物理学报 Acta Physica Sinica

Institute of Physics, CAS

基于旋转永磁体的超低频机械天线电磁特性分析

施伟 周强 刘斌

Performance analysis of spinning magnet as mechanical antenna Shi Wei Zhou Qiang Liu Bin 引用信息 Citation: Acta Physica Sinica, 68, 188401 (2019) DOI: 10.7498/aps.68.20190339 在线阅读 View online: https://doi.org/10.7498/aps.68.20190339

当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

空心圆柱形永磁体内径对单畴GdBCO超导块材磁悬浮力的影响

Effect of inner diameter of hollow cylindrical permanent magnet on levitation force of single domain GdBCO bulk superconductor 物理学报. 2018, 67(7): 077401 https://doi.org/10.7498/aps.67.20172418

在永磁体强磁场中Mn1.2Fe0.8P1-xSix系列化合物热磁发电研究 Thermomagnetic power generation of Mn1.2Fe0.8P1-xSix compounds in strong field of permanent magnet 物理学报. 2015, 64(4): 047103 https://doi.org/10.7498/aps.64.047103

基于哈密顿函数的永磁同步电机混沌系统鲁棒控制

Robust control for permanent magnet synchronous motors based on Hamiltonian function 物理学报. 2015, 64(9): 090503 https://doi.org/10.7498/aps.64.090503

基于有限元法的光子并矢格林函数重整化及其在自发辐射率和能级移动研究中的应用

Renormalization of photon dyadic Green function by finite element method and its applications in the study of spontaneous emission rate and energy level shift

物理学报. 2018, 67(19): 193102 https://doi.org/10.7498/aps.67.20180898

永磁同步风力发电机随机分岔现象的全局分析

Global analysis of stochastic bifurcation in permanent magnet synchronous generator for wind turbine system 物理学报. 2017, 66(19): 190501 https://doi.org/10.7498/aps.66.190501

基于永磁恒定磁场激励的起始磁化曲线测量

Measurement of initial magnetization curve based on constant magnetic field excited by permanent magnet 物理学报. 2016, 65(14): 148101 https://doi.org/10.7498/aps.65.148101

基于旋转永磁体的超低频机械 天线电磁特性分析^{*}

施伟† 周强 刘斌

(国防科技大学第六十三研究所,南京 210007)

(2019年3月10日收到; 2019年5月23日收到修改稿)

在甚低频 (3—30 kHz) 及以下频段, 与波长相比, 传统天线属于电小辐射体, 因此辐射效率很低. 如果将 永磁体进行机械旋转, 可以获得时变电磁场. 与传统天线相比, 旋转永磁体将机械能向电能转换, 不需要阻抗 匹配网络, 提高了辐射效率. 为了计算旋转永磁体的电磁特性, 本文基于安培环路电流理论, 研究了空间正交 磁偶极子与机械旋转永磁体的场等效关系. 在此基础上, 采用无限大空间并矢格林函数, 并引入旋转永磁体 的初始旋转角参数, 推导了空间正交磁偶极子场分布的通用解析表达式, 作为分析旋转永磁体及其阵列的近 场和远场分布的理论模型. 仿真表明, 当钕铁硼 (NdFeB) 永磁体剩余磁感应强度 *B*_r = 0.8 T、体积 *V* = 270 cm³、转速为 9600 r/min 时, 对应频率为 160 Hz, 在自由空间 1 km 的位置, 将产生 15 fT 的磁场; 在海水介质中, 当 传输距离为 250 m 时, 磁场快速衰减到 1 fT. 本文提出采用旋转永磁体阵列对近场分布特性进行调控, 仿真 结果表明: 将两个相同的旋转永磁体组成二元阵, 将使近区磁感应强度提高 3 dB; 改变阵元距离和初始旋转角, 可改变近区磁场分布方向图. 机械旋转永磁体为实现小型超低频发射天线提供了新的解决思路.

关键词:机械天线,永磁体,磁偶极子,并矢格林函数 PACS: 84.40.Ba, 41.20.Jb

DOI: 10.7498/aps.68.20190339

1 引 言

在微波与毫米波频段,小口径的天线就可以获 得较高增益,满足高速大容量通信需求.然而在特 殊应用场合,例如地下和水下的通信与探测,微波 与毫米波迅速衰减,难以穿透传播至较深位置,应 用范围严重受限.而超低频电磁波(30—300 Hz) 在一般导电介质中趋肤深度大、衰减慢、传播距离 长,例如,设海水电导率为4 S/m,相对介电常数 为81,则频率为160 Hz的电磁波在海水中的趋肤 深度为20 m,有望穿透海水实现深水通信与探测. 但是,超低频电磁波在空气中的波长为1000— 10000 km,尽管超低频天线尺寸庞大,但与波长相 比,仍然属于电小天线,因此,超低频天线辐射电 阻小,Q值高,带宽窄,必须加入阻抗匹配网络,才 能实现超低频天线的阻抗匹配,但这会显著增加损 耗电阻,导致超低频天线辐射效率很低.美国典型 的超低频岸对潜发信台,尽管发信速率很低,但发 信台占地面积仍然很大,发信功率达到兆瓦量级[1]. 因此,必须研究一种新型天线技术,能显著降低超 低频发射天线的尺寸,提高辐射效率.有学者对压 电薄膜进行非对称激励,由对称破缺效应产生电磁 辐射,能使天线尺寸摆脱对波长的依赖^[2].采用分 层的铁磁/压电异质结构形成磁电型天线,能够以 很小的电尺寸,产生甚高频辐射场[3-6],但这些新 技术尚未能拓展应用于 VLF 以下频段. 为此, 美国 国防高级研究计划局 DARPA (Defense Advanced Research Projects Agency)于 2017年1月提出并 资助机械天线研究项目¹⁷,主要思想是将驻极体或 永磁体机械运动,产生超低频时变场用于水下通 信. 与传统电激励的天线技术不同, 机械天线将机

* 国防预研基金 (批准号: 6140518030108) 和国防科技大学研究基金 (批准号: ZK17-02-05) 资助的课题.

© 2019 中国物理学会 Chinese Physical Society

[†] 通信作者. E-mail: W.Shi@nudt.edu.cn

械能向电磁能转换,不需要阻抗匹配网络,有望实 现高效小型化的超低频发信机.

