物理学报 Acta Physica Sinica

Institute of Physics, CAS

单氯化锶分子低激发态的光谱及跃迁特性

伍冬兰 袁金宏 温玉锋 曾学锋 谢安东

Spectrum and transition characteristics of low excited state of strontium chloride molecule Wu Dong-Lan Yuan Jin-Hong Wen Yu-Feng Zeng Xue-Feng Xie An-Dong 引用信息 Citation: Acta Physica Sinica, 68, 033101 (2019) DOI: 10.7498/aps.68.20181770 在线阅读 View online: https://doi.org/10.7498/aps.68.20181770 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

ZnH分子激发态的电子结构和跃迁性质的理论计算

Theoretical study on the electronic structure and transition properties of excited state of ZnH molecule 物理学报. 2017, 66(6): 063103 https://doi.org/10.7498/aps.66.063103

GeS分子基态和低激发态的势能曲线与光谱性质

Potential energy curves and spectroscopic properties of GeS molecules: in ground states and low-lying excited states 物理学报. 2016, 65(6): 063102 https://doi.org/10.7498/aps.65.063102

BeC分子基态和低激发态光谱性质和解析势能函数

Spectroscopic properties and analytical potential energy function of ground and low-lying excited states of BeC moleule 物理学报. 2019, 68(5): 053102 https://doi.org/10.7498/aps.68.20181695

GeO分子激发态的电子结构和跃迁性质的组态相互作用方法研究

Configuration interaction study on electronic structures and transitional properties of excited states of GeO molecule 物理学报. 2015, 64(12): 123101 https://doi.org/10.7498/aps.64.123101

基于ab initio计算的CF-离子低激发态光谱性质研究

Spectroscopic properties of low-lying excited electronic states for CF- anion based on ab initio calculation 物理学报. 2017, 66(2): 023101 https://doi.org/10.7498/aps.66.023101

BH+离子基态及激发态的势能曲线和跃迁性质的研究

Potential energy curves and transition properties for the ground and excited states of BH+ cation 物理学报. 2018, 67(4): 043101 https://doi.org/10.7498/aps.67.20172409

单氯化锶分子低激发态的光谱及跃迁特性*

伍冬兰† 袁金宏 温玉锋 曾学锋 谢安东

(井冈山大学数理学院, 吉安 343009)

(2018年9月26日收到; 2018年12月11日收到修改稿)

利用 Davidson 修正的内收缩多参考组态相互作用 (ic-MRCI + Q) 方法,结合相对论有效芯赝势基 (augcc-pV5Z-PP) 作为 Sr 原子和相关一致五重基 aug-cc-pV5Z 为 Cl 原子的计算基组,优化计算了单氯化锶 (Sr³⁵Cl) 分子 14 个低激发电子态的势能曲线和跃迁偶极矩.为了获得更加精确的光谱参数,计算中同时引入核价电 子相关和相对论效应修正势能曲线.利用 LEVEL 8.0 程序拟合修正的势能曲线,得到相应电子态的光谱常 数、振动能级和分子常数等光谱性质,结果与近来的已获得的理论计算和实验值符合得较好,同时给出了 Franck-Condon 因子和辐射寿命等跃迁性质.这些精确的光谱跃迁特性可为进一步构建 Sr³⁵Cl 分子激光冷却 方案提供理论支持.

关键词: Sr³⁵Cl 分子, ic-MRCI + Q, 光谱和分子常数, 振动能级, 跃迁特性
 PACS: 31.15.A-, 31.15.vn, 33.15.Mt, 31.50.Df
 DOI: 10.7498/aps.68.20181770

