能量极大, 从而在鞍点 处求得共振态最佳的非相对论能量值 E_b . 如在本 文变分优化过程中,在 1s 轨道位置加入空轨道,排 除了 1s(2) nln'l'n''l''的组态, 从而防止 2s 轨道坍 缩到 1s 轨道引起变分崩溃^[24]. 对于 K 壳层激发态, 空轨道的非线性参数 q 值接近 Z-0.5, 这里初始值 定为 15.5. 当试探波函数非线性参数全部优化完毕 后,再对空轨道的 q参数优化能量极大,最大值的 能量即为 K 壳层激发共振态的能量.

在计算过程中,为了防止遗漏重要的组态相互 作用波函数,本文利用截断变分方法计算了非相对 论能量的修正值 ΔE_{RV} ,从而得到共振态的非相对 论能量 $E_b + \Delta E_{RV}$.对于截断变分方法的相关理 论,文献 [23] 有详细描述,这里不再赘述.利用微 扰理论,本文还考虑相对论修正 ΔE_{rel} 和质量极化 效应的修正 ΔE_{mp} .微扰算符包括质量极化项、动 能修正项、达尔文项、电子和电子相互作用项以及 轨道和轨道相互作用项.这些算符的在文献 [22] 中 有详细描述,这里不再展开.

随着核电荷数 Z 的增加, QED 效应和高阶相 对论效应修正变得愈发重要, 因此为了得到精确的 能级数据, 本文利用屏蔽的类氢公式^[25-27], 计算了 类硼 S¹¹⁺离子 K 壳层激发共振态的 QED 效应和 高阶相对论修正.在 QED 效应计算中, 仅考虑了 主要部分自能修正和真空极化修正效应.对于 ns电子, QED 效应修正公式为

$$\Delta E_{\text{QED}}(n,0) = \frac{4Z_{\text{eff}}^4 \alpha^3}{3\pi n^3} \left\{ \frac{19}{30} - 2\ln(\alpha Z_{\text{eff}}) - \ln[K(n,0)] + 7.214\alpha Z_{\text{eff}} - (Z_{\text{eff}}\alpha)^2 [3\ln^2(Z_{\text{eff}}\alpha) + 8.695\ln(Z_{\text{eff}}\alpha)] \right\}.$$
 (9)

对于其他的 nl 电子,

$$\begin{split} \Delta E_{\text{QED}}(n,l) = & \frac{4Z_{\text{eff}}^4 \alpha^3}{3\pi n^3} \left\{ \frac{3c_{l,j}}{8(2l+1)} \\ & -\ln K(n,l) + (\alpha Z_{\text{eff}})^2 \ln (\alpha Z_{\text{eff}})^{-2} \\ & \times \left[(1 - \frac{1}{n^2})(\frac{1}{10} + \frac{1}{4}\delta_{j,\frac{1}{2}})\delta_{l,1} \\ & + \frac{8(3 - l(l+1)/n^2)}{(2l-1)(2l)(2l+1)(2l+2)(2l+3)} \right] \\ & + \frac{3\alpha}{4\pi} (-0.3285)c_{l,j}/(2l+1) \bigg\}, \end{split}$$

$$(10)$$

其中

$$c_{l,j} = \begin{cases} l/(l+1) & j = l+1/2, \\ -1/l & j = l-1/2. \end{cases}$$

ln *K*(*n*,*l*)的值来自于文献 [28],有效核电荷数 *Z*_{eff}的值由文献 [27] 中计算方法求得. 对单电子狄拉克 方程的能量本征值为

$$E_{\text{Dirac}}(Z) = \frac{1}{\alpha^2} \left\{ 1 + \left[\frac{\alpha Z}{n - k + \sqrt{k^2 - \alpha^2 Z^2}} \right]^2 \right\}^{-\frac{1}{2}} - \frac{1}{\alpha^2},$$
(11)

其中k = j + 1/2(j是电子的总轨道角动量). 对 (11)式进行泰勒展开,如果仅考虑到 $\alpha^2 Z^4$ 阶, $E_{\text{Dirac}}(Z)$ 可简写为

$$E^{(1)}(Z) = -\frac{Z^2}{2n^2} \left\{ 1 + \frac{\alpha^2 Z^2}{n} \left[\frac{1}{k} - \frac{3}{4n} \right] \right\}.$$
 (12)

nl电子的高阶相对论为

$$\Delta E_{\rm HO}(nl) = E_{\rm Dirac}(Z_{\rm eff}) - E^{(1)}(Z_{\rm eff}).$$
(13)

通过依次求得每个电子的 QED 效应修正和高阶 相对论修正,求和得到体系的总 QED 效应和高阶 相对论效应为

$$\Delta E_{\text{QED}} = \sum_{i=1}^{5} \Delta E_{\text{QED}}(n_i l_i j_i, LSJ), \qquad (14)$$

$$\Delta E_{\rm HO} = \sum_{i=1}^{5} \Delta E_{\rm HO}(n_i l_i j_i, LSJ).$$
(15)

K 壳层激发共振态的宽度和能量位移, 是共振态波函数中连续通道与束缚通道之间相互作用的结果. 共振态束缚通道波函数 $\psi_b(R_N, \Omega_N)$, 加上连续通道波函数构成体系的总波函数. R_N 表示 N个电子的径向坐标, Ω_N 代表 N个电子的角向坐标. 在 LS耦合表象下的实空间, 共振态的总波函数表示为

$$\Psi(R_N, \Omega_N) = \psi_{b}(R_N, \Omega_N) + A \sum_{i,k} d_{ik} \phi_i(R_{N-1}, \Omega_{N-1}) U_k(\boldsymbol{r}_N),$$
(16)

式中,A为是反对称算符, d_{ik} 为线性参数, $\phi_i(R_{N-1},\Omega_{N-1})$ 是四电子靶态的波函数, $U_k(\mathbf{r}_N)$ 为出射电子波函数,可写为

$$U_k(\boldsymbol{r}_N) = r^k \mathrm{e}^{-\alpha r},\tag{17}$$

α为电子的非线性参数, *U*_k构成一维的完备基, 在 计算过程中, 非线性参数是可选择的. 利用复数转 动方法^[29,30], 哈密顿算符经转动变为

$$H = H(R_N \mathbf{e}^{\mathbf{i}\theta}, \Omega_N), \tag{18}$$

其中, $R_N e^{i\theta}$ 表示每个径向坐标 r_j 变换为 $r_j \rightarrow r_j e^{i\theta}$, θ 为相位角,为了保证体系本征值更好的收敛性, 鞍点复数转动方法采用基组的复旋转代替哈密顿 量的旋转.基组经旋转变为

$$\varphi_j = \varphi_j(R_N \mathbf{e}^{\mathbf{i}\theta}, \Omega_N). \tag{19}$$

于是, 共振态的波函数 (16) 式可写为

$$\Psi(R_N \mathbf{e}^{\mathbf{i}\theta}, \Omega_N)$$

= $\psi_{\mathbf{b}}(R_N \mathbf{e}^{\mathbf{i}\theta}, \Omega_N)$
+ $A \sum_{i,k} d_{ik} \phi_i(R_{N-1} \mathbf{e}^{\mathbf{i}\theta}, \Omega_{N-1}) U_k(\mathbf{r}_N),$ (20)

在复平面内, 共振态的波函数是平方可积的. 利用 转动后的波函数Ψ, 共振态的能级和宽度可通过求 解久期方程求得:

$$\delta \frac{\langle \Psi | H_0 | \Psi \rangle}{\langle \Psi | \Psi \rangle} = 0. \tag{21}$$

求得本征值 $E = i\Gamma/2$,其中,实部E为能级位置, 虚部 Γ 为能级的宽度. $\Delta E_{\rm S} = E - E_{\rm b}$,表示考虑 了闭通道与连续态相互作用引起的能级位移.通过 文献 [29, 30] 可知,在鞍点复数转动计算中,转角 θ 在 0.3 - 0.6 范围内, 俄歇共振能级位移和能级宽度 数值呈现出良好的稳定性和收敛性. 当 $\theta = 0.5$ 时, 出射电子的非线性参数 α 的变化引起的共振能级 位移和能级宽度变化最小, 收敛性最好. 因此, 本 文的鞍点复数转动计算中, 取 $\theta = 0.5$. 于是, 共振 态的总能量为

$$E_{\text{total}} = E_{\text{b}} + \Delta E_{\text{RV}} + \Delta E_{\text{mp}} + \Delta E_{\text{rel}} + \Delta E_{\text{QED}} + \Delta E_{\text{HO}} + \Delta E_{\text{S}}.$$
 (22)

能级宽度和俄歇跃迁率的关系为

$$A_{\rm au} = \Gamma/\hbar. \tag{23}$$

3 结果与讨论

本文采用多组态鞍点变分方法计算了类硼 S离子K壳层激发共振态 1s2s²2p², 1s2s2p³, 1s2p⁴ $^{2,4}L(L = S, P, D)$ 的能级和波函数.在 LS 耦合框 架下,为得到精确的理论计算结果,需要充分考虑 电子关联效应及各种修正效应.在计算过程中,根 据组态相互作用定则选取重要的轨道-自旋角动量 分波来考虑电子关联效应.为了方便表示计算过程 中所考虑的组态波函数,本文利用每个电子的轨道 角动量量子数组合[l1,l2,l3,l4,l5]来表示所添加的 组态,称为轨道角动量分波,其中每个电子对应的 主量子数是可变的, 增大主量子数可增加每个分波 中的 term 数目, 扩展更多的组态. 每个轨道角动 量分波可能包含多种轨道角动量耦合方式,如对 于 [0, 0, 1, 1, 1] 分波耦合到总轨道角动量 L = P 态,具有三种可能的耦合方式:[(((0,0)0,1)1,1)0,1]1, [(((0,0)0,1)1,1)1,1]1, [(((0,0)0,1)1,1)2,1]1.在计 算中,本文考虑到所有可能的轨道角动量耦合方 式. 对于 K 壳层激发四重态, 自旋角动量耦合方式 有四种,对于 K 壳层激发二重态,自旋角动量耦合 方式多达五种.不同耦合方式的轨道角动量和自旋 角动量的组合称为轨道-自旋角动量分波.对于偶 宇称结构 (1s2s²2p², 1s2p⁴), 重要的轨道角动量分 波系列 $[l_1, l_2, l_3, l_4, l_5]$ 为[0, 0, 0, l, l], [0, 0, 0, l, l+2],[0, 0, 1, l, l+1], [0, 0, 1, l, l+3],[0, 1, 1, l, l],[0,1,1,l,l+2], [0,0,2,l,l], [1,1,1,l,l+1]等; 对于 奇宇称结构 (1s2s2p3), 重要的轨道角动量分波系 列 $[l_1, l_2, l_3, l_4, l_5]$ 为 [0, 0, 1, l, l], [0, 0, 1, l, l+2], [0, 0, 0, l, l+1], [0, 1, 1, l, l+1],[0, 1, 1, l, l + 3],[0,0,2,l,l+1], [1,1,1,l,l]等. 在构建波函数过程中, 轨道角动量量子数l的取值范围为 0 到 8, 当l > 8时, 组态分波对体系的能量贡献很小, 可以忽略. 在计算过程中, 随着l的增加, 分波能量的贡献呈 现收敛趋势. 对于每个轨道-自旋角动量分波, 当增 加电子的主量子数n所引起的能量贡献小 10⁻⁶ a.u.时, 停止增加n. 在本文计算中, 轨道-自旋角动 量组态分波的数目达到 148, 波函数 term 的总数 达到 4500 项. 通过对构建的试探波函数的非线性 参数集变分优化极小, 而后再对空轨道参数q优化 能量极大, 从而得到组态的最佳波函数和对应的非 相对论能量 E_b . 为了防止遗漏的重要的角动量-自 旋组态分波和考虑高l系列分波的能量贡献, 本文 利用截断变分方法计算了非相对能量改进 ΔE_{RV} , 于是得到共振态的非相对能量 $E_b + \Delta E_{RV}$.