在 DARPA 的资助下, 面向特低频 (300 Hz-3 kHz) 和甚低频 (3-30 kHz) 应用, 涌现出各形机 械天线的设计概念[8-10]. 驻极体能长期存储空间电 荷或偶极电荷,机械驱动驻极体线性位移振动或者 旋转,可以产生类似电偶极子的时变电磁场[11,12]. 驻极体机械天线是基于电偶极子辐射机理,相对于 旋转永磁体,同等条件下辐射效率高,但要在驻极 体上产生稳定持久、高密度的静电荷 (10-6 C/m² 以上)存在技术难度,因此,较多研究机构选择旋 转永磁体作为机械天线的方案. 美国弗吉利亚理工 学院研究了旋转永磁体作为机械天线用于水下导 航的场强计算表达式^[13],但未给出详细推导过程. 文献 [14] 基于矢量磁位, 详细推导了旋转永磁体的 电磁场表达式,该表达式与永磁体剩余磁感应强 度 B,和体积 V相关,该方法针对性强,但通用性 较弱,难以通过电磁场对偶原理快速获取旋转驻极 体(注:另一种机械天线)的场分布.美国加州大学 洛杉矶分校选择旋转永磁体产生时变场,虽然给出 了旋转永磁体场强计算表达式[15,16],但均为近似条 件下的远场分布,未研究其近场特性.实际上,旋 转永磁体的远区场很微弱,难以探测接收,而近场 通信有可能是旋转永磁体的重要应用方向,因此有 必要重点研究其近场传播特性. 文献 [17] 提出旋转 永磁体阵列应用的设计概念, 但未给出仿真结果.

为了研究旋转永磁体机械天线的基础理论,首 先需要建立无限大空间旋转永磁体的场强计算模 型,能够适应有耗介质,分析近场和远场,为后续 研究旋转永磁体在分层介质中的电磁特性打下基 础. 本文研究了旋转永磁体和空间正交磁偶极子的 等效关系.与文献 [14] 的方法不同,本文基于并矢 格林函数,将旋转永磁体的初始旋转角等效为正交 磁偶极子的初始相角,详细推导了空间正交磁偶极 子在无限大空间中的场强计算表达式,从而获得旋 转永磁体在无限大空间中的通用分析模型. 该模型 适用于任何有耗介质下的近场和远场计算,在形式 上与旋转驻极体的电磁场表达式是统一的,可以通 过电磁场对偶原理快速得到旋转驻极体的电磁场 计算表达式,无需重新推导,因此,与文献 [14] 中 矢量磁位的方法相比,通用性较强.将该方法计算 结果与文献 [13] 进行对比, 符合很好, 验证了本文 方法的有效性. 本文以钕铁硼 (NdFeB) 永磁体为 例, 其剩余磁感应强度 $B_r = 0.8 \text{ T}$ 、体积 $V = 270 \text{ cm}^3$ (30 mm × 30 mm × 300 mm), 给出了磁场水平 分量 B_{\varphi}在不同介质环境下随距离和频率的变化曲 线.为了增加近区场强,本文提出采用小尺寸旋转 永磁体组阵, 通过场的空间合成方法增加场强有效 覆盖距离, 通过调整阵元间距和初始旋转角, 对场 分布特性进行灵活调控.本文以两个旋转永磁体组 成二元阵, 假设阵元之间初始旋转角相同, 在自由 空间和海水两种环境下, 仿真计算了近区磁场分布 方向图. 仿真表明, 当阵元间距选择适当时, 近区 B_{\varphi}能增加 3 dB. 如果永磁体阵元之间的初始旋转 角不同, 可以对近区 B_{\varphi}的方向图形状进行灵活调 控. 这一结论为进一步研究数量更多的旋转永磁体 阵列打下基础.

本文的内容构成如下:第2节仿真验证了永磁 体和磁偶极子在一定区域内的场分布等效关系,说 明旋转永磁体可以等效为旋转磁偶极子;第3节推 导了旋转磁偶极子和空间正交磁偶极子的等效关 系,并基于空间正交磁偶极子模型,用并矢格林函 数,详细推导了空间正交磁偶极子的场强模型,该 模型可用于分析旋转永磁体的电磁特性;第4节给 出了旋转永磁体及其二元阵列的相关仿真结果; 第5节给出了相关研究结论.

2 永磁体模型

设矩形永磁体 (长 *a* × 宽 *b* × 高 *h*) 中心位于 坐标原点,其尺寸标识如图 1 所示.根据安培环路 定理,推导得出矩形永磁体的外部磁场微积分表达 式为^[18]

图 1 永磁体和等效磁偶极子坐标示意图 (a) 永磁体; (b) 电流环(磁偶极子)

Fig. 1. Schematic illustration of permanent magnet and equivalent magnetic dipole: (a) Permanent magnet; (b) equivalent magnetic dipole.

$$B_{x} = \frac{\mu_{0}J_{m}}{4\pi} \int_{-h/2}^{h/2} \int_{-a/2}^{a/2} (z - z') \left\{ \frac{1}{\left[(x - b/2)^{2} + (y - y')^{2} + (z - z')^{2} \right]^{3/2}} - \frac{1}{\left[(x + b/2)^{2} + (y - y')^{2} + (z - z')^{2} \right]^{3/2}} \right\} dy dz,$$
(1a)

$$B_{y} = \frac{\mu_{0} J_{m}}{4\pi} \int_{-h/2}^{h/2} \int_{-b/2}^{b/2} (z - z') \left\{ \frac{1}{\left[(x - x')^{2} + (y - a/2)^{2} + (z - z')^{2} \right]^{3/2}} - \frac{1}{\left[(x - x')^{2} + (y + a/2)^{2} + (z - z')^{2} \right]^{3/2}} \right\} dx dz,$$
(1b)

$$B_{z} = \frac{\mu_{0}J_{\rm m}}{4\pi} \int_{-h/2}^{h/2} \int_{-a/2}^{a/2} \left\{ \frac{-(x-b/2)}{\left[(x-b/2)^{2} + (y-y')^{2} + (z-z')^{2}\right]^{3/2}} + \frac{x+b/2}{\left[(x+b/2)^{2} + (y-y')^{2} + (z-z')^{2}\right]^{3/2}} \right\} \mathrm{d}y \mathrm{d}z$$
$$+ \frac{\mu_{0}J_{\rm m}}{4\pi} \int_{-h/2}^{h/2} \int_{-b/2}^{b/2} \left\{ \frac{-(y-a/2)}{\left[(x-x')^{2} + (y-a/2)^{2} + (z-z')^{2}\right]^{3/2}} + \frac{y+a/2}{\left[(x-x')^{2} + (y+a/2)^{2} + (z-z')^{2}\right]^{3/2}} \right\} \mathrm{d}x \mathrm{d}z,$$
(1c)

其中 J_m 为永磁体的表面束缚电流密度,可以测试 永磁体外部磁场,利用(1a)—(1c)式经计算获得 $J_m^{[18]}$.另一方面,若知道永磁体的剩余磁感应强度 B_r ,则 $J_m = B_r/\mu_0^{[19,20]}$, $\mu_0 = 4\pi \times 10^{-7}$ H/m.反之, 知道了J_m,也很容易求得剩余磁感应强度B_r.