1 引言

碱土金属卤化物在天体物理学、催化和高温化 学中的应用广泛,再加上特殊的电子组态引起了许 多实验与理论光谱学家的兴趣,一直是许多电子结 构和光谱性质研究的主题^[1-3]. 1928年, Walters 和 Barratt^[4]最早报道了单卤化锶 (Sr³⁵Cl) 的光学 光谱;后来由于该类化合物基态 $(X^2\Sigma^+)$ 和第一、 二激发态 $A^2\Pi$, $B^2\Sigma^+$) 的势能曲线和核间距非常 相似,导致光谱密集不便于区分.随着激光器的出 现,许多研究者^[5-10]精确地分析了A²Π, B²Σ⁺到 $X^2\Sigma^+$ 态的光谱跃迁. 在这些研究中, 发现 $B^2\Sigma^+$ 态 的自旋相互作用常数为 657 cm⁻¹,表明 B²Σ⁺与 A²Π态之间存在较大的相互作用. Zare 等^[11]使用 直接方法推导了这两个激发态到基态跃迁的微扰 系数; Singh 等^[12]对 A²Π-X²Σ⁺和 B²Σ⁺-X²Σ⁺ 跃迁进行了振动分析; Brinkmann 等[13]通过分析 散射光谱指出了文献[12]中存在的一些错误,但是 也没有成功地分析光谱; Schütze-Pahlmann 等^[14] 采用微波光谱确定了 $X^2\Sigma^+$ 态的一阶转动常数; Ernst 和 Schröder^[15]通过多普勒自由极化光谱确 定了 $B^2\Sigma^+$ — $X^2\Sigma^+$ 态跃迁的几个主要 Dunham 常 数;后来 Schreder 等^[16]采用同样的方法分析了 $A^2\Pi - X^2\Sigma^+$ 跃迁的转动结构和微扰,获得了 $A^2\Pi$ 态的转动常数,同时利用微扰矩阵元分析了微扰对 常数的影响; Berg 等^[17]采用时间分辨激光共振实 验获得了 $B^2\Sigma^+$ 态的辐射寿命为 39.6 ns \pm 1.6 ns. 通过分析发现,大部分实验主要集中在较低的两个 激发态,对其他更高激发态的光谱参数与跃迁性质 研究不多,特别是理论计算分析光谱和分子常数的 研究较少,且部分计算结果与实验值有一定的差 异,这可能是由于计算中没有充分考虑能量大小的 不一致性、核价电子关联和相对论效应等相关修 正,而这些修正都会影响光谱常数和跃迁性质的计 算精度.这些高精度的光谱性质可以提供广泛的、 完整的电子结构信息,同时对化学反应和分子动力 学的理解也非常有意义.

本文利用内收缩多参考组态相互作用方法

* 国家自然科学基金 (批准号: 11564019, 11147158) 和江西省教育厅科学技术研究项目 (批准号: GJJ170654) 资助的课题.

© 2019 中国物理学会 Chinese Physical Society

[†] 通信作者. E-mail: wudonglan1216@sina.com

(ic-MRCI), 优化计算了 Sr³⁵Cl 分子的较低的两个 解离极限 14 个激发态在全空间的电子结构和能量.为了提高计算精度, 计算中考虑了 Davison 修 正、核价电子关联效应和相对论效应修正, 最终得 到 14 个激发态的势能曲线.基于修正的 5 个较低 束缚态的势能曲线和跃迁偶极矩, 利用 LEVEL 8.0 程序拟合计算得到相应束缚态的光谱常数、振动能 级和分子常数, 同时给出了 Franck-Condon 因子 和辐射寿命等跃迁性质.这些精确的光谱跃迁特性 可为进一步构建 SrCl 分子激光冷却方案提供理论 支持.

2 计算方法

本文所有与电子结构和能量有关的计算均使用 MOLPRO2012.1 程序包完成^[18]. 经过测试不同的基组,最终选取相对论有效芯赝势基 (aug-cc-pV5Z-PP) 作为 Sr 原子和相关一致五重基 (aug-cc-pV5Z) 作为 Cl 原子的计算基组^[19].

Sr³⁵Cl分子属于 C_∞,点群. 由于 MOLPRO 程序自身的限制,在实际计算中使用 C_∞,点群的 阿贝尔子群 C2w, C2v 群的四个不可约表示 (A1, B1, B2, A2) 和 Cxn点群的不可约表示有如下对应关 系: $\Sigma^+ = A_1$, $\prod = B_1 + B_2$, $\Delta = A_1 + A_2$, $\Sigma^- =$ A2. 在计算过程中 Sr³⁵Cl 分子的 8个轨道 (4个 a1,2个 b1 和 2个 b2) 被确定为活性空间,它们对 应 Sr 原子的 4s4p 轨道和 Cl 原子的 3s3p 轨道, Sr原子的外层电子 5s²和 Cl原子的外层电子 3s²3p⁵ 被放入活性空间进行相关能的计算,余下的 48个电子被冻结在芯轨道.在 C2v 对称性下,扫描 计算 Sr³⁵Cl 分子在核间距 R = 0.16 - 0.80 nm 之间的单点能,步长设为 0.01 nm, 其中在平衡位 置附近选取步长为 0.005 nm. 扫描过程中, 首先使 用 Hartree-Fock 方法计算 Sr³⁵Cl 分子基态的单组 态波函数,然后利用态平均全活性空间自洽场方 法 (SA-CASSCF) 优化单组态波函数为多组态波 函数^[20,21],最后应用内收缩多参考态相互作用方法 (ic-MRCI) 计算 Sr³⁵Cl 分子束缚态的能量^[22,23]. 为 了进一步提高精度, 计算中考虑 Davidson 修正 (+Q),核价电子关联效应和相对论标量效应修正, 最后得到了 Sr³⁵Cl 分子最低的 14 个激发态的势能 曲线,其中5个束缚态,9个排斥态.