为了得到精确的相对论能量,本文利用微扰理 论,计算了质量极化和相对论效应修正 $\Delta E_{rel} + \Delta E_{mp}$. 其中相对论微扰算符包括动能项、达尔文项、电子 与电子相互作用项和轨道与轨道的相互作用项.同 时利用屏蔽的类氢公式本文还考虑了 QED 效应 修正 ΔE_{QED} 和高阶相对论修正 ΔE_{HO} ,于是总的修 正 能 量 $\Delta E_{corr} = \Delta E_{mp} + \Delta E_{rel} + \Delta E_{OED} + \Delta E_{HO}$. K 壳层激发共振态位于多重离化阈之上, 镶嵌在连 续态内, 这些 K 壳层激发共振态的原子存在一定 的概率自电离, 导致 K 壳层激发态的寿命变短, 能 级加宽. 同时由于相互作用能级间的"相互排斥", 即来源于束缚空间和连续空间的相互作用, 这些 K 壳层激发态的能级将发生一定的能级移动 ΔE_{s} . 因此, 类硼 S 离子 K 壳层激发态的总能量为 $E_{total} = E_{b} + \Delta E_{RV} + \Delta E_{corr} + \Delta E_{s}$.

表1列出了本文计算的类硼S离子的K壳层 激发共振态权重中心的能级.为便于对比,表1还 列出了这些K壳层激发共振态能量的绝对值 ($-E_{total}$,单位 eV).对比文献 [21]的 SCUNC理论 计算结果,可以发现,对于1s2p^{42,4}L激发态,本文 的理论计算结果与 SCUNC理论值的均方根误差 约为5.01 eV.考虑电子自旋与轨道、自旋与其他 轨道、自旋与自旋相互作用,表2列出了类硼S离 子K壳层激发共振态的精细结构劈裂能级.对比 文献 [19]利用1/Z微扰理论的计算数据,本文的 计算结果与1/Z微扰理论的均方根误差约为3.28 eV. 相比 SCUNC 理论和1/Z微扰理论方法,本文在 计算过程中考虑了更多的组态相互作用和能量修

表 1 类硼 S 离子 K 壳层激发共振态 1s2s²2p², 1s2s2p³, 1s2p^{4 2, 4}L (L = S, P, D)的权重中心能级 (单位 a.u.), 能量转 化关系:1 a.u = 27.21138 eV

Table 1. Center of gravity levels of $1s2s^22p^2$, $1s2s2p^3$, $1s2p^{4_2,4}L$ (L = S, P, D) of K-shell excited resonance states in boronlike sulfur ion (unit: a.u.). The energy conversion relationship: 1 a.u = 27.21138 eV.

+ 作 生 太		E _{nonrel} /a.u.		 ($E_{\rm total}/{\rm eV}$	
共振心	$E_{\rm b} + \Delta E_{\rm RV}$	$\Delta E_{\rm corr}$	$\Delta E_{\rm S}$	$E_{\text{total}}/\text{a.u.}$	本文	SCUNC[21]
$1s2s^22p^2$ ⁴ P	-229.35389	-0.64011	-0.00245	-229.99645	6258.52	
$1s2s^22p^2\ ^2S$	-228.66774	-0.66777	-0.00174	-229.33725	6240.58	
$1s2s^22p^2\ ^2P$	-228.81110	-0.66633	-0.00089	-229.47832	6244.42	
$1s2s^22p^2$ ² D	-228.91613	-0.67942	0.00322	-229.59233	6247.52	
$1s2s(^{3}S)2p^{3}\ ^{4}S^{o}$	-227.40768	-0.60823	0.00018	-228.01573	6204.62	
$1s2s(^{1}S)2p^{3}^{4}S^{o}$	-228.21123	-0.62298	0.00151	-228.83270	6226.85	
$1s2s(^{3}S)2p^{3}\ ^{4}P^{o}$	-228.00558	-0.62215	0.00106	-228.62667	6221.25	
$1s2s(^{3}S)2p^{3}\ ^{4}D^{o}$	-228.30315	-0.62288	-0.00017	-228.92620	6229.40	
$1s2s(^{3}S)2p^{3}^{2}S^{o}$	-226.86291	-0.62586	0.00070	-227.48807	6190.26	
$1s2s(^{3}S)2p^{3}\ ^{2}P^{o}$	-226.91669	-0.61114	0.00193	-227.52590	6191.29	
$1s2s(^{1}S)2p^{3}\ ^{2}P^{o}$	-227.28245	-0.61646	0.00620	-227.89271	6201.28	
$1s2s(^{3}S)2p^{3}^{2}D^{o}$	-227.21472	-0.61330	0.00204	-227.82598	6199.46	
$1s2s(^{1}S)2p^{3}^{2}D^{o}$	-227.56290	-0.62041	0.00280	-228.18051	6209.11	
$1s2p^4$ ⁴ P	-226.53817	-0.55727	-0.00249	-227.09793	6179.65	6173.07
$1s2p^{4}$ ² S	-225.47488	-0.56220	0.00072	-226.03636	6150.76	6145.67
$1s2p^4$ 2P	-225.94003	-0.56493	0.00251	-226.50245	6163.44	6159.02
$1s2p^4$ 2D	-226.07283	-0.56074	0.00279	-226.63078	6166.94	6163.51

表 2 S¹¹⁺离子 K 壳层激发共振态, S¹¹⁺, S¹²⁺离子低位激发态的精细结构能级 (-E, 单位 eV) Table 2. Fine-structure energy levels of the K-shell excited resonance states in S¹¹⁺ ion, and low-excited states in S¹¹⁺, S¹²⁺ ion (-E, unit eV).

	偶宇称		Ĩ	奇宇称	
		S ¹¹⁺ 离子K壳	层激发态共振态		
共振态	本文	文献[19]	共振态	本文	文献[19
$1s2s^22p^2\ ^4P_{1/2}$	6259.50	6265.62	$\rm 1s2s(^3S)2p^3{}^4S_{3/2}$	6204.62	6207.1
$1s2s^22p^2\ {}^4\!P_{3/2}$	6258.83	6264.85	$\rm 1s2s(^1S)2p^3^4S_{3/2}$	6226.85	6229.6
$1s2s^22p^2\ ^4P_{5/2}$	6257.99	6264.05	$\rm 1s2s(^3S)2p^3{}^4P_{1/2}$	6221.05	6223.6
$1s2s^22p^2{}^2S_{1/2}$	6240.58	6243.03	$\rm 1s2s(^3S)2p^3{}^4P_{3/2}$	6221.24	6223.5
$1s2s^22p^2{}^2P_{1/2}$	6245.72	6248.94	$\rm 1s2s(^3S)2p^3^4P_{5/2}$	6221.32	6223.5
$1s2s^22p^2{}^2P_{3/2}$	6243.77	6247.23	$\rm 1s2s(^3S)2p^{3\ 4}D_{1/2}$	6229.21	6231.9
$1s2s^22p^2\ ^2D_{3/2}$	6247.38	6251.29	$\rm 1s2s(^3S)2p^{3\ 4}D_{3/2}$	6229.21	6232.0
$1s2s^22p^2{}^2D_{5/2}$	6247.62	6251.38	$\rm 1s2s(^3S)2p^{3\ 4}D_{5/2}$	6229.30	6232.0
$1s2p^4{}^4P_{1/2}$	6178.53	6180.77	$\rm 1s2s(^3S)2p^{3}^4D_{7/2}$	6229.61	6231.8
$1s2p^4\ {}^4P_{3/2}$	6179.12	6181.26	$1s2s(^3S)2p^{3\;2}S_{1/2}$	6190.26	6192.2
$1s2p^4{}^4P_{5/2}$	6180.37	6182.44	$\rm 1s2s(^3S)2p^3^2P_{1/2}$	6191.17	6193.9
$1s2p^4{}^2\!S_{1/2}$	6150.76	6152.75	$\rm 1s2s(^3S)2p^{3\ 2}P_{3/2}$	6191.36	6193.6
$1s2p^4{}^2P_{1/2}$	6163.28	6165.34	$1s2s(^1S)2p^3^2P_{1/2}$	6201.72	6204.1
$1s2p^4\ ^2P_{3/2}$	6163.52	6166.42	$1s2s(^1S)2p^{3\;2}P_{3/2}$	6201.05	6206.8
$1s2p^{4}{}^{2}D_{3/2}$	6166.83	6169.56	$\rm 1s2s(^3S)2p^{3\ 2}D_{3/2}$	6199.29	6199.0
$1s2p^{4}{}^{2}D_{5/2}$	6167.00	6169.69	$\rm 1s2s(^3S)2p^{3\ 2}D_{5/2}$	6199.57	6202.1
			$1s2s(^{1}S)2p^{3}^{2}D_{3/2}$	6209.23	6212.9
			$\rm 1s2s(^1S)2p^{32}D_{5/2}$	6209.03	6212.3
		S ¹¹⁺ 离子	低位激发态		
激发态	本文	NIST[3 1]	激发态	本文	NIST[<mark>3</mark>
$1s^2 2s 2p^2 \ ^4 P_{1/2}$	8617.38	8617.29	$1s^2 2s^2 2p\ ^2 P_{1/2}$	8641.58	8641.3
$1s^2 2s 2p^2 \ ^4 P_{3/2}$	8616.83	8616.70	$1s^2 2s^2 2p\ ^2 P_{3/2}$	8639.78	8639.7
$1s^2 2s 2p^2 \ ^4 P_{5/2}$	8615.98	8615.86	$\rm 1s^2 2p^3 \ ^4S_{3/2}$	8565.71	8565.6
$1s^2 2s 2p^2 ^2S_{1/2}$	8586.78	8586.83	$1s^2 2p^3 {}^2P_{1/2}$	8545.44	8545.3
$1s^2 2s 2p^2 {}^2 P_{1/2}$	8584.06	8583.71	$1s^2 2p^3 {}^2P_{3/2}$	8545.42	8545.1
$1s^2 2s 2p^2 \ ^2 P_{3/2}$	8582.99	8582.88	$1s^2 2p^3 \ ^2D_{3/2}$	8555.97	8555.7
$1s^2\!2s2p^2^2D_{3/2}$	8598.49	8598.35	$1s^22p^3 ^2D_{5/2}$	8555.74	8555.7
$1s^2 2s 2p^2 \ ^2 D_{5/2}$	8598.39	8598.31			
		S ¹²⁺ 离子	低位激发态		
激发态	本文	NIST[31]	激发态	本文	NIST[<mark>3</mark>
$1 s^2 2 s^{2 \ 1} S_0$	8076.99	8076.93	$1s^22s2p\ ^1P_1$	8028.74	8028.6
$1 s^2 2 p^{2 \ 1} S_0$	7987.61	7987.44	$1s^{2}2s2p \ ^{3}P_{0}$	8052.36	8052.2
$1s^2 2p^2 \ ^1D_2$	8004.12	8003.85	$1s^22s2p\ ^3P_1$	8051.81	8051.7
$1 s^2 2 p^2 {}^3P_0$	8012.11	8012.06	$1s^22s2p\ ^3P_2$	8050.64	8050.5
$1 s^2 2 p^2 {}^3 P_1$	8011.53	8011.37			
$1s^22p^2 {}^3P_2$	8010.43	8010.37			