恒电流环如图 1 所示, 半径为 R, 恒电流强度 为 I, 产生的磁感应强度数值计算表达式 (式中φ和 θ是球坐标系下的变量) 如下:

$$B_x = \frac{\mu_0 I}{4\pi} \int_0^{2\pi} \frac{Rz \cos \phi}{\left[\left(x - R \cos \phi \right)^2 + \left(y - R \sin \phi \right)^2 + z^2 \right]^{3/2}} \mathsf{d}\phi, \tag{2a}$$

$$B_y = \frac{\mu_0 I}{4\pi} \int_0^{2\pi} \frac{Rz \sin \phi}{\left[(x - R\cos \phi)^2 + (y - R\sin \phi)^2 + z^2 \right]^{3/2}} \mathrm{d}\phi, \tag{2b}$$

$$B_{z} = \frac{\mu_{0}I}{4\pi} \int_{0}^{2\pi} \left[\frac{R\sin\phi(R\sin\phi - y)}{\left[(x - R\cos\phi)^{2} + (y - R\sin\phi)^{2} + z^{2} \right]^{3/2}} + \frac{R\cos\phi(R\cos\phi - y)}{\sqrt{\left[(x - R\cos\phi)^{2} + (y - R\sin\phi)^{2} + z^{2} \right]^{3/2}}} \right] \mathrm{d}\phi. \ (2\mathrm{c})$$

设图 1(a) 中 NdFeB 永磁体的表面束缚电流 密度 $J_{\rm m} = 624259$ A/m, 该数值根据文献 [18] 中的 测试数据及公式经计算获得, 由 $J_{\rm m} = B_{\rm r}/\mu_0$, 可得 NdFeB 永磁体的剩余磁感应强度 $B_{\rm r} \approx 0.8$ T. 永磁 体的 a = 30 mm, b = 30 mm, h = 300 mm, 因此 体积 V = 270 cm³. 将这些参数代入 (1a)—(1c) 式, 可获得永磁体外部任一点的磁感应强度. 在此基础 上, 调整图 1(b) 中电流环的半径 R 和电流 I, 并代 入 (2a)—(2c) 式, 使两者的磁场分布曲线尽量符 合, 从而建立电流环和永磁体之间的等效关系. 本 文在永磁体外部选取四条考察基线, 计算磁感应强 度 B_z 分量, 如图 2 所示. 这里, 取电流环半径 R =170 mm, 电流 I = 1700 A. 可见, 在四条基线上, 当距离永磁体超过 500 mm 后, 两者的计算结果符 合很好, 也就是说, 在大于 500 mm 的距离上, 可 以用半径 R = 170 mm 和电流 I = 1700 A 的电流 环对永磁体进行等效替换. 图 1(b) 中的电流环即 磁偶极子 $q_m l$, 根据文献 [21], $q_m l = \mu_0 IS$, 电流环 面积 $S = \pi R^2$.

3 旋转永磁体的场分析

3.1 空间正交磁偶极子模型

如图 3(a) 所示,旋转永磁体在 xoy 平面上绕 原点逆时针匀速旋转,角速度为ω,初始旋转角为 φ₀.磁偶极矩随时间的变换关系如下:

图 2 $|B_z|$ 随距离的变化 (矩形永磁体和理想磁偶极子) (a) y = 0, z = 0,沿 x 轴变化; (b) x = 0, z = 160 mm, 沿 y 轴变化; (c) x = 0, y = 0, 沿 z 轴变化; (d) x = 0, y = 180 mm, 沿 z 轴变化

Fig. 2. Variation of $|\mathbf{B}_z|$ versus distance (rectangular permanent magnet and ideal magnetic dipole): (a) y = 0, z = 0, along *x*-axis; (b) x = 0, z = 160 mm, along *y*-axis; (c) x = 0, y = 0, along *z*-axis; (d) x = 0, y = 180 mm, along *z*-axis.

 $q_m l(t) = xq_m [l\cos(\phi_0 + \omega t)] + yq_m [l\sin(\phi_0 + \omega t)].$ (3) 可见, 磁偶极矩在 xoy 平面上的两个正交分量呈简 谐变化, 这是由长度矢量 l的简谐时变特性引起的. 在旋转过程中, 磁偶极子的磁荷是不变的. 若对 (3) 式进行变换, 如下所示:

$$q_{\rm m}(t)\boldsymbol{l} = \boldsymbol{x} \left[q_{\rm m} \cos(\phi_0 + \omega t) \right] \boldsymbol{l} + \boldsymbol{y} \left[q_{\rm m} \cos\left(\phi_0 + \omega t - \frac{\pi}{2}\right) \right] \boldsymbol{l}.$$
(4)

则(4)和(3)式在数学形式上完全相同.(4)式可以 看作两个磁偶极子,沿 *x*和 *y*方向空间正交放置, 如图 4(b)所示,每一个磁偶极子的长度是不变的, 但磁荷 qm呈简谐变化.其中 *y*方向的磁偶极子相 位滞后 *x*方向磁偶极子 90°,即旋转磁偶极子可等 效为一对正交的时变磁偶极子.在图 4(b)的一对 正交磁偶极子模型中,由于每一个磁偶极子的磁荷 qm做简谐变化,如果在正负磁荷之间用导线相连, 则导线上将产生正弦磁流,因此,时变磁荷的磁偶 极子模型可以看作正弦磁流元 *I*m*l*.根据*i* = dq/dt, 有如下关系存在:

$$I_{\rm m}\boldsymbol{l} = \boldsymbol{x} I_{\rm m} {\rm e}^{{\rm j}\phi_0} \cdot \boldsymbol{l} + \boldsymbol{y} I_{\rm m} {\rm e}^{{\rm j}(\phi_0 - 90^\circ)} \cdot \boldsymbol{l}, \qquad (5)$$

其中 $I_m = j\omega q_m$.可见,永磁体机械旋转的初始角 ϕ_0 对应于 (5)式中等效磁流元的初始相位.因此, 图 4(b)中时变磁荷的正交磁偶极子可以等效为空 间正交的正弦磁流元,如图 4(c)所示,其中 y方向 的时变磁流元在相位上滞后 x方向磁流元 90°.