基于修正的 5 个束缚态的势能曲线和跃迁偶极矩,利用 LEVEL 8.0 程序^[24]求解径向 Schrödinger

方程获得了全部束缚态的光谱常数和分子常数,包括离解能 D_{e} 、平衡核间距 R_{e} 、绝热激发能 T_{e} 、谐性振动常数 ω_{e} 和非谐性振动常数 $\omega_{e} \chi_{e}$,转动常数 B_{e} 和振转耦合常数 α_{e} ,以及振动能级 G_{v} 、惯性转动常数 B_{v} 和离心畸变常数 D_{v} 同时给出了 Franck-Condon 因子和辐射寿命等跃迁性质.

3 结果与讨论

3.1 束缚态的势能曲线和光谱常数

利用内收缩的多参考组态相互作用方法 (ic-MRCI + Q) 结合相关一致五重基 aug-cc-pV5Z 和 相对论有效芯赝势基 aug-cc-pV5Z-PP 优化计算 Sr³⁵Cl分子的电子结构.分析对应解离极限 Sr(¹S_o) + $Cl(^{2}P_{u})$, $Sr(^{3}P_{u})$ + $Cl(^{2}P_{u})$ 和离子对 $Sr^{+}(^{2}S_{o})$ + Cl-(¹S_e)的14个激发电子态,同时扫描单点能获 得对应电子态的势能曲线,如图1所示.从图1可 看出只有 $X^2\Sigma^+$, $A^2\Pi$, $B^2\Sigma^+$, $C^2\Pi$ 和 $3^2\Sigma^+$ 为束缚 态,其余都为排斥态.其中每个束缚态在平衡键长 位置处能量最低, $B^2\Sigma^+$ 态出现了双势阱, 且 $A^2\Pi$ 和 C² II 在 R = 0.27 nm 处, B² S⁺和 3² S⁺在 R =0.251 nm 处出现了避免交叉, $C^2 \Pi 和 B^2 \Sigma^+ \alpha R =$ 0.228 nm 和 0.298 nm 处相交, 这些势能曲线的特 征类似于相同类型的分子体系 CaCl^[25].利用 LEVEL 8.0 拟合修正的势能曲线,得到相应束缚 态的光谱常数列于表 1,同时还列出了各个电子态 在平衡位置 R。附近主要的电子组态分布及权重.

从图 1 和表 1 可看出, 基态 $X^2\Sigma^+$ 为一个深势 阱态, 阱深为 3.703 eV, 说明基态是一个比较稳定 的电子态. 在平衡位置附近主要的电子组态为 6σ² 7σ²8σ^α9σ⁰3π²4π² 和 6σ²7σ²8σ⁰9σ^α3π²4π², 表

Fig. 1. Potential energy curves of 14 excited states of Sr³⁵Cl.