正,如 QED 和高阶相对论修正.目前,没有更多类 硼 S 离子的 K 壳层激发共振态的能级数据可以对 比,因此需要更加精确的实验或理论数据来验证. 在研究类硼 S 离子 K 壳层激发共振态的辐射跃迁 和俄歇跃迁中,需要 S¹¹⁺离子低位激发态和 S¹²⁺离子低位激发态的能级和波函数.本文采用多组态 Rayleigh-Ritz 变分方法对它们进行了计算,结果 列于表 2.表 2 还列出了 NIST (National Institute of Standards and Technology)数据库^[31]的实验数据,对比发现,本文的计算数据和 NIST 实验数据的均方根偏差仅为 0.15 eV,符合得非常好.

表 3 给出了类硼 S 离子的 K 壳层激发共振态 1s2s²2p², 1s2s2p³, 1s2p^{4 2, 4}L(L = S, P, D) 的电偶 极辐射跃迁线强度 S, 辐射跃迁率 A_{ik} , 振子强度 *f_{ki}*和跃迁波长λ.对于辐射跃迁振子强度和辐射跃 迁率,表3均列出了三种规范的计算结果:长度规 范,速度规范,加速度规范.三种规范的一致性可 反映理论计算的波函数精确程度.图1给出了电偶 极辐射跃迁振子强度长度规范*f*₁和速度规范*f_v*,长 度规范*f*₁和加速度规范*f_a*的对比图.从图1可以看

表 3 类硼 S 离子的 K 壳层激发共振态 1s2s²2p², 1s2s²p³, 1s2p^{4 2, 4}L(L = S, P, D) 的电偶极辐射跃迁线强度 S (a.u.)、 辐射跃迁率 A_{ik} (s⁻¹) (长度规范 A_l , 速度规范 A_v , 加速度规范 A_a), 跃迁振子强度 f_{ki} (长度规范 f_l , 速度规范 f_v , 加速度 规范 f_a), 和跃迁波长 λ (Å), 方括号的数代表 10 的幂次方

Table 3. Line strengths S (a.u.), radiative transition probabilities A_{ik} (length gauge A_1 , velocity gauge A_v , acceleration gauge A_a) (s⁻¹), transition oscillator strengths f_{ki} (length gauge f_1 , velocity gauge f_v , and acceleration gauge f_a), and transition wavelengths λ (Å) of electric dipole transitions of the K-shell excited resonance states $1s2s^22p^2$, $1s2s2p^3$, $1s2p^{4\,2,\,4}L$ (L = S, P, D) in boron-like sulfur ion. The numbers in square brackets represent the power of 10.

初太	末太	5/9.11	A_{ik}/s^{-1}			f_{ki}			λ/Å			
	不必	s/a.u.	$A_{\rm l}$	$A_{\rm v}$	Aa	文献[17]	f_1	$f_{ m v}$	$f_{ m a}$	本文	文献[17]	文献[<mark>21</mark>]
$1s2s^22p^2 {}^4P$	$1 s^2 2 p^3 {}^4S^o$	5.06[-4]	5.48[11]	5.32[11]	5.31[11]	5.09[11]	7.14[-3]	6.94[-3]	6.92[-3]	5.374	5.379	
$1s2p^4$ ⁴ P	$1 s^2 2 p^3 {}^4S^o$	2.14[-2]	2.55[13]	2.65[13]	2.67[13]	2.57[13]	3.12[-1]	3.23 [-1]	3.26[-1]	5.196	5.193	5.203
$1s2s^{2}2p^{2}^{2}S$	$1s^22s^22p\ ^2P^o$	3.81[-3]	2.78[13]	2.82[13]	2.80[13]	2.93[13]	3.72[-2]	3.78[-2]	3.76[-2]	5.166	5.176	5.167
	$1s^22p^3{}^2P^o$	1.78[-4]	1.15[12]	1.15[12]	1.02[12]	9.87[11]	1.68[-3]	1.67[-3]	1.48[-3]	5.379	5.383	
$1s2s^22p^2\ ^2P$	$1s^22s^22p\ ^2P^o$	3.26[-2]	7.88[13]	7.87[13]	7.84[13]	7.53[13]	3.18[-1]	3.18[-1]	3.17[-1]	5.175	5.176	
	$1s^22p^3{}^2P^o$	1.80[-4]	3.87[11]	3.88[11]	3.99[12]	3.20[11]	1.69[-3]	1.69[-3]	1.74[-3]	5.388	5.392	
	$1s^22p^3\ ^2D^o$	6.30[-4]	1.37[12]	1.39[12]	1.40[12]	1.23[12]	3.56[-3]	3.61[-3]	3.64[-3]	5.364	5.368	
$1s2s^22p^2$ 2D	$1s^22s^22p^2P^{\rm o}$	1.92[-2]	2.77[13]	2.67[13]	2.64[13]	2.71[13]	1.87[-1]	1.80[-1]	1.78[-1]	5.181	5.183	
	$1s^22p^3^2P^o$	1.01[-4]	1.29[11]	1.28[11]	1.45[11]	1.35[11]	9.43[-4]	9.34[-4]	1.06[-3]	5.396	5.401	
	$1s^22p^3\ ^2D^o$	3.68[-4]	7.98[11]	8.18[11]	8.25[11]	7.74[11]	3.46[-3]	3.55[-3]	3.59[-3]	5.371	5.375	
$1s2p^4$ 2S	$1s^22p^3^2P^o$	7.14[-3]	5.17[13]	5.26[13]	5.28[13]	5.13[13]	6.96[-2]	7.08[-2]	7.11[-2]	5.178	5.175	5.191
$1s2p^4$ 2P	$1s^22p^3^2P^o$	1.75[-2]	4.17[13]	4.26[13]	4.26[13]	3.97[13]	1.70[-1]	1.74[-1]	1.73[-1]	5.205	5.205	5.217
	$1s^22p^3\ ^2D^o$	2.89[-2]	6.97[13]	6.80[13]	6.71[13]	6.17[13]	1.69[-1]	1.65[-1]	1.63[-1]	5.182	5.182	5.191
$1s2p^4$ 2D	$1s^22s^22p\ ^2P^o$	2.58[-4]	4.09[11]	4.42[11]	4.14[11]		2.59[-3]	2.80[-3]	2.62[-3]	5.013		
	$1s^22p^3^2P^o$	9.20[-3]	1.30[13]	1.32[13]	1.33[13]	1.32[13]	8.91[-2]	9.04[-2]	9.11[-2]	5.213	5.212	5.220
	$1s^22p^3\ ^2D^o$	2.74[-2]	3.93[13]	4.10[13]	4.13[13]	4.02[13]	1.60[-1]	1.67[-1]	1.68[-1]	5.190	5.189	5.198
$1s2s(^{1}S)2p^{3}^{4}S^{o}$	$1s^2 2s 2p^2 {}^4P$	3.08[-2]	1.11[14]	1.09[14]	1.09[14]	1.09[14]	1.50[-1]	1.48[-1]	1.47[-1]	5.188	5.189	
$1s2s(^{3}S)2p^{3}^{4}S^{o}$	$1s^2 2s 2p^2 {}^4P$	7.57[-4]	2.80[12]	2.90[12]	2.99[12]	2.28[12]	3.72[-3]	3.85[-3]	3.97[-3]	5.141	5.135	
$1s2s(^{3}S)2p^{3}^{4}P^{o}$	$1s^2 2s 2p^2 {}^4P$	2.33[-2]	2.81[13]	2.79[13]	2.80[13]	2.67[13]	1.14[-1]	1.13[-1]	1.13 [-1]	5.176	5.174	
$1s2s(^{3}S)2p^{3}^{4}D^{o}$	$1s^2 2s 2p^2 {}^4 P$	3.89[-2]	2.79[13]	2.78[13]	2.77[13]	2.63[13]	1.89[-1]	1.88[-1]	1.88[-1]	5.194	5.192	
$1s2s(^{3}S)2p^{3}^{2}S^{o}$	$1s^2 2s 2p^2 ^2 P$	1.57[-2]	1.13[14]	1.13[14]	1.13[14]	8.54[13]	1.53[-1]	1.52[-1]	1.52[-1]	5.181	5.180	
$1s2s(^{1}S)2p^{3}^{2}P^{o}$	$1s^2 2s 2p^2 ^2 P$	1.05[-3]	2.50[12]	2.78[12]	2.74[12]	2.53[12]	1.02[-2]	1.13[-2]	1.12[-2]	5.205	5.208	
	$1s^{2}2s2p^{2}^{2}D$	1.71[-2]	4.14[13]	4.17[13]	4.14[13]	3.92[13]	1.00[-1]	1.01[-1]	1.00[-1]	5.172	5.173	
$1s2s(^{3}S)2p^{3}^{2}P^{o}$	$1s^22s2p^2^2S$	1.59[-3]	3.85[12]	3.93[12]	3.50[12]	3.55[12]	4.66[-2]	4.76[-2]	4.24[-2]	5.176	5.174	
	$1s^22s2p^2^2P$	1.00[-2]	2.42[13]	2.42[13]	2.30[13]	3.01[13]	9.79[-2]	9.79[-2]	9.31[-2]	5.183	5.183	
	$1s^22s2p^2$ ² D	2.01[-3]	4.95[12]	4.92[12]	5.19[12]	3.38[12]	1.18[-2]	1.19[-2]	1.25[-2]	5.151	5.149	
$1s2s(^{1}S)2p^{3}^{2}D^{o}$	$1s^22s2p^2^2P$	1.85[-3]	2.60[12]	2.64[12]	2.64[12]	2.19[12]	1.79[-2]	1.81[-2]	1.81[-2]	5.222	5.225	
. ,	$1s^22s2p^2$ ² D	5.21[-2]	7.49[13]	7.54[13]	7.55[13]	7.13[13]	3.04[-1]	3.06[-1]	3.07[-1]	5.189	5.191	
$1s2s(^{3}S)2p^{3}^{2}D^{o}$	$1s^22s2p^2$ ² P	1.70[-2]	2.43[13]	2.49[13]	2.50[13]	2.40[13]	1.65[-1]	1.69[-1]	1.70[-1]	5.201	5.201	
	$1s^22s2p^2^2D$	5.16[-3]	7.51[12]	7.72[12]	7.83[12]	7.84[12]	3.02[-2]	3.11[-2]	3.15[-2]	5.168	5.166	