综上所述,为了分析旋转永磁体产生的电磁 场,可以将旋转永磁体等效为旋转磁偶极子.由于

图 3 旋转永磁体与旋转磁偶极子的等效 (a)旋转永磁体; (b)旋转磁偶极子

Fig. 3. Schematic illustration of the equivalence between spinning permanent magnet and spinning magnetic dipole: (a) Spinning permanent magnet; (b) spinning magnetic dipole.

图 4 旋转磁偶极子与正交磁流元的等效关系 (a)旋转磁偶极子; (b)正交磁偶极子; (c)正交磁流元

Fig. 4. Schematic illustration of the equivalence between spinning magnet dipole and orthogonal magnetic dipoles: (a) Spinning magnet dipole; (b) orthogonal magnetic dipoles; (c) orthogonal magnetic currents.

磁偶极子和电偶极子的场分布具有对偶关系,如果 能获得旋转电偶极子的场分布,则同样得到旋转磁 偶极子的场分布.与图 4 类似,旋转电偶极子也可 以等效为正交排列、相位相差 90°的无限小正弦电 流元.因此,本文首先基于无限小电流元在自由空 间中的并矢格林函数^[22],求解空间正交电偶极子 的场分布,进而通过对偶原理得到空间正交磁偶极 子的场,即旋转永磁体的外部场.

3.2 基于并矢格林函数的解析解

正交电偶极子位于坐标原点,如图 5 所示, **x**方向的电偶极子表示成**x**Ie^{jφ0} · lδ(**r**'),由于**y**方 向的电偶极子相位滞后于**x**方向的电偶极子 90°, 因此**y**方向电偶极子表示为**y**(-j)Ie^{jφ0} · lδ(**r**').在 自由空间中,对于任意电流源分布,基于并矢格林 函数的电场表达式为

$$\boldsymbol{E}(\boldsymbol{r}) = -j\omega\mu \iiint_{V'} \bar{\boldsymbol{G}}_{e}(\boldsymbol{r}, \boldsymbol{r'}) \cdot \boldsymbol{J}(\boldsymbol{r'}) dV', \qquad (6)$$

其中 $\bar{G}_{e}(r, r')$ 表示自由空间并矢格林函数, r表示 场点坐标, r'表示源点坐标.

$$\bar{\bar{\boldsymbol{G}}}_{e}(\boldsymbol{r},\boldsymbol{r}') = \left(\bar{\bar{\boldsymbol{I}}} + \frac{1}{k^{2}}\nabla\nabla\right)G_{0}(\boldsymbol{r},\boldsymbol{r}').$$
(7)

 \mathbf{I} 为单位并矢, $G_0(\mathbf{r}, \mathbf{r'})$ 表示自由空间的标量格林

图 5 正交电偶极子的坐标系

Fig. 5. Coordinate system of the orthogonal electric dipoles.

函数,具体表达式如下:

$$G_0(\boldsymbol{r}, \boldsymbol{r}') = \frac{\mathrm{e}^{-\mathrm{j}k|\boldsymbol{r}-\boldsymbol{r}'|}}{4\pi|\boldsymbol{r}-\boldsymbol{r}'|},\tag{8}$$

这里 k表示介质的波数,具有普遍性,适合有损介 质, $k = \beta - j\alpha$,其中 β 为相移常数, $\beta = \sqrt{\omega^2 \mu \varepsilon/2} \times \sqrt{\sqrt{1 + (\sigma/\omega\varepsilon)^2 + 1}}, \alpha$ 为衰减系数, $\alpha = \sqrt{\omega^2 \mu \varepsilon/2} \times \sqrt{\sqrt{1 + (\sigma/\omega\varepsilon)^2 - 1}}, \mu \pi \varepsilon$ 分别是介质的磁导率和 介电常数.将 (7)和 (8)式代入 (6)式,并考虑 x向 和 y向电流元的狄拉克函数模型,得到

$$E_{\boldsymbol{x}} = -j\omega\mu \iiint_{V'} \left(\bar{\bar{\boldsymbol{I}}} + \frac{1}{k^2}\nabla\nabla\right)$$
$$\times \frac{\mathrm{e}^{-jk|\boldsymbol{r}-\boldsymbol{r}'|}}{4\pi|\boldsymbol{r}-\boldsymbol{r}'|} \cdot \boldsymbol{x}I\mathrm{e}^{\mathrm{j}\phi_0} \cdot l\delta(\boldsymbol{r}')\mathrm{d}V', \quad (9a)$$

$$\begin{aligned} \boldsymbol{E}_{\boldsymbol{y}} &= -j\omega\mu \iiint_{V'} \left(\bar{\bar{\boldsymbol{I}}} + \frac{1}{k^2}\nabla\nabla\right) \\ &\times \frac{\mathrm{e}^{-jk|\boldsymbol{r}-\boldsymbol{r}'|}}{4\pi|\boldsymbol{r}-\boldsymbol{r}'|} \cdot \boldsymbol{y}(-j)I\mathrm{e}^{\mathrm{j}\phi_0} \cdot l\delta(\boldsymbol{r}')\mathrm{d}V'. \text{ (9b)} \end{aligned}$$

对(9)式进一步化简,得

$$\boldsymbol{E}_{\boldsymbol{x}} = -j\omega\mu \left(\bar{\boldsymbol{I}} + \frac{1}{k^2}\nabla\nabla\right) \cdot \frac{e^{-jkr}}{4\pi r} \boldsymbol{x}Ie^{j\phi_0} \cdot l \quad (10a)$$

$$\boldsymbol{E}_{\boldsymbol{y}} = -j\omega\mu\left(\bar{\bar{I}} + \frac{1}{k^2}\nabla\nabla\right) \cdot \frac{e^{-jkr}}{4\pi r} \boldsymbol{y}\left(-j\right) I e^{j\phi_0} \cdot l \quad (10b)$$