Λ-S态	$T_{\rm e}/{\rm cm}^{-1}$	$R_{\rm e}/{\rm nm}$	$\omega_{ m e}/{ m cm}^{-1}$	$\omega_{ m e} \chi_{ m e}/{ m cm}^{-1}$	$B_{\rm e}/{\rm cm}^{-1}$	$10^4lpha_{\mathrm{e}}/\mathrm{cm}^{-1}$	$D_{\rm e}/{ m eV}$	R _e 附近主要电子组态(%)
$X^2\Sigma^+$	0.0	0.2575	309.78	0.8682	0.1016	4.131	3.703	$\frac{6 \sigma^{2} 7 \sigma^{2} 8 \sigma^{\alpha} 9 \sigma^{0} 3 \pi^{2} 4 \pi^{2} (78.8)}{6 \sigma^{2} 7 \sigma^{2} 8 \sigma^{0} 9 \sigma^{\alpha} 3 \pi^{2} 4 \pi^{2} (7.5)}$
理论 ^[26]	0.0	0.255	313	0.93	0.1037	—		
实验 ^[15]	0.0	0.257	$302^{[27]}$	$0.95^{[27]}$				
实验 ^[16]	0.0		302.448	-0.9502	0.1016	4.524		
实验 ^[12]	0.0		302.3	0.950	_			
${ m A}^2\Pi$	15779.16	0.2518	330.69		0.1061	2.013	1.673	$6\sigma^{27}\sigma^{28}\sigma^{09}\sigma^{03}\pi^{lphalphaeta}4\pi^{2}(85.7)$
理论 ^[26]	14730	0.252	323	0.95	0.1055			
实验 ^[15]	14818	0.255	$309^{[27]}$	$0.98^{[27]}$	_			
实验 ^[16]	14966.727		309.625	0.996	0.1030	4.606		
$B^2\Sigma^+$	16612.74	0.2538	318.67	0.4874	0.1043	2.599	1.937	$\frac{6\sigma^{27}\sigma^{28}\sigma^{\alpha}9\sigma^{03}\pi^{24}\pi^{2}(78.8)}{6\sigma^{27}\sigma^{28}\sigma^{09}\sigma^{\alpha}3\pi^{24}\pi^{2}(7.6)}$
理论 ^[26]	15714	0.253	319	0.99	0.1055	—		
实验 ^[15]	15719	0.255	306 ^[27]	$0.98^{[27]}$	$0.1030^{[16]}$		_	
实验 ^[12]	15719.5	_	306.4	0.98			_	
$C^2\Pi$	33532.99	0.3477	425.57	15.5691	0.0554	-11.932	1.546	$\begin{array}{l} 6\sigma^{27}\sigma^{28}\sigma^{09}\sigma^{03}\pi^{\alpha\alpha\beta}4\pi^{2}(59.7)\\ 6\sigma^{27}\sigma^{28}\sigma^{29}\sigma^{03}\pi^{24}\pi^{2}(13.4)\\ 6\sigma^{27}\sigma^{\alpha}8\sigma^{\beta}9\sigma^{03}\pi^{\alpha\alpha\beta}4\pi^{2}(9.8)\\ 6\sigma^{27}\sigma^{\alpha}8\sigma^{\alpha}9\sigma^{03}\pi^{\alpha\beta\beta}4\pi^{2}(2.7) \end{array}$
理论 ^[26]	26688	0.259	278	0.83	0.1095			
实验 ^[27]	26099		270	0.72				
$3^2\Sigma^+$	36625.55	0.3519	392.49	10.4544	0.0544	- 12.567	1.140	$\begin{array}{l} 6\sigma^{27}\sigma^{\alpha}8\sigma^{29}\sigma^{03}\pi^{24}\pi^{2}(51.0)\\ 6\sigma^{27}\sigma^{28}\sigma^{09}\sigma^{\alpha}3\pi^{24}\pi^{2}(16.4)\\ 6\sigma^{27}\sigma^{28}\sigma^{\alpha}9\sigma^{03}\pi^{\alpha\alpha\beta}4\pi^{2}(4.6)\\ 6\sigma^{27}\sigma^{28}\sigma^{\alpha}9\sigma^{03}\pi^{\beta}4\pi^{\alpha\alpha\beta}(4.6)\\ 6\sigma^{27}\sigma^{28}\sigma^{\alpha}9\sigma^{03}\pi^{\alpha\beta\beta}4\pi^{2}(1.6)\\ 6\sigma^{27}\sigma^{28}\sigma^{09}\sigma^{03}\pi^{\alpha\beta\beta}4\pi^{2}(1.6)\\ 6\sigma^{27}\sigma^{28}\sigma^{09}\sigma^{03}\pi^{\alpha}4\pi^{\alpha\beta\beta}(1.6)\\ 6\sigma^{27}\sigma^{28}\sigma^{09}\sigma^{03}\pi^{44}\pi^{2}(1.5)\\ 6\sigma^{27}\sigma^{\alpha}8\sigma^{09}\sigma^{03}\pi^{24}\pi^{4}(1.5)\\ \end{array}$
理论 ^[26]	27979	0.248	358	1.01	0.1095	—		
实验[15]	28822		$344^{[27]}$	$1.04^{[27]}$	$0.1030^{[16]}$	_		

表 1 5 个束缚态的光谱常数 Table 1. Spectroscopic constants of the 5 bound states.