出,大多数 $lg(f_i/f_v)$ 和 $lg(f_i/f_a)$ 取值位于 [-0.025, 0.025] 范围. 随着线强度的增大,三种规范的结果 符合得越来越好. f_i 和 f_v 的符合程度要好于 f_i 和 f_a 符合程度. 整体上,三种规范结果显示出良好的一 致性,从而表明了本文计算的波函数是足够精确 的.本文计算的电偶极辐射跃迁率与 MCDF 理论^[17] 计算的辐射跃迁率的对比见图 2. 可以发现,本文 的计算的辐射跃迁率和 MCDF 理论计算值符合得 较好,大部分误差在 20% 以内. 唯一误差较大的跃 迁为 $ls2s(^{3}S)2p^{3} 2P^{0} \rightarrow 1s^{2}2s2p^{2} 2D$,本文计算的辐 射跃迁率为 $4.95 \times 10^{12} (s^{-1})$,比 MCDF^[17] 理论值 $3.38 \times 10^{12} (s^{-1})$ 大约 46%.表 3 的最后两列还给 出了 MCDF^[17]和 SCUNC^[21]的理论波长.本文计

图 1 本文计算的电偶极跃迁振子强度的长度规范值分 别与速度规范值及加速度规范值的对比

Fig. 1. Comparison diagram of the calculated electrical dipole transition oscillator strength values in length gauge with the velocity gauge and acceleration gauge.

图 2 本文计算的长度规范的电偶极辐射跃迁率与 MCDF 理论计算的跃迁率的对比

Fig. 2. Comparison diagram of calculated radiative transition rates in length gauge with the theoretical data from MCDF calculations. 算的波长和 MCDF 理论波长符合得更好, 均方根 偏差约为 0.003 Å. 类硼 S 离子 K 壳层激发态的辐 射跃迁波长位于 X 射线波段范围, 彼此十分靠近, 本文精确计算的理论值将为相关实验的光谱谱线 鉴定提供有价值的理论参考数据.

俄歇跃迁过程起源于两个激发电子的库仑相 互作用, 在类硼 S 离子 K 壳层激发共振态的俄歇 跃迁过程中,一个电子去填充 K 壳层的 1s 空位, 并且把多余的能量传递给另外一个电子,通常情况 下能量足够把电子离化,因此接收能量的电子逃逸 出系统成为自由电子,剩余的系统为S¹²⁺离子低位 激发态.利用鞍点复数转动方法,我们计算了类硼 S离子的 K 壳层激发态 1s2s²2p², 1s2s2p³, 1s2p^{4 2}, ${}^{4}L(L = S, P, D)$ 的俄歇跃迁率和俄歇分支率,结 果列于表 4. 计算中主要考虑了以下六个末态: 1s²2s²¹S, 1s²2p²¹S, 1s²2p²¹D, 1s²2p²³P, 1s²2s2p¹P, 1s²2s2p³P,其对应的能级列于表 2.对比表 4 中列 出的 MCDF 理论^[17] 计算的俄歇跃迁率,除 1s2p⁴ 共振态外,本文的计算结果与 MCDF 的理论计算 数值符合的较好.表5给出了计算的俄歇电子能 量. 本文的计算结果与 MCDF 方法的理论值[17] 约 为 1.97 eV, 整体上符合得较好. 在俄歇跃迁计算 中, MCDF 方法对于初态和末态仅采用了 35 个组 态波函数和 10 个组态波函数. 在本文计算中, 对 于初态和末态,分别采用了 4500 和 300 个组态波 函数. 由于考虑了更多的组态相互作用, 计算结果 更为精确.目前,由于缺乏足够的实验和理论数据, 我们无法作出进一步的对比. 通过的俄歇分支率和 俄歇电子能量可以更加清晰的了解类硼S离子 K 壳层激发共振态的俄歇跃迁过程, 综合利用这两 者能够很好地对实验中的俄歇电子谱进行标定,研 究实验的动态反应过程.本文的理论数据可为相关 的实验提供有价值的理论数据.

4 结 论

本文采用多组态鞍点变分方法,在考虑相对论 修正、质量极化效应、QED效应、共振能级移动的 基础上,充分考虑组态相互作用,计算了类硼S离 子K壳层激发共振态能级.利用精确计算的波函 数,对这些K壳层激发共振态重要的电偶极辐射 跃迁的线强度、振子强度、跃迁率、跃迁波长数据 进行了系统计算,得到了与其他文献符合较好的结 果.本文计算的电偶极跃迁振子强度的长度规范、 速度规范、加速度规范结果总体显示出良好的一致 性,从而证明本文计算的波函数是足够精确的.利 用鞍点复数转动方法,对这些 K 壳层激发共振态 的俄歇跃迁率、俄歇分支率、俄歇电子能量进行了 计算,并与其他理论结果进行了对比.本文的理论 计算结果可为将来相关的实验光谱和俄歇电子谱 线标定提供有价值的理论参考数据.

表 4 类硼 S 离子 K 壳层激发态 $1s2s^22p^2$, $1s2s2p^3$, $1s2p^{4\,2,\,4}L(L = S, P, D)$ 的俄歇跃迁率 (s⁻¹) 和俄歇分支率 (BR), 方 括号的数表示 10 的幂次方

Table 4.	The Auger rates (s^{-1}) and branching ratios (BR) of the K-shell excited resonance states $1s2s^{2}2p^{2}$, $1s2s2p^{3}$, $1s2s^{3}$, $1s2s^{3$	$2p^{4} 2^{2}$
^{4}L (L=S, F	P, D) in boron-like sulfur ion. The numbers in square brackets represent the power of 10.	