将 (10) 式在球坐标系下求解, 得自由空间中 *x*向和 *y*向电流元电场的精确解析表达式:

$$E_{x} = -\frac{j\omega\mu Ie^{j\phi_{0}} \cdot l}{4\pi} \cdot \frac{e^{-jkr}}{r}$$

$$\times \left[r\sin\theta\cos\phi\left(\frac{2j}{kr} + \frac{2}{k^{2}r^{2}}\right) + \theta\cos\theta\cos\phi\left(1 - \frac{j}{kr} - \frac{1}{k^{2}r^{2}}\right) - \varphi\sin\phi\left(1 - \frac{j}{kr} - \frac{1}{k^{2}r^{2}}\right) \right], \quad (11a)$$

$$E_{y} = -\frac{j\omega\mu Ie^{j\phi_{0}} \cdot l}{4\pi} \cdot \frac{e^{-jkr}}{r}$$

$$\times \left[r\sin\theta \cdot (-j)\sin\phi\left(\frac{2j}{kr} + \frac{2}{k^{2}r^{2}}\right) + \theta\cos\theta \cdot (-j)\sin\phi\left(1 - \frac{j}{kr} - \frac{1}{k^{2}r^{2}}\right) + \varphi(-j)\cos\phi\left(1 - \frac{j}{kr} - \frac{1}{k^{2}r^{2}}\right) \right], \quad (11b)$$

$$\text{ If } \nabla \times E = -j\omega\mu H, \text{ If } \text$$

$$\times (\boldsymbol{\theta} \sin \phi + \boldsymbol{\varphi} \cos \theta \cos \phi), \qquad (12a)$$

$$\boldsymbol{H}_{y} = \frac{kI \mathrm{e}^{\mathrm{j}\phi_{0}} \cdot l}{4\pi} \cdot \frac{\mathrm{e}^{-\mathrm{j}kr}}{r} \left(1 + \frac{1}{\mathrm{j}kr}\right) (\boldsymbol{\theta} \cos \phi - \boldsymbol{\varphi} \cos \theta \sin \phi).$$
(12b)

因此,旋转电偶极子产生的电场和磁场为

$$\begin{split} \boldsymbol{E}_{\boldsymbol{e}} &= \boldsymbol{E}_{\boldsymbol{x}} + \boldsymbol{E}_{\boldsymbol{y}} = -\frac{\mathrm{j}\omega\mu I\mathrm{e}^{\mathrm{j}\phi_{0}}\cdot l}{4\pi} \cdot \frac{\mathrm{e}^{-\mathrm{j}kr}}{r} \\ &\times \left[r\sin\theta\cdot\mathrm{e}^{-\mathrm{j}\phi}\left(\frac{2\mathrm{j}}{kr} + \frac{2}{k^{2}r^{2}}\right) \right. \\ &+ \theta\cos\theta\cdot\mathrm{e}^{-\mathrm{j}\phi}\left(1 - \frac{\mathrm{j}}{kr} - \frac{1}{k^{2}r^{2}}\right) \\ &+ \varphi\mathrm{e}^{-\mathrm{j}(\phi+\pi/2)}\left(1 - \frac{\mathrm{j}}{kr} - \frac{1}{k^{2}r^{2}}\right) \right], \ (13\mathrm{a}) \\ \boldsymbol{H}_{\mathrm{e}} &= \boldsymbol{H}_{\boldsymbol{x}} + \boldsymbol{H}_{\boldsymbol{y}} = \frac{kI\mathrm{e}^{\mathrm{j}\phi_{0}}\cdot l}{4\pi} \cdot \frac{\mathrm{e}^{-\mathrm{j}kr}}{r} \\ &\times \left(1 + \frac{1}{\mathrm{j}kr}\right) \cdot [\theta\mathrm{e}^{-\mathrm{j}\phi} + \varphi\cos\theta\mathrm{e}^{-\mathrm{j}(\phi+\pi/2)}]. \end{aligned}$$

$$(13\mathrm{b})$$

根据电磁场对偶原理^[21],由空间正交电偶极子的 电磁场可以得出空间正交磁偶极子的电磁场,因 此,旋转磁偶极子(图3)产生的电磁场为

$$\boldsymbol{E}_{\mathrm{m}} = -\frac{kI_{\mathrm{m}}\mathrm{e}^{\mathrm{j}\phi_{0}}\cdot l}{4\pi} \cdot \frac{\mathrm{e}^{-\mathrm{j}kr}}{r} \left(1 + \frac{1}{\mathrm{j}kr}\right)$$
$$\times [\boldsymbol{\theta}\mathrm{e}^{-\mathrm{j}\phi} + \boldsymbol{\varphi}\cos\boldsymbol{\theta}\mathrm{e}^{-\mathrm{j}(\phi+\pi/2)}], \qquad (14\mathrm{a})$$

$$\begin{split} \boldsymbol{H}_{\boldsymbol{m}} &= -\frac{\mathrm{j}\omega\varepsilon I_{\mathrm{m}}\mathrm{e}^{\mathrm{j}\phi_{0}}\cdot l}{4\pi}\cdot\frac{\mathrm{e}^{-\mathrm{j}kr}}{r} \\ &\times\left[r\sin\theta\cdot\mathrm{e}^{-\mathrm{j}\phi}\left(\frac{2\mathrm{j}}{kr}+\frac{2}{k^{2}r^{2}}\right)\right. \\ &+\boldsymbol{\theta}\cos\theta\cdot\mathrm{e}^{-\mathrm{j}\phi}\left(1-\frac{\mathrm{j}}{kr}-\frac{1}{k^{2}r^{2}}\right) \\ &+\boldsymbol{\varphi}\mathrm{e}^{-\mathrm{j}(\phi+\pi/2)}\left(1-\frac{\mathrm{j}}{kr}-\frac{1}{k^{2}r^{2}}\right)\right]. \end{split}$$
(14b)

(13) 和 (14) 式中, 下标"e"和"m"分别对应电 偶极子和磁偶极子. 在计算 (14) 式时, $I_m l = j\omega\mu_0 I \times$ (πR^2), (14) 式在形式上与文献 [13] 的表达式相同, 区别在于首项系数不同. 第 2 节已给出 NdFeB 永 磁体的表面束缚电流密度 $J_m = 624259$ A/m, 该永 磁体可用 I = 1700 A, R = 170 mm 的电流环等效. 由 $J_m = B_r/\mu_0$ 计算对应永磁体的剩磁 $B_r \approx 0.8$ T, 其体积 V = 270 cm³, 将 B_r 和 V代入文献 [13] 的表达 式,将计算结果与 (14) 式进行比较. 以水平面磁感应 强度 | B_{φ} |为例, 两种计算方法的对比如图 6 所示, 可 以看出一致性很好, 从而验证了 (14) 式的正确性.