明了使用多组态方法的必要性^[28-30]. 通过比较发现,本文的光谱常数与近来获得的理论计算值^[26]较接近, R_{e} , $\omega \in \pi B_{e}$ 的偏差分别为 0.0015 nm, 0.52 cm⁻¹ 和 0.0112 cm⁻¹. 与相同类型分子体系相比,离解能小于 BeCl (94.31 kcal/mol = 4.090 eV)^[28]和 CaCl (34283.5 cm⁻¹ = 4.251 eV)^[25],平衡键长大于 BeCl (0.1792 nm)^[28], MgCl (0.2214 nm)^[29]和 CaCl (0.2506 nm)^[25]. 这些对比说明 Sr³⁵Cl 分子相比 BeCl, MgCl 和 CaCl 分子体系,稳定性更差,更容易离解.

对于第一激发态 $A^{2}\Pi$, 与基态属于同一个解离 极限 $Sr({}^{1}S_{g}) + Cl({}^{2}P_{u})$, 但离解能为 1.673 eV, 结 果小于基态 3.703 eV, 这说明基态更加稳定. 平 衡位置附近主要的电子组态为 $6\sigma^{2}7\sigma^{2}8\sigma^{0}9\sigma^{0}$ $3\pi^{\alpha\alpha\beta}4\pi^{2}$, 表明有一个电子从 $X^{2}\Sigma^{+}$ 激发跃迁到 A²Π,即 8 σ (9 σ)→3 π . A²П的绝热激发能为 15779.16 cm⁻¹,与实验值14966.727 cm^{-1[16]}有一 定偏差,相对偏差为5.4%,这可能是由于考虑了与 C²Π避免交叉现象,导致A²П的势能曲线在 R = 0.348 nm处有一个势垒,约为30951.13 cm⁻¹. 同时也使光谱常数 ω_e , R_e 和 B_e 与实验结果^[16]有一 定相差,但与近来的理论计算^[26]符合得很好,偏差 分别为7.69 cm⁻¹, 0.0002 nm和 0.0006 cm⁻¹.

特别值得注意的是第二激发态 $B^2\Sigma^+$,势能曲 线出现了双势阱,且该激发态对应离子对解离极限 $Sr^+(^2S_g) + Cl^-(^1S_g)$,绝热激发能为 16612.74 cm⁻¹, 与实验值 15719.5 cm^{-1[12]}也有偏差,相对偏差为 5.7%,这可能也是由于 $B^2\Sigma^+$ 与 $3^2\Sigma^+$ 出现了避免交 叉现象,导致势能曲线发生变化,致使拟合的光谱 常数 ω_e , R_e 和 B_e 与实验结果^[15]也有一定差异.但

与近来的理论计算[26]结果也符合得较好,偏差仅分 别为 0.33 cm⁻¹, 0.0008 nm 和 0.0012 cm⁻¹. 从图 1 发现第三激发态C²Ⅱ,由于与A²Ⅱ产生了避免交叉 现象,最低能量正好位于避免交叉处R = 0.348 nm, 其能量大小为 31191.10 cm⁻¹, 与 A²Π能隙为 239.97 cm⁻¹. 离解能为 1.546 eV, 不同的是 C² Π 对 应的是第二解离极限 $Sr(^{3}P_{u}) + Cl(^{2}P_{u})$. 从图 1 还可以发现 $A^2\Pi 与 B^2\Sigma^+$ 的势能曲线在 0.261 nm 和 0.340 nm 位置存在两处交叉, 本文给出了 C²Ⅱ $13^{2}\Sigma^{+}$ 激发态的光谱常数,结果与近来获得的理 论值相差较大[26],这可能是由于电子态之间相互作 用的影响所致.综上分析发现,本文的光谱常数与 实验值和近来的理论计算值有一定差异,可能是由 于本文考虑了避免交叉现象,即考虑了态与态之间 的电子关联相互作用,这会使拟合得到的光谱常数 出现一定偏差,但当进一步考虑自旋-轨道耦合效 应后,这些势能曲线会发生变化,从而得到更加精 确的光谱常数.限于篇幅,后续我们将报道详细的 自旋-轨道耦合效应对光谱常数和跃迁特性的影响.