	[7] BR(%)
	. 1
$1s2s^{2}2p^{2} \qquad {}^{2}S \rightarrow 1s^{2}2s^{2} {}^{1}S \qquad 5.05[13] \qquad 8.33[13] \qquad 23.3 \qquad 1s2s({}^{1}S)2p^{3} \qquad {}^{2}P^{o} \rightarrow 1s^{2}2s^{2} {}^{1}S \qquad 6.63[11] \qquad 2.33[13] \qquad 23.3 \qquad 1s2s({}^{1}S)2p^{3} \qquad {}^{2}P^{o} \rightarrow 1s^{2}2s^{2} {}^{1}S \qquad 5.05[13] \qquad 5.05[13]$	1] 0.3
${}^{2}S \rightarrow 1s^{2}2s2p \ {}^{1}P^{o} \qquad 6.35[13] \qquad 6.02[13] \qquad 29.3 \qquad \qquad {}^{2}P^{o} \rightarrow 1s^{2}2s2p \ {}^{1}P^{o} \qquad 1.18[12] \qquad 1.46[12] \qquad$	3] 0.5
${}^{2}S \rightarrow 1s^{2}2s^{2}p \; {}^{3}P^{\circ} \qquad 1.61[13] \qquad 2.06[13] \qquad 7.4 \qquad {}^{2}P^{\circ} \rightarrow 1s^{2}2s^{2}p \; {}^{3}P^{\circ} \qquad 1.29[14] \qquad 1.22[14] \qquad 1.22[14$	4] 59.6
${}^{2}S \rightarrow 1s^{2}2p^{2} {}^{1}S \qquad 7.10[13] \qquad 7.85[13] \qquad 32.8 \qquad {}^{2}P^{o} \rightarrow 1s^{2}2p^{2} {}^{1}S \qquad 6.50[12] \qquad 5.20[13] $	2] 3.0
${}^{2}S \rightarrow 1s^{2}2p^{2}{}^{1}D$ 1.53[13] 1.48[13] 7.1 ${}^{2}P^{o}\rightarrow 1s^{2}2p^{2}{}^{1}D$ 5.25[12] 9.54	2] 2.4
${}^{2}P \rightarrow 1 s^{2} 2 s^{2} p {}^{1}P^{o} \qquad 1.82 [13] \qquad 2.55 [13] \qquad 14.7 \qquad {}^{2}P^{o} \rightarrow 1 s^{2} 2 p^{2} {}^{3}P \qquad 7.40 [13] \qquad 7.54 [13] \qquad 7.54 [13] \qquad 14.7 \qquad 2 P^{o} \rightarrow 1 s^{2} 2 p^{2} {}^{3}P \qquad 7.40 [13] \qquad 7.54 [13] \qquad 7.54$	3] 34.2
${}^{2}P \rightarrow 1 s^{2} 2 s^{2} p \; {}^{3}P^{o} \qquad 1.05 [13] \qquad 7.34 [12] \qquad 8.5 \qquad \qquad {}^{2}D^{o} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{1}P^{o} \qquad 7.30 [12] \qquad 8.82 [12] \qquad \qquad 8.5 \qquad \qquad {}^{2}D^{o} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{1}P^{o} \qquad 7.30 [12] \qquad 8.82 [12] \qquad \qquad 8.5 \qquad \qquad {}^{2}D^{o} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{1}P^{o} \qquad 7.30 [12] \qquad 8.82 [12] \qquad \qquad 8.5 \qquad \qquad {}^{2}D^{o} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{1}P^{o} \qquad 7.30 [12] \qquad 8.82 [12] \qquad \qquad 8.5 \qquad \qquad {}^{2}D^{o} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{1}P^{o} \qquad 7.30 [12] \qquad \qquad 8.5 \qquad \qquad {}^{2}D^{o} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{1}P^{o} \qquad 7.30 [12] \qquad \qquad {}^{2}D^{o} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{1}P^{o} \qquad 7.30 [12] \qquad \qquad {}^{2}D^{o} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{1}P^{o} \qquad 7.30 [12] \qquad \qquad {}^{2}D^{o} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{1}P^{o} \qquad 7.30 [12] \qquad \qquad {}^{2}D^{o} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{1}P^{o} \qquad 7.30 [12] \qquad \qquad {}^{2}D^{o} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{1}P^{o} \qquad 7.30 [12] \qquad \qquad {}^{2}D^{o} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{1}P^{o} \qquad 7.30 [12] \qquad \qquad {}^{2}D^{o} \rightarrow 1 s^{2} p \; {}^{2}D^{o} \rightarrow 1 s^$	2] 2.8
${}^{2}P \rightarrow 1 s^{2} 2 p^{2} {}^{1}D_{2} \qquad 1.97 [10] 7.42 [12] \qquad 0 \qquad \qquad {}^{2}D^{\circ} \rightarrow 1 s^{2} 2 s^{2} p {}^{3}P^{\circ} \qquad 1.74 [14] 1.74 [14$	4] 66.1
$^{2}P \rightarrow 1s^{2}2p^{2} ^{3}P$ 9.50[13] 8.68[13] 76.8 $^{2}D^{\circ} \rightarrow 1s^{2}2p^{2} ^{1}D$ 9.55[12] 1.40	3] 3.6
$^{2}D \rightarrow 1s^{2}2s^{2} {}^{1}S$ 1.24[14] 1.14[14] 40.3 $^{2}D^{\circ} \rightarrow 1s^{2}2p^{2} {}^{3}P$ 7.25[13] 7.66	3] 27.5
$^{2}D \rightarrow 1s^{2}2s^{2}p^{-1}P^{\circ}$ 6.80[13] 6.42[13] 22.1 $^{4}S^{\circ} \rightarrow 1s^{2}2p^{2}{}^{3}P$ 3.85[13] 3.88	3] 100
${}^{2}D \rightarrow 1 s^{2} 2 s^{2} p \; {}^{3}P^{o} \qquad 1.72 [13] \qquad 2.26 [13] \qquad 5.6 \qquad 1 s^{2} s ({}^{3}S) 2 p^{3} \qquad {}^{2}S^{o} \rightarrow 1 s^{2} 2 p^{2} \; {}^{3}P \qquad 6.55 [13] \qquad 4.35 [13] \qquad 5.6 \qquad 1 s^{2} s^{2} s^{2} p^{2} $	3] 100
$^{2}\text{D} \rightarrow 1\text{s}^{2}\text{2}\text{p}^{2}$ ¹ S 3.43[12] 2.82[12] 1.1 $^{2}\text{P}^{\circ} \rightarrow 1\text{s}^{2}\text{2}\text{s}^{2}$ ¹ S 4.33[12] 2.67	2] 1.6
$^{2}D \rightarrow 1s^{2}2p^{2} ^{1}D$ 9.15[13] 9.22[13] 29.8 $^{2}P^{\circ} \rightarrow 1s^{2}2s^{2}p^{-1}P^{\circ}$ 1.28[14] 1.18	4] 46.9
$^{2}D \rightarrow 1s^{2}2p^{2}$ ^{3}P $3.37[12]$ $4.47[12]$ 1.1 $^{2}P^{0} \rightarrow 1s^{2}2s^{2}p$ $^{3}P^{0}$ $5.40[12]$ $7.38[12]$	2] 2.0
${}^{4}P \rightarrow 1s^{2}2s2p \; {}^{3}P^{o} \qquad 1.10[14] 1.18[14] 54.3 \qquad {}^{2}P^{o} \rightarrow 1s^{2}2p^{2} {}^{1}S \qquad 4.54[13] 4.68[13] 4.6$	3] 16.6
${}^{4}P \rightarrow 1s^{2}2p^{2} {}^{3}P \qquad 9.25[13] \qquad 9.48[13] \qquad 45.7 \qquad \qquad {}^{2}P^{o} \rightarrow 1s^{2}2p^{2} {}^{1}D \qquad 6.40[13] \qquad 6.23[13] \qquad 6.23[13] \qquad 6.23[13] \qquad 6.40[13] \qquad 6.40[13$	3] 23.4
$1s2p^{4} \qquad {}^{2}S \rightarrow 1s^{2}2s^{2} {}^{1}S \qquad 2.75[12] 3.04[11] \qquad 0.6 \qquad \qquad {}^{2}P^{o} \rightarrow 1s^{2}2p^{2} {}^{3}P \qquad 2.58[13] 3.47[12] 3.47$	3] 9.5
${}^{2}S \rightarrow 1s^{2}2s^{2}p {}^{1}P^{\circ} \qquad 4.15[12] \qquad 4.73[12] \qquad 1.0 \qquad {}^{2}D^{\circ} \rightarrow 1s^{2}2s^{2}p {}^{1}P^{\circ} \qquad 1.76[14] \qquad 1.71[12] \qquad 1.0 \qquad {}^{2}D^{\circ} \rightarrow 1s^{2}2s^{2}p {}^{1}P^{\circ} \qquad 1.76[14] \qquad 1.71[12] \qquad 1.0 \qquad {}^{2}D^{\circ} \rightarrow 1s^{2}2s^{2}p {}^{1}P^{\circ} \qquad 1.76[14] \qquad 1.71[12] \qquad 1.0 \qquad {}^{2}D^{\circ} \rightarrow 1s^{2}2s^{2}p {}^{1}P^{\circ} \qquad 1.76[14] \qquad 1.71[12] \qquad 1.0 \qquad {}^{2}D^{\circ} \rightarrow 1s^{2}2s^{2}p {}^{1}P^{\circ} \qquad 1.76[14] \qquad 1.71[12] \qquad 1.0 \qquad {}^{2}D^{\circ} \rightarrow 1s^{2}2s^{2}p {}^{1}P^{\circ} \qquad 1.76[14] \qquad 1.71[12] \qquad$	4] 54.5
${}^{2}S \rightarrow 1s^{2}2s^{2}p \; {}^{3}P^{\circ} \qquad 8.57[11] \qquad 1.48[12] \qquad 0.2 \qquad \qquad {}^{2}D^{\circ} \rightarrow 1s^{2}2s^{2}p \; {}^{3}P^{\circ} \qquad 6.85[12] \qquad 1.16[12] \qquad 0.2 \qquad \qquad (1.16)$	3] 2.1
${}^{2}S \rightarrow 1s^{2}2p^{2} {}^{1}S \qquad 2.43[14] 3.66[13] 56.3 \qquad {}^{2}D^{\circ} \rightarrow 1s^{2}2p^{2} {}^{1}D \qquad 1.18[14] 1.19[14] $	4] 36.5
$^{2}S \rightarrow 1s^{2}2p^{2}{}^{1}D$ 1.81[14] 1.87[14] 41.9 $^{2}D^{\circ}\rightarrow 1s^{2}2p^{2}{}^{3}P$ 2.22[13] 1.99	3] 6.9
${}^{2}P \rightarrow 1 s^{2} 2 s^{2} p {}^{1} P^{o} \qquad 2.73 [11] \qquad 5.19 [11] \qquad 0.1 \qquad \qquad {}^{4}S^{o} \rightarrow 1 s^{2} 2 p^{2} {}^{3}P \qquad 1.92 [14] \qquad 2.02 [14]$	4] 100
${}^{2}P \rightarrow 1 s^{2} 2 s^{2} p \; {}^{3}P^{\circ} \qquad 2.38 [11] \qquad 1.86 [11] \qquad 0.1 \qquad \qquad {}^{4}P^{\circ} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{3}P^{\circ} \qquad 1.35 [14] \qquad 1.38 [11] \qquad 0.1 \qquad \qquad {}^{4}P^{\circ} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{3}P^{\circ} \qquad 1.35 [14] \qquad 1.38 [11] \qquad 0.1 \qquad \qquad {}^{4}P^{\circ} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{3}P^{\circ} \qquad 1.35 [14] \qquad 1.38 [11] \qquad 0.1 \qquad \qquad {}^{4}P^{\circ} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{3}P^{\circ} \qquad 1.35 [14] \qquad 1.38 [11] \qquad 0.1 \qquad \qquad {}^{4}P^{\circ} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{3}P^{\circ} \qquad 1.35 [14] \qquad 1.38 [11] \qquad 0.1 \qquad \qquad {}^{4}P^{\circ} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{3}P^{\circ} \qquad 1.35 [14] \qquad 1.38 [11] \qquad 0.1 \qquad \qquad {}^{4}P^{\circ} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{3}P^{\circ} \qquad 1.35 [14] \qquad 1.38 [11] \qquad 0.1 \qquad \qquad {}^{4}P^{\circ} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{3}P^{\circ} \qquad 1.35 [14] \qquad 1.38 [11] \qquad 0.1 \qquad \qquad {}^{4}P^{\circ} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{3}P^{\circ} \qquad 1.35 [14] \qquad 1.38 [11] \qquad 0.1 \qquad \qquad {}^{4}P^{\circ} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{3}P^{\circ} \qquad 1.35 [14] \qquad 1.38 [11] \qquad 0.1 \qquad \qquad {}^{4}P^{\circ} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{3}P^{\circ} \qquad 1.35 [14] \qquad 1.38 [11] \qquad 0.1 \qquad \qquad {}^{4}P^{\circ} \rightarrow 1 s^{2} 2 s^{2} p \; {}^{3}P^{\circ} \qquad 1.35 [14] \qquad 1.38 [11] \qquad 0.1 \qquad \qquad {}^{4}P^{\circ} \rightarrow 1 s^{2} p \; {}^{4}P^{\circ} \rightarrow 1 s^{2$	4] 88.9
${}^{2}P \rightarrow 1 s^{2} 2 p^{2} {}^{1}D_{2} \qquad 6.95[10] 2.06[13] \qquad 0 \qquad {}^{4}P^{0} \rightarrow 1 s^{2} 2 p^{2} {}^{3}P \qquad 1.68[13] 1.45[14] 1.45[14] 1.$	3] 11.1
${}^{2}P \rightarrow 1 s^{2} 2 p^{2} {}^{3}P \qquad 2.15 [14] \qquad 1.90 [14] \qquad 99.8 \qquad {}^{4}D^{\circ} \rightarrow 1 s^{2} 2 s^{2} p {}^{3}P^{\circ} \qquad 1.84 [14] \qquad$	4] 90.4
$^{2}D \rightarrow 1s^{2}2s^{2} {}^{1}S$ 2.95[12] 7.35[9] 1.0 $^{4}D^{\circ} \rightarrow 1s^{2}2p^{2} {}^{3}P$ 1.96[13] 1.41	3] 9.6
$^{2}\text{D} \rightarrow 1\text{s}^{2}\text{2s}2\text{p} \ ^{1}\text{P}^{\text{o}}$ 1.35[12] 1.38[12] 0.5	
$^{2}\text{D} \rightarrow 1\text{s}^{2}\text{2s}2\text{p}^{3}\text{P}^{\circ}$ 2.73[11] 4.54[11] 0.1	
$^{2}\text{D} \rightarrow 1\text{s}^{2}\text{2}\text{p}^{2}^{1}\text{S}$ 1.25[13] 4.09[13] 4.2	
$^{2}\text{D} \rightarrow 1\text{s}^{2}\text{2}\text{p}^{2}$ ^{1}D 2.68[14] 2.74[14] 90.6	
$^{2}\text{D} \rightarrow 1\text{s}^{2}\text{2}\text{p}^{2}$ ^{3}P 1.05[13] 1.26[13] 3.6	
$^{4}P \rightarrow 1s^{2}2s2p \ ^{3}P^{o}$ 1.96[12] 2.50[12] 0.9	
$^{4}P \rightarrow 1s^{2}2p^{2} ^{3}P$ 2.08[14] 2.09[14] 99.1	

表 5 类硼 S 离子 K 壳层激发态 $1s2s^22p^2$, $1s2s2p^3$, $1s2p^{4/2}$, 4L(L = S, P, D) 的俄歇电子能量 (单位: eV) Table 5. The Auger electron energies of the K-shell excited resonance states $1s2s^22p^2$, $1s2s2p^3$, $1s2p^{4/2}$, 4L(L = S, P, D) in boron-like sulfur ion (unit: eV).