图 6 两种计算方法的结果对比 (沿 x轴, 球坐标变量为 $\varphi = 0^{\circ}$, $\theta = 90^{\circ}$)

Fig. 6. Results comparison between the proposed method and the formula in Ref. [13] (along *x*-axis, the spherical co-ordinate parameters: $\varphi = 0^{\circ}$, $\theta = 90^{\circ}$).

4 仿真分析

4.1 近区磁场变化特性

当旋转永磁体发射超低频电磁波时,通常用磁 棒天线作为接收传感器,而磁棒天线一般水平放 置,因此本文认为,磁感应强度的水平分量B。是接 收的主要分量.这里, NdFeB 永磁体的剩磁 Br 为 0.8 T, 外形参数为 30 mm × 30 mm × 300 mm. 当转速为 9600 r/min 时,发射的电磁波频率为 160 Hz, 当无限大介质是空气时, 对应的波长 $\lambda =$ 1875 km. 参考图 5 的坐标系, 在无限大自由空间 的 xoy 平面上, B_a随距离的变化趋势如图 7(a) 所 示.可见,当距离 r 超过 0.15 λ (281 km),场强 B_{ω} 的精确计算结果随 1/r 项变化, 此时, 进入远场区 域. 当距离 r小于 0.15 k时, 属于近场区域, 即 B_o 随 1/r³ 变化. 图 7(b) 给出了在无限大海水空间中 的计算结果,这里160 Hz 对应的海水波长为125 m, 可见在 0.5λ 时,产生的 B_α随 1/r 项变化,进入远 场区域.由于海水是有耗介质,其波数 k是复数, 且出现了距离衰减因子α,因此图 7(b)中的四条 曲线没有共同交点.在海水中,当距离小于 0.05入 时,场强随1/r³变化;在海水中场强随距离的衰减 规律存在一个过渡带,在图 7(b)中,该过渡区域为 $0.05\lambda - 0.4\lambda$ 之间,在此区间,场强变化需要精确计 算,用近场或远场近似均会产生分析误差.

如果改变介质属性, 频率不变, 图 8(a) 给出了 空气、土壤和海水三种不同介质中场强变化曲线. 这里, 取土壤的相对介质常数 $\varepsilon_r = 4$, 电导率 $\sigma = 0.015$ S/m; 海水的 $\varepsilon_r = 81$, $\sigma = 4$ S/m. 可见, 空气和土壤中, 旋转永磁体产生的时变场的变化趋 势大体相同, 但海水中场强衰减剧烈. 从图 8(a) 可 见, 在空气和给定参数的土壤中, 1000 m 的磁感应 强度在 10 fT 以上, 如果假设磁场接收传感器的灵 敏度为 1 fT, 则该 NdFeB 旋转永磁体可用于 1 km 的近场通信. 而在海水中, 当距离为 250 m 时, 磁 感应强度快速衰减到 1 fT, 通信距离明显缩短.

如图 8(b) 所示,改变旋转永磁体的转速,从 1800 r/min 增加至 30000 r/min,对应频率为 30— 500 Hz, B_{φ} 的衰减随频率升高而增加.频率为 500 Hz 时,在 160 m 的距离上,磁感应强度为 1 fT, 如果频率降低至 30 Hz,场强达到 1 fT 的距离可 以增加至 470 m.可见,若要增加可用距离,可以 考虑降低转速,降低工作频率.但频率过低,导致

图 7 旋转永磁体的磁感应强度 $|\mathbf{B}_{\varphi}|$ 随距离的变化 (a) 空气; (b) 海水 Fig. 7. Simulated magnetic flux density $|\mathbf{B}_{\varphi}|$ versus distance: (a) Air; (b) seawater.

图 8 旋转永磁体磁感应强度的一般变化规律 (a) 160 Hz; (b) 海水

Fig. 8. Variation of simulated magnetic flux density $|B_{\varphi}|$ with material and frequency: (a) 160 Hz; (b) seawater.

带宽变窄,因此在应用时需要综合考虑,可以选择 合适的转速,通过增加永磁体的剩余磁感应强度 *B_r*和体积 *V*,即增加磁偶极矩,达到扩大可用距离 的目的.

4.2 永磁体阵列对近场的调控效应

旋转永磁体的磁场强度随距离快速衰减,如果 要增加场强,可以增加剩余磁感应强度 B,和体积 V,但这种方法要克服永磁体在旋转过程中的机械 应力问题.为此,可用小尺寸旋转永磁体组阵,通 过场的空间合成方法增加近区场强, 调整阵元间距 和初始旋转角,可对场分布特性进行灵活调控.以 二元阵为例,两个永磁体沿 x 轴放置,如图 9 所示, 永磁体之间的距离为 d, 两个永磁体之间初始旋转 角的差值为 $\Delta \varphi$.在计算近场分布时,场点 P距离 每个永磁体的距离和方位角度均不同,这是与传统 天线阵远场计算方法的本质区别. 图 9 给出了旋转 永磁体二元阵在 xoy 平面上的水平磁场分量 B。的 近场方向图曲线. 在计算中, d = 50 m, f = 160 Hz, r = 1000 m,两个永磁体的初始旋转角相同,即 图 9 中 $\Delta \varphi = 0^\circ$. 由仿真曲线图 10(a) 可见, 单个旋 转永磁体在 2500 m 的距离 B。达到 1 fT, 而永磁 体二元阵可在距离 3000 m 的位置, 使合成的水平 磁场分量达到1fT,增加了场强有效覆盖距离.当 永磁体间距 d = 50 m 时, 永磁体阵列和单个永磁 体的水平面磁场分量在近场均呈现出全向分布特 性,如图 10(b) 所示,但旋转永磁体阵列的磁感应 强度由 15 fT 增加至 30 fT, 相当于在 1000 m 的 距离上增加了3 dB. 图 11 给出了俯仰面 yoz 平面

上磁场分量 B_{θ} 的变化曲线,在计算中,其他参数保 持不变,仅改变间距 d,近场合成的方向图形状发 生变化.当 d = 100 m时,俯仰面方向图呈现 $\cos\theta$ 的变化趋势,而当 d逐步增加至 500 m时,方向图逐 渐展宽, z轴指向的磁感应强度降低,当 d = 500 m 时,最大值发生在 $\theta = \pm 45^{\circ}$ 的方向.由于两个旋转 永磁体的初始旋转角相同,因此,这种方向图的变 化并非相位引起,主要是由两个永磁体在场点 P处的幅度衰减特性不一致引起.

如果使永磁体之间的初始旋转角存在差值,即 $\Delta \varphi \neq 0^{\circ}$,相当于给不同永磁体的场分布引入了相 位差.永磁体近场衰减量受场点至源点的距离影响 很大,在图 9 中,在不同的场点方位角 ϕ ,两个永磁 体在磁场合成时,给予了不同的幅度加权, $\Delta \varphi$ 的 引入进一步增加了相位加权.因此,与 $\Delta \varphi = 0^{\circ}$ 的 情况不同,这里近场分布方向图受到幅相双重加 权.当阵元间距 d = 300 m, f = 160 Hz 时,图 12 给出了两个旋转永磁体在空气中的近场合成方向 图.图 12(a)为距离 1000 m 的计算结果,可见当调

图 10 二元旋转永磁体和单个旋转永磁体的场强对比 (a) 沿 x 轴, 球坐标变量为 $\varphi = 0^{\circ}$, $\theta = 90^{\circ}$; (b) 近场水平面方向图 ($d = 50 \text{ m}, r = 1000 \text{ m}, \Delta \varphi = 0^{\circ}$)

Fig. 10. Performance comparison between spinning magnet array and single spinning magnet: (a) Along x-axis, the spherical coordinate parameters $\varphi = 0^{\circ}$, $\theta = 90^{\circ}$; (b) magnetic near field pattern at the horizontal plane (d = 50 m, r = 1000 m, $\Delta \varphi = 0^{\circ}$).

图 11 二元阵列俯仰面磁场分布

Fig. 11. Simulated magnetic flux density $|B_{\theta}|$ in the elevation plane.

图 12 改变初始旋转角, 二元阵列的水平面磁场方向图 (a) r = 1000 m; (b) r = 2000 m

Fig. 12. Simulated magnetic flux density $|B_{\varphi}|$ of the spinning magnet array with two elements: (a) r = 1000 m; (b) r = 2000 m.

整 $\Delta \varphi$ 时, 1000 m 处的近区磁场方向图逐步具有方 向性, $\phi = 0$ °方向的磁感应强度逐渐降低, 由 30 fT 左右降低至 10 fT 左右, 而 $\phi = 180$ °方向的磁感 应强度基本不变. 图 12(b) 为距离 2000 m 的计算 结果,可见调整 $\Delta \varphi = 150^{\circ}$ 时,水平面的磁感应强 度在 $\phi = 0^{\circ}$ 方向产生了方向图零点,对该方向产生 磁场信号抑制效应. 仿真表明,如果旋转永磁体 单元之间的距离过小,则合成的近场分布方向图 形状基本不变,但磁感应强度具备增强效应;如果 距离过大,可以改变合成场的方向图形状,但磁 感应强度未必增强,因此实际应用时,需要折中设 计.与单个旋转永磁体相比,永磁体阵列用于超 低频信号发射,在场强增强和方向图控制方面更加 灵活.

5 结 论

本文研究了超低频机械旋转永磁体的空间 电磁特性. 与文献已报道的研究工作相比, 本文基 于并矢格林函数,详细推导了用于旋转永磁体空间 电磁计算的解析表达式,与文献 [13] 对比,结果基 本一致,说明本文给出的场强计算模型可用于旋转 永磁体空间场强的预测.本文以 NdFeB 永磁体 (30 mm × 30 mm × 300 mm) 为例, 其剩余磁感 应强度 B_r ≈ 0.8 T. 当其转速为 9600 r/min 时, 产 生的时变电磁场频率为 160 Hz, 在 1000 m 的距离 上, 磁感应强度约为 15 fT. 如果磁场传感器的接 收灵敏度为1fT,则机械旋转永磁体可用于近场 通信. 如果将旋转永磁体置于海水中, 受海水衰减 影响, 磁感应强度为 1 fT 的距离仅为 250 m, 如果 要增加距离,需要降低机械转速.如果将旋转永磁 体组成二元阵列,选择合适间距,可使二元永磁体 阵列在近场产生全向方向图,但磁感应强度能增 加 3 dB. 如果进一步调整阵元初始旋转角, 使 $\Delta \varphi \neq 0^{\circ}$,相当于对二元永磁体阵列近场方向图进 行幅度和相位的双重调控,可在不同的近场距离 上,改变方向图形状,产生方向性或者方向图零点. 机械旋转永磁体有望改善超低频天线尺寸和辐射 效率之间的矛盾,以便携方式用于近区磁场通信. 本文研究工作为后续进一步开展旋转永磁体的实 验研究打下了理论基础.