跃迁通	i道	本文	文献[17]	跃迁通道	Ì	本文	文献[17]
$1s2s^22p^2{}^2S_{1/2}$	$1 s^2 2 s^{21} S_0$	1836.41	1837.80	$1s2s(^3S)2p^{32}S_{1/2}$	$1s^22p^2 {}^3P_0$	1821.85	1825.18
	$1s^{2}2s^{2}p^{-1}P_{1}$	1788.16	1787.75		$1s^22p^2 {}^3P_1$	1821.27	1824.50
	1s²2s2p $^3\mathrm{P}_0$	1811.78	1812.97		$1s^22p^2 {}^3P_2$	1820.17	1823.49
	1s²2s2p $^3\mathrm{P}_1$	1811.23	1812.44	$1s2s(^3S)2p^3^2P_{1/2}$	$1 s^2 2 s^2 {}^1\!S_0$	1885.82	1888.35
	1s²2s2p $^3\mathrm{P}_2$	1810.06	1811.23		$1s^{2}2s2p \ ^{1}P_{0}$	1837.57	1838.30
	$1s^2 2p^2 \ ^1\!S_0$	1747.03	1746.35		$1s^{2}2s2p \ ^{3}P_{1}$	1861.19	1863.52
	$1 s^2 2 p^{2 \ 1} D_2$	1763.54	1763.33		$1s^22s2p\ ^3P_2$	1860.64	1862.99
$1s2s^22p^2\ ^2P_{1/2}$	$1 s^2 2 s 2 p \ ^1 P_1$	1783.02	1782.25		$1s^22s2p\ ^3P_3$	1859.47	1861.78
	$1s^{2}2s2p \ ^{3}P_{0}$	1806.64	1807.47		$1s^2 2p^2 {}^1S_0$	1796.44	1796.90
	$1s^22s2p\ ^3P_1$	1806.09	1806.94		$1s^2 2p^2 \ ^1D_2$	1812.95	1813.88
	$1s^22s2p\ ^3P_2$	1804.92	1805.74		$1s^2 2p^2 {}^3P_0$	1820.94	1823.09
	$1 s^2 2 p^2 \ ^1D_2$	1758.40	1757.84		$1s^22p^2{}^3P_1$	1820.36	1822.41
	$1s^22p^2 {}^3P_0$	1766.39	1767.05		$1 s^2 2 p^2 {}^3P_2$	1819.26	1821.40
	$1 s^2 2 p^2 {}^3\!P_1$	1765.81	1766.37	$1s2s(^3S)2p^3^2P_{3/2}$	$1 s^2 2 s^2 {}^1\!S_0$	1885.63	1888.87
	$1s^22p^2 {}^3P_2$	1764.71	1765.36		$1s^{2}2s2p \ ^{1}P_{0}$	1837.38	1838.83
$1s2s^22p^2\ ^2P_{3/2}$	$1s^{2}2s2p \ ^{1}P_{1}$	1784.97	1784.03		$1s^22s2p\ ^3P_1$	1861.00	1864.05
	$1s^22s2p \ ^3P_0$	1808.59	1809.25		$1s^22s2p\ ^3P_2$	1860.45	1863.51
	$1s^2 2s 2p\ ^3 P_1$	1808.04	1808.72		$1s^22s2p\ ^3P_3$	1859.28	1862.31
	$1s^22s2p\ ^3P_2$	1806.87	1807.52		$1s^2 2p^2 {}^1S_0$	1796.25	1797.43
	$1 s^2 2 p^{2 \ 1} D_2$	1760.35	1759.62		$1s^2 2p^2 \ ^1D_2$	1812.76	1814.41
	$1s^22p^2 {}^3P_0$	1768.34	1768.83		$1s^22p^2 {}^3P_0$	1820.75	1823.62
	$1 s^2 2 p^2 \ ^3 P_1$	1767.76	1768.15		$1 s^2 2 p^2 {}^3P_1$	1820.17	1822.94
	$1 s^2 2 p^2 {}^3\!P_2$	1766.66	1767.14		$1 s^2 2 p^2 {}^3P_2$	1819.07	1821.93
$1s2s^22p^2\ ^2D_{3/2}$	$1s^2 2s^2 \ ^1S_0$	1829.61	1830.38	$1s2s(^1S)2p^3^2P_{1/2}$	$1 s^2 2 s^2 {}^1\!S_0$	1875.27	1877.33
	$1s^{2}2s2p \ ^{1}P_{1}$	1781.36	1780.34		$1s^{2}2s2p \ ^{1}P_{0}$	1827.02	1827.28
	$1 s^2 2 s 2 p \ ^3 P_0$	1804.98	1805.56		$1s^22s2p\ ^3P_1$	1850.64	1852.50
	$1s^22s2p\ ^3P_1$	1804.43	1805.02		$1s^22s2p\ ^3P_2$	1850.09	1851.97
	1s²2s2p $^3\mathrm{P}_2$	1803.26	1803.82		$1s^22s2p\ ^3P_3$	1848.92	1850.77
	$1 s^2 2 p^{2 \ 1} S_0$	1740.23	1738.94		$1s^2 2p^2 {}^1S_0$	1785.89	1785.88
	$1 s^2 2 p^{2 \ 1} D_2$	1756.74	1755.92		$1s^2 2p^2 \ ^1D_2$	1802.40	1802.87
	$1s^22p^2 {}^3P_0$	1764.73	1765.13		$1s^22p^2 {}^3P_0$	1810.39	1812.08
	$1s^22p^2 {}^3P_1$	1764.15	1764.45		$1 s^2 2 p^2 {}^3P_1$	1809.81	1811.40
	$1s^22p^2 {}^3P_2$	1763.05	1763.44		$1s^22p^2 {}^3P_2$	1808.71	1810.39
$1s2s^22p^2\ ^2D_{5/2}$	$1s^22s^2 {}^1S_0$	1829.37	1830.33	$1s2s(^1S)2p^3^2P_{3/2}$	$1 s^2 2 s^2 {}^1\!S_0$	1875.94	1877.26
	$1s^{2}2s2p \ ^{1}P_{1} \\$	1781.12	1780.29		$1s^{2}2s2p \ ^{1}P_{0}$	1827.69	1827.21
	$1s^{2}2s2p \ ^{3}P_{0}$	1804.74	1805.51		$1s^22s2p\ ^3P_1$	1851.31	1852.43
	1s²2s2p $^3\mathrm{P}_1$	1804.19	1804.97		1s²2s2p $^3\mathrm{P}_2$	1850.76	1851.90
	1s²2s2p $^3\mathrm{P}_2$	1803.02	1803.77		$1s^22s2p\ ^3P_3$	1849.59	1850.70
	$1 s^2 2 p^2 {}^1\!S_0$	1739.99	1738.89		$1 s^2 2 p^{2 \ 1} S_0$	1786.56	1785.81
	$1s^2 2p^2 \ ^1D_2$	1756.50	1755.87		$1 s^2 2 p^{2 \ 1} D_2$	1803.07	1802.80
	$1 s^2 2 p^2 {}^3\!P_0$	1764.49	1765.08		$1 s^2 2 p^2 {}^3P_0$	1811.06	1812.01
	$1 s^2 2 p^2 {}^3\!P_1$	1763.91	1764.40		$1 s^2 2 p^2 {}^3\mathrm{P}_1$	1810.48	1811.33
	$1s^22p^2 {}^3P_2$	1762.81	1763.39		$1s^22p^2 {}^3P_2$	1809.38	1810.32

表 5 (续) 类硼 S 离子 K 壳层激发态 1s2s²2p², 1s2s2p³, 1s2p^{4 2, 4}L(L = S, P, D) 的俄歇电子能量 (单位: eV) Table 5 (continued). The Auger electron energies of the K-shell excited resonance states 1s2s²2p², 1s2s2p³, 1s2p^{4 2, 4}L(L = S, P, D) in boron-like sulfur ion (unit: eV).

跃迁	通道	本文	文献[17]	跃迁通道	1	本文	文献[17]
$1s2p^{4}{}^{2}S_{1/2}$	$1 s^2 2 s^{2 \ 1} S_0$	1926.23	1930.57	$\rm 1s2s(^3S)2p^3^2D_{3/2}$	$1s^{2}2s2p \ ^{1}P_{0}$	1829.45	1831.14
	$1 {\rm s}^2 2 {\rm s} 2 {\rm p} \ ^1 {\rm P}_1$	1877.98	1880.52		$1s^22s2p \ ^3P_0$	1853.07	1856.36
	1s²2s2p $^3\mathrm{P}_0$	1901.60	1905.75		1s²2s2p $^3\mathrm{P}_1$	1852.52	1855.83
	1s²2s2p $^3\mathrm{P}_1$	1901.05	1905.21		1s²2s2p $^3\mathrm{P}_2$	1851.35	1854.62
	1s²2s2p $^3\mathrm{P}_2$	1899.88	1904.01		$1 s^2 2 p^{2 \ 1} D_2$	1804.83	1806.72
	$1 s^2 2 p^2 {}^1\!S_0$	1836.85	1839.13		$1 s^2 2 p^2 {}^3P_0$	1812.82	1815.93
	$1s^2 2p^{2\;1} D_2$	1853.36	1856.11		$1 s^2 2 p^2 \ ^3P_1$	1812.24	1815.25
$1s2p^4{}^2P_{1/2}$	$1 s^2 2 s 2 p \ ^1 P_1$	1865.46	1867.17		$1 s^2 2 p^2 \ ^3 P_2$	1811.14	1814.24
	$1s^22s2p \ ^3P_0$	1889.08	1892.39	$1s2s(^3S)2p^3^2D_{5/2}$	$1 s^2 2 s 2 p \ ^1 P_0$	1829.17	1830.60
	$1s^{2}2s2p \ ^{3}P_{1}$	1888.53	1891.86		$1 s^2 2 s 2 p \ ^3 P_0$	1852.79	1855.82
	$1 s^2 2 s 2 p \ ^3 P_2$	1887.36	1890.66		$1s^22s2p\ ^3P_1$	1852.24	1855.28
	$1s^2 2p^{2\;1} D_2$	1840.84	1842.76		$1s^22s2p\ ^3P_2$	1851.07	1854.08
	$1s^22p^2 {}^3P_0$	1848.83	1851.97		$1s^2 2p^{2\;1} D_2$	1804.55	1806.18
	$1 s^2 2 p^2 {}^3P_1$	1848.25	1851.29		$1 s^2 2 p^{2 \ 3} P_0$	1812.54	1815.39
	$1 s^2 2 p^2 {}^3\mathrm{P}_2$	1847.15	1850.28		$1 s^2 2 p^{2\ 3} P_1$	1811.96	1814.71
$\rm 1s2p^{4}{}^2P_{3/2}$	$1 s^2 2 s 2 p \ ^1 P_1$	1865.22	1866.27		$1 s^2 2 p^{2 \ 3} P_2$	1810.86	1813.70
	$1s^22s2p \ ^3P_0$	1888.84	1891.50	$1s2s(^1S)2p^{3\;2}D_{3/2}$	$1 s^2 2 s 2 p \ ^1 P_0$	1819.51	1819.23
	1s²2s2p $^3\mathrm{P}_1$	1888.29	1890.96		$1s^{2}2s2p \ ^{3}P_{0}$	1843.13	1844.45
	1s²2s2p $^3\mathrm{P}_2$	1887.12	1889.76		$1s^22s2p\ ^3P_1$	1842.58	1843.92
	$1 s^2 2 p^{2 \ 1} D_2$	1840.60	1841.86		1s²2s2p $^3\mathrm{P}_2$	1841.41	1842.71
	$1s^22p^2 {}^3P_0$	1848.59	1851.07		$1 s^2 2 p^{2 \ 1} D_2$	1794.89	1794.81
	$1 s^2 2 p^2 {}^3\!P_1$	1848.01	1850.39		$1 s^2 2 p^2 {}^3P_0$	1802.88	1804.02
	$1 s^2 2 p^2 {}^3P_2$	1846.91	1849.38		$1 s^2 2 p^2 {}^3P_1$	1802.30	1803.35
$1s2p^{4}{}^{2}D_{3/2}$	$1 s^2 2 s^{2 \ 1} S_0$	1910.16	1913.47		$1 s^2 2 p^2 {}^3\mathrm{P}_2$	1801.20	1802.33
	$1 s^2 2 s 2 p \ ^1 P_1$	1861.91	1863.42	$1s2s(^1S)2p^3^2D_{5/2}$	$1 s^2 2 s 2 p \ ^1 P_0$	1819.71	1819.38
	$1s^{2}2s2p \ ^{3}P_{0}$	1885.53	1888.64		$1s^{2}2s2p \ ^{3}P_{0}$	1843.33	1844.60
	1s²2s2p $^3\mathrm{P}_1$	1884.98	1888.11		$1s^22s2p\ ^3P_1$	1842.78	1844.07
	1s²2s2p $^3\mathrm{P}_2$	1883.81	1886.91		1s²2s2p $^3\mathrm{P}_2$	1841.61	1842.86
	$1s^2 2p^2 {}^1\!S_0$	1820.78	1822.02		$1 s^2 2 p^{2 \ 1} D_2$	1795.09	1794.96
	$1 s^2 2 p^{2 \ 1} D_2$	1837.29	1839.01		$1s^22p^2 {}^3P_0$	1803.08	1804.17
	$1s^22p^2 {}^3P_0$	1845.28	1848.22		$1 s^2 2 p^2 {}^3P_1$	1802.50	1803.50
	$1s^22p^2 {}^3P_1$	1844.70	1847.54		$1s^22p^2 \ ^3P_2$	1801.40	1802.49
	$1s^22p^2 {}^3P_2$	1843.60	1846.53	$\rm 1s2s(^3S)2p^3\ ^4S_{3/2}$	$1s^22p^2 {}^3P_0$	1807.49	1810.50
$1s2p^{4}{}^{2}D_{5/2}$	$1s^22s^2 {}^1S_0$	1909.99	1913.40		$1s^22p^2 {}^3P_1$	1806.91	1809.82
	$1s^22s2p\ ^1P_1$	1861.74	1863.35		$1s^22p^2 {}^3P_2$	1805.81	1808.81
	$1s^22s2p\ ^3P_0$	1885.36	1888.57	$\rm 1s2s(^1S)2p^3\ ^4S_{3/2}$	$1s^22p^2 {}^3P_0$	1785.26	1785.14
	$1s^22s2p \ ^3P_1$	1884.81	1888.04		$1s^22p^2 {}^3P_1$	1784.68	1784.46
	$1s^{2}2s2p \ ^{3}P_{2}$	1883.64	1886.84		$1s^22p^2 {}^3P_2$	1783.58	1783.45
	$1s^2 2p^2 {}^1\!S_0$	1820.61	1821.95	$\rm 1s2s(^3S)2p~^3~^4P_{1/2}$	$1s^{2}2s2p \ ^{3}P_{0}$	1831.31	1832.66
	$1s^22p^2 {}^1D_2$	1837.12	1838.94		$1s^{2}2s2p \ ^{3}P_{1}$	1830.76	1832.13
	$1s^22p^2 {}^3P_0$	1845.11	1848.15		$1s^{2}2s2p \ ^{3}P_{2}$	1829.59	1830.93
	$1s^22p^2 {}^3P_1$	1844.53	1847.47		$1s^22p^2 \ ^3P_0$	1791.06	1792.24
	$1s^22p^2 {}^3P_2$	1843.43	1846.46		$1s^22p^2 {}^3P_1$	1790.48	1791.56

表 5 (续) 类硼 S 离子 K 壳层激发态 1s2s²2p², 1s2s2p³, 1s2p^{4 2, 4}L(L = S, P, D) 的俄歇电子能量 (单位: eV) Table 5 (continued). The Auger electron energies of the K-shell excited resonance states 1s2s²2p², 1s2s2p³, 1s2p^{4 2, 4}L(L = S, P, D) in boron-like sulfur ion (unit: eV).

跃迁通	İ道	本文	文献[17]	跃迁通道	Ĺ	本文	
$1s2s^22p^2\ ^4P_{1/2}$	$1s^{2}2s2p \ ^{3}P_{0}$	1792.86	1791.05		$1 s^2 2 p^{2 \ 3} P_2$	1789.38	1790.55
	$1 s^2 2 s 2 p \ ^3 P_1$	1792.31	1790.51	$1s2s(^3S)2p^3{}^4P_{3/2}$	$1s^22s2p\ ^3P_0$	1831.12	1832.56
	$\rm 1s^2 2s 2p \ ^3 P_2$	1791.14	1789.31		$1s^22s2p \ ^3P_1$	1830.57	1832.03
	$1 s^2 2 p^2 {}^3P_0$	1752.61	1750.62		$1 s^2 2 s 2 p \ ^3 P_2$	1829.40	1830.83
	$1 s^2 2 p^2 {}^3P_1$	1752.03	1749.94		$1 s^2 2 p^2 {}^3P_0$	1790.87	1792.14
	$1 s^2 2 p^2 {}^3P_2$	1750.93	1748.93		$1 s^2 2 p^2 {}^3P_1$	1790.29	1791.46
$1s2s^22p^2\ ^4P_{3/2}$	$1s^{2}2s2p \ ^{3}P_{0}$	1793.53	1791.83		$1 s^2 2 p^{2 \ 3} P_2$	1789.19	1790.45
	$1 s^2 2 s 2 p \ ^3 P_1$	1792.98	1791.30	$1s2s(^3S)2p^3{}^4P_{5/2}$	$1s^22s2p \ ^3P_0$	1831.04	1832.48
	$\rm 1s^2 2s 2p \ ^3 P_2$	1791.81	1790.09		$1s^22s2p \ ^3P_1$	1830.49	1831.95
	$1 s^2 2 p^2 {}^3P_0$	1753.28	1751.40		$1 s^2 2 s 2 p \ ^3 P_2$	1829.32	1830.75
	$1 s^2 2 p^2 {}^3P_1$	1752.70	1750.72		$1 s^2 2 p^2 {}^3P_0$	1790.79	1792.06
	$1 s^2 2 p^2 {}^3P_2$	1751.60	1749.71		$1 s^2 2 p^2 {}^3P_1$	1790.21	1791.38
$1s2s^22p^2\ ^4P_{5/2}$	$1s^22s2p\ ^3P_0$	1794.37	1792.66		$1 s^2 2 p^2 {}^3P_2$	1789.11	1790.37
	$1 s^2 2 s 2 p \ ^3 P_1$	1793.82	1792.13	$\rm 1s2s(^3S)2p^3\ ^4D_{1/2}$	$1s^22s2p\ ^3P_0$	1823.15	1824.54
	$\rm 1s^2 2s 2p\ ^3 P_2$	1792.65	1790.92		$1 s^2 2 s 2 p \ ^3 P_1$	1822.60	1824.01
	$1 s^2 2 p^2 {}^3P_0$	1754.12	1752.23		$1 s^2 2 s 2 p \ ^3 P_2$	1821.43	1822.80
	$1 s^2 2 p^2 {}^3P_1$	1753.54	1751.55		$1 s^2 2 p^2 {}^3P_0$	1782.90	1784.11
	$1 s^2 2 p^2 {}^3P_2$	1752.44	1750.54		$1 s^2 2 p^{2 \ 3} P_1$	1782.32	1783.43
$1s2p^4{}^4P_{1/2}$	$1s^22s2p\ ^3P_0$	1873.83	1876.31		$1 s^2 2 p^2 {}^3\mathrm{P}_2$	1781.22	1782.42
	$1 s^2 2 s 2 p \ ^3 P_1$	1873.28	1875.78	$\rm 1s2s(^3S)2p^3\ ^4D_{3/2}$	$1s^22s2p \ ^3P_0$	1823.15	1824.49
	$1 s^2 2 s 2 p \ ^3 P_2$	1872.11	1874.57		$1 s^2 2 s 2 p \ ^3 P_1$	1822.60	1823.96
	$1s^22p^2^3P_0$	1833.58	1835.88		$1 s^2 2 s 2 p \ ^3 P_2$	1821.43	1822.75
	$1 s^2 2 p^2 {}^3P_1$	1833.00	1835.20		$1s^22p^2^3P_0$	1782.90	1784.06
	$1 s^2 2 p^2 {}^3P_2$	1831.90	1834.19		$1 s^2 2 p^2 {}^3P_1$	1782.32	1783.39
$1s2p^4\ {}^4P_{3/2}$	$1s^22s2p \ ^3P_0$	1873.24	1875.77		$1 s^2 2 p^2 {}^3P_2$	1781.22	1782.38
	$1 s^2 2 s 2 p \ ^3 P_1$	1872.69	1875.24	$1s2s(^3S)2p^3\ ^4D_{5/2}$	$1s^22s2p\ ^3P_0$	1823.06	1824.41
	$1 s^2 2 s 2 p \ ^3 P_2$	1871.52	1874.03		$1s^22s2p\ ^3P_1$	1822.51	1823.88
	$1 s^2 2 p^2 {}^3P_0$	1832.99	1835.34		$1 s^2 2 s 2 p \ ^3 P_2$	1821.34	1822.67
	$1 s^2 2 p^2 {}^3P_1$	1832.41	1834.66		$1s^2 2p^2 {}^3P_0$	1782.81	1783.98
	$1 s^2 2 p^2 {}^3P_2$	1831.31	1833.65		$1 s^2 2 p^2 {}^3P_1$	1782.23	1783.30
$1s2p^4\ {}^4P_{5/2}$	$1s^22s2p\ ^3P_0$	1871.99	1874.50		$1 s^2 2 p^2 {}^3P_2$	1781.13	1782.29
	$1 s^2 2 s 2 p \ ^3 P_1$	1871.44	1873.96	$1s2s(^3S)2p^3\ ^4D_{7/2}$	$1 s^2 2 s 2 p \ ^3 P_1$	1822.20	1823.70
	$1 s^2 2 s 2 p \ ^3 P_2$	1870.27	1872.76		$1 s^2 2 s 2 p \ ^3 P_2$	1821.03	1822.50
	$1s^2 2p^2 {}^3\!P_0$	1831.74	1834.07		$1 s^2 2 p^2 {}^3P_1$	1781.92	1783.13
	$1 s^2 2 p^2 {}^3\!P_1$	1831.16	1833.39		$1 s^2 2 p^2 {}^3P_2$	1780.82	1782.12
	$1 s^2 2 p^{2 \ 3} P_2$	1830.06	1832.38				