参考文献

[1] Madanayake A, Choi S, Tarek M, Dharmasena S, Mandal S, Glickstein J, Sehirlioglu A 2017 Moratuwa Engineering Research Conference Moratuwa, Sri Lanka, May 29–31, 2017 p230

- [2] Sinha D, Amaratunga G A 2015 *Phys. Rev. Lett.* **114** 147701
- [3] Nan T, Lin H, Gao Y, Matyushov A, Yu G, Chen H, Sun N, Wei S, Wang Z, Li M, Wang X, Belkessam A, Guo R, Chen B, Zhou J, Qian Z, Hui Y, Rinaldi M, McConney M E, Howe B M, Hu Z, Jones J G, Brown G J, Sun N X 2017 Nat. Commun. 8 296
- [4] Yao Z, Wang Y X E, Keller S, Carman G P 2015 IEEE Trans. Antennas Propag. 63 3335
- [5] Yang N N, Chen X, Wang R J 2018 Acta Phys. Sin. 67 157508 (in Chinese) [杨娜娜, 陈轩, 汪饶进 2018 物理学报 67 157508]
- [6] Yu B, Hu Z Q, Chen Y X, Beng B, Zhou Z R, Liu M 2018 Acta Phys. Sin. 67 157507 (in Chinese) [俞斌, 胡忠强, 程宇 心, 彭斌, 周子尧, 刘明 2018 物理学报 67 157507]
- [7] Ding H 2017 Modern Military 4 71 (in Chinese) [丁宏 2017 现代军事 4 71]
- [8] Gołkowski M, Park J, Bittle J, Babaiahgari B, Rorrer R A L, Celinski Z 2018 *IEEE Symposium on Antennas and Propagation*, Boston, MA, USA, July 8–13, 2018, p65
- Strachen N D, Booske J H, Behdad N 2018 IEEE Symposium on Antennas and Propagation, Boston, MA, USA, July 8–13, 2018, p67
- [10] Barani N, Sarabandi K 2018 IEEE Symposium on Antennas and Propagation Boston, MA, USA, July 8–13, 2018 p95
- [11] Bickford J A, McNabb R S, Ward P A, Freeman D K, Weinberg M S 2017 IEEE Symposium on Antennas and Propagation San Diego, CA, USA, July 9–14, 2017 p1475
- [12] Zheng H, Zhao J B, Xiang B, Xiong Q P, Deng F S 2018 IEEE Symposium on Antennas and Propagation Boston, MA, USA, July 8–13, 2018 p751

- [13] Manteghi M 2017 IEEE Symposium on Antennas and Propagation San Diego, CA, USA, July 9-14, 2017 p1997
- [14] Gong S H, Liu Y, Liu Y 2018 Prog. Electromagn. Res. M 72 125
- [15] Selvin S, Prasad M N S, Huang Y K, Wang E 2017 IEEE Symposium on Antennas and Propagation San Diego, CA, USA, July 9–14, 2017 p1477
- [16] Prasad M N S, Selvin S, Tok R U, Huang Y K, Wang Y X 2018 IEEE Radio and Wireless Symposium (RWS) Anaheim, CA, USA, January 15–18, 2018 p171
- [17] Prasad M N S 2017 M. S. Thesis (Los Angeles: University of California)
- [18] Liu H J 2006 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese) [刘宏娟 2006 硕士学位论文 (北京: 北京工业大学)]
- [19] Tian L L, Jia R, Yang G Q, Tian Q, Li Z H, Li H 2008 Journal of Electrical Engineer 23 7 (in Chinese) [田录林, 贾 嵘, 杨国清, 田琦, 李知航, 李辉 2008 电工技术学报 23 7]
- [20] Wang Q R 2010 M. S. Thesis (Zhengjiang: Jiangsu University) (in Chinese) [刘奇瑞 2010 硕士学位论文 (镇江: 江 苏大学)]
- Bi D X 1985 Electromagnetic Theory (Beijing: Publishing House of Electronics Industry) pp355, 356 (in Chinese) [毕德 显 1985 电磁场理论 (北京: 电子工业出版社) 第355, 356页]
- [22] Jin J M (translated by Yin J X) 2017 Theory and Computation of Electromagnetic Fields (Beijing: Publishing House of Electronics Industry) pp45 (in Chinese) [金建铭 著 (尹家贤 译) 2017 高等电磁场理论(第二版)(北京: 电子工业出 版社) 第45页]

Performance analysis of spinning magnet as mechanical antenna^{*}

Shi Wei[†] Zhou Qiang Liu Bin

(The Sixty-third Research Institute, National University of Defense Technology, Nanjing 210007, China) (Received 10 March 2019; revised manuscript received 23 May 2019)

Abstract

Long wavelength results in the low radiation efficiency of a portable conventional antenna operating at very low frequency (VLF) and below. This has motivated one to develop an innovative approach to design an electrically small antenna in a frequency band lower than VLF. The time-varying electromagnetic fields can be generated by spinning a permanent magnet. In this way, the mechanical energy is converted to the electromagnetic energy, and the impedance matching networks with nonnegligible insertion loss are not required. Therefore, this mechanical antenna with spinning magnet can improve radiation efficiency in a low frequency band. In this paper, we give the detailed analysis procedure for the spinning magnet, which is seldom discussed in other published reports. In order to analyze the electromagnetic characteristics of the spinning magnet, in this paper we use the ampere return circuit theorem to investigate the equivalent relation between a spinning magnet and the orthogonal magnetic dipole. We introduce an initial spinning angle of the magnet into the dyadic green's function. With this modification, we provide the rigorous analytic formula for field computation of the orthogonal magnetic dipole. Thus the electromagnetic characteristics of the spinning magnet and spinning magnet array can also be analyzed. For a spinning NdFeB magnet with a magnetization of $B_{\rm r}$ = 0.8 T and a volume of $V_r = 270 \text{ cm}^3$ as well as 9600 revolutions per minute, the simulation results reveal that the magnetic field of 15 fT at 1 km in air space can be obtained. But the magnetic field of the spinning magnet decreases quickly to 1 fT at 250 m in sea water. Considering the potential demand for increasing the field strength in the near field region, we recommend to use a magnet array with small-sized elements. The magnet array can be used to control the near field pattern. We take two magnets as an example for studying the performance. It can be found from the simulation results that the magnetic near field is increased by 3 dB with the linear magnet array consisting of two elements. With the initial spinning angle of the magnet element adjusted, the near field pattern of the magnet array can be controlled. This is analogous to beam steering of traditional phased array for high band operation. It can be concluded from our study that the spinning magnet is a possible alternative solution for low frequency small transmitter antenna.

Keywords: mechanical antenna, permanent magnet, magnetic dipole, dyadic green function

PACS: 84.40.Ba, 41.20.Jb

DOI: 10.7498/aps.68.20190339

^{*} Project supported by the National Defense Pre-Research Foundation of China (Grant No. 6140518030108) and the Research Foundation of National University of Defense Technology, China (Grant No. ZK17-02-05).

[†] Corresponding author. E-mail: W.Shi@nudt.edu.cn