参考文献

- Altun Z, Yumak A, Badnell N R, Colgan J, Pindzol M S 2004 A&A 420 775
- [2] Rohringer N, Ryan D, London R A, Purvis M, Albert F, Dunn J, Bozek J D, Bostedt C, Graf A, Hill R, Hau-Riege S P, Rocca J J 2012 Nature 481 488
- [3] Martin A, Nicolas G, Jacques S 2006 Nucl. Phys. A 777 1
- [4] Feng L, Jiang G 2017 Acta Phys. Sin. 66 153201 (in Chinese)
 [冯雷, 蒋刚 2017 物理学报 66 153201]
- [5] Rødbro M, Bruch R, Bisgaard P 1979 J. Phys. B: At. Mol. Opt. Phys. 12 2413
- [6] Schneider D, Bruch R, Butscher W, Schwarz W H E 1981 Phys. Rev. A 24 1223
- [7] Bruch R, Schneider D, Schwarz W H E, Meinhart M, Johnson B M, Taulbjerg K 1979 Phys. Rev. A 19 587

- [8] Itoh A, Schneider D, Schneider T, Zouros T J M, Nolte G, Schiwietz G, Zeitz W, Stolterfoht N 1985 Phys. Rev. A 31 684
- [9] Kádár I, Ricz S, Végh J, Sulik B, Varga D, Berényi D 1990 *Phys. Rev. A* 41 3518
- [10] Armour I A, Fawcett B C, Silver J D, Trabert E 1980 J. Phys. B: Atom. Molec. Phys. 13 2701
- [11] Trabertt E, Fawcett B C 1979 J. Phys. B: Atom. Molec. Phys. 12 L441
- [12] Faenov A Y 1994 Phys. Scr. 49 41
- [13] Schlachter A S, Sant'Anna M M, Covington A M, Aguilar A, Gharaibeh M F, Emmons E D, Scully S W J, Phaneuf R A, Hinojosa G, Álvarez I, Cisneros C, Müller A, McLaughlin B M 2004 J. Phys. B: At. Mol. Opt. Phys. 37 L103
- [14] Gharaibeh M F, Hassan N E I, Shorman M M A L, Bizau J M, Cubaynes D, Guilbaud S, Sakho I, Blancard C, McLaughlin B M 2014 J. Phys. B: At. Mol. Opt. Phys. 47 065201
- [15] Müller A, Borovik A, Buhr T, Hellhund J, Holste K, Kilcoyne A L D, Klumpp S, Martins M, Ricz S, Viefhaus J, Schippers S 2018 Phys. Rev. A 97 013409
- [16] Müller A, Borovik A, Buhr J T, Hellhund J, Holste K, Kilcoyne A L D, Klumpp S, Martins M, Ricz S, Viefhaus J, Schippers S 2015 *Phys. Rev. Lett.* **114** 013002

- [17] Chen M H, Crasemann B 1988 At. Data Nucl. Data Tables 38 381
- [18] Chen M H, Crasemann B 1987 Phys. Rev. A 35 4579
- [19] Safronova U I, Shlyaptseva A S 1996 Phys. Scr. 54 254
- [20]~ Zhou F Y, Ma Y L, Qu Y Z 2016 Phys. Rev. A 93~060501
- [21] Sakho I, Sow M, Wagué A 2015 Phys. Scr. 90 045401
- [22]~ Sun Y, Chen F, Gou B C 2011 J. Chem. Phys. 135 124309
- [23] Sun Y, Gou B C, Chen C 2013 Phys. Rev. A 87 032509
- [24] Chung K T 1979 *Phys. Rev. A* **20** 1743
- [25] Lin B, Berry H G, Shibata T, Livingston A E, Garnir H P, Bastin T, Désesquelles J, Savukov I 2003 J. Phys. B: At. Mol. Opt. Phys. 67 062507
- [26] Drake G W F 1982 Adv. At. Mol. Phys. 18 399
- [27] Chung K T, Zhu X W, Wang Z W 1993 Phys. Rev. A 47 1740
- [28] Drake G W F, Swainson R A 1990 Phys. Rev. A 41 1243
- [29] Chung K T, Davis B F 1982 Phys. Rev. A 26 3278
- [30] Davis B F, Chung K T 1984 Phys. Rev. A 29 1878
- [31] Kramida A, Ralchenko Yu, Reader J, NIST ASD Team 2018 *NIST Atomic Spectra Database* (ver. 5.6.1) [Online]. Available: https://physics.nist.gov/asd [2019, March 28]. National Institute of Standards and Technology, Gaithersburg, MD. DOI: https://doi.org/10.18434/T4W30F

Radiative and Auger transitions of K-shell excited resonance states in boron-like sulfur ion^{*}

 $\begin{array}{cccc} {\rm Sun}\;{\rm Yan}^{\,1)\dagger} & {\rm Hu}\;{\rm Feng}^{\,1)} & {\rm Sang}\;{\rm Cui}{\rm -}{\rm Cui}^{\,2)} & {\rm Mei}\;{\rm Mao}{\rm -}{\rm Fei}^{\,1)} \\ & {\rm Liu}\;{\rm Dong}{\rm -}{\rm Dong}^{\,1)} & {\rm Gou}\;{\rm Bing}{\rm -}{\rm Cong}^{\,3)} \end{array}$

1) (School of Mathematic and Physical Science, Xuzhou University of Technology, Xuzhou 221018, China)

2) (College of Science, Lanzhou University of Technology, Lanzhou 730050, China)

3) (School of Physics, Beijing institute of Technology, Beijing 100081, China)

(Received 2 April 2019; revised manuscript received 11 June 2019)

Abstract

Non-relativistic energy values and wave functions of the K-shell excited resonance states $1s2s^22p^2$, $1s2s2p^3$, $1s2p^{4\,2,\,4}L$ (L = S, P, D) in boron-like sulfur ion are calculated in the frame of multi-configuration saddle-point variation method. The electron correlation effects are considered by the expansion of configuration wave function. The wave functions are constructed and optimized by the orbital-spin angular momentum partial waves selected based on the rule of configuration interaction. To saturate the wave functional space and to improve the non-relativistic energy, the restricted variational method is used to calculate the restricted variational energy. Then, the mass polarization effect and relativistic correction are calculated by the perturbation theory. The quantum electrodynamics (QED) effect and higher-order relativistic correction are considered by the screened hydrogenic formula. Furthermore, the energy shift originating from the interaction between closed channel and open channel is also calculated. Finally, the accurate relativistic energy levels for these resonance states are obtained by adding the non-relativistic energy and all corrections.

Using the optimized wave functions, the line strengths, oscillator strengths, radiative transition rates and transition wavelengths of electric-dipole transitions for the K-shell excited resonance states in boron-like sulfur ion are systematically calculated. In this work, the oscillator strengths and transition rates are given in the length, velocity, and acceleration gauges. The good agreement among the three gauges reflects that the calculated wave functions are reasonably accurate. The calculated radiative transition rates and transition wavelengths are compared with other theoretical data. Good agreement is obtained except the transition: $1s2s(^{3}S)2p^{3} \ ^{2}P^{o} \rightarrow 1s2^{2}s2p^{2} \ ^{2}D$. The deviation between our theoretical result and the MCDF theoretical value is about 46%, which needs further verifying. The Auger rates, Auger branching ratios, and Auger electron energy values of the important decay channels of the K-shell excited states are calculated by the saddle-point complexrotation method. The calculated Auger rates and Auger electron energy values are also in good agreement with the corresponding reference data. For some K-shell states, the related energy levels and Auger branching ratios are reported for the first time. The present calculations results will provide valuable theoretical data for the calibration of spectral lines and Auger electron spectra in the relevant experiments.

Keywords: K-shell excited resonance state, radiative transition, Auger transition, Auger electron

PACS: 31.15.A–, 32.30.Rj, 32.80.Zb

DOI: 10.7498/aps.68.20190481

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11604284, 51506184), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 17KJB140025), and Sun Yan is supported by the Qinlan Project of Jiangsu Province, China.

 $[\]dagger~$ Corresponding author. E-mail:suenyangu@163.com