3.2 束缚态的振动能级和分子常数

利用 MRCI + Q/aug-cc-pV5Z + CV + DK (aug-cc-pV5Z-PP) 优化计算得到 5 个束缚态的势 能曲线, 借助于 LEVEL 8.0 程序包^[24], 找到了 J = 0时 5 个束缚态 $X^2\Sigma^+$, $A^2\Pi$, $C^2\Pi$, $B^2\Sigma^+$ 和 $3^2\Sigma^+$ 的 全部振动态.表 2 分别列出了基态和更高激发态 前 10个振动态的振动能级 G_v ,惯性转动常数 B_v 和离心畸变常数 D_v .通过前期调研发现,文 献 [16]中 A²П的 0-0分子常数的实验值分别为 14970.22, 0.1027584 和 4.579 × 10⁸ cm⁻¹, 与本文 的计算值符合得较好,相对误差仅为 6.2%, 3.3% 和 2.6%,说明采用高精度计算方法和相关修 正获得激发态的分子常数是可靠的.

3.3 束缚态的电偶极矩

由于偶极矩反映了分子的成键性质,本文对 Sr³⁵Cl分子的5个较低束缚态的电偶极矩进行了 理论计算,电偶极矩随着分子核间距*R*的变化曲 线见图 2.

从图 2 可以看出, $B^2\Sigma^+$ 的电偶极矩随着核间 距的增大而变化, 当增大到 0.57 nm 时, $B^2\Sigma^+$ 的 偶极矩达到最大值 (4.907 a.u., 约为 7.5 Debye), 表明分子离子特性较强, 与前面分析其对应的离子 对解离极限的结果是一致的; 至于其他 4 个电子束 缚态, 当核间距增加较大时, 偶极矩趋向于零, 表 明对应的解离极限为中性原子. 在核间距为 0.345 nm 附近, 具有相同对称性的 $A^2\Pi 和 C^2\Pi$ 出现了避免交 叉现象 (与势能曲线中的一致), 导致了它们的偶极 矩 极 性 反 转. 同 样 $B^2\Sigma^+$ 和 $3^2\Sigma^+$ 在 0.353 nm 附近的偶极矩也出现了极性反转现象, 这也是由于 这两个态出现了避免交叉引起的. 这些变化情况与 文献[29]中相同类型的分子 MgCl 变化趋势相同.

表 2 Sr³⁵Cl 分子 X² Σ^+ , A² Π , B² Σ^+ , C² Π 和 3² Σ^+ 的 G_v , B_v 和 D_v 值 Table 2. The G_v , B_v and D_v of X² Σ^+ , A² Π , B² Σ^+ , C² Π and 3² Σ^+ states of Sr³⁵Cl.

	v	0	1	2	3	4	5	6	7	8	9
$X^2\Sigma^+$	$G_v/{ m cm}^{-1}$	0	308.69	615.44	919.34	1220.80	1520.91	1820.07	2118.05	2414.53	2709.33
	$B_v/{\rm cm}^{-1}$	0.101389	0.100964	0.100567	0.100209	0.099815	0.099369	0.098910	0.098467	0.098043	0.097629
	$10^8 D_v / {\rm cm}^{-1}$	4.351839	4.364577	4.467493	4.497514	4.362226	4.242542	4.234360	4.286016	4.334124	4.353049
$A^2\Pi$	$G_v/{\rm cm}^{-1}$	15953.74	16281.83	16598.43	16930.62	17269.01	17605.65	17940.04	18272.59	18603.52	18933.04
	$B_v/{\rm cm}^{-1}$	0.106234	0.106462	0.106095	0.105137	0.104604	0.104235	0.103859	0.103475	0.103082	0.102679
	$10^8 D_v / {\rm cm}^{-1}$	4.461909	5.111509	3.253476	3.332790	4.007870	4.130323	4.085546	4.040997	3.976138	3.938946
	$G_v/{\rm cm}^{-1}$	16777.58	17097.77	17402.46	17705.63	18020.44	18339.16	18656.69	18972.44	19286.60	19599.30
$\mathrm{B}^2\Sigma^+$	$B_v/{\rm cm}^{-1}$	0.104260	0.104168	0.104392	0.103697	0.102831	0.102297	0.101900	0.101515	0.101130	0.100741
	$10^8 D_v/\mathrm{cm}^{-1}$	4.416717	5.342062	4.947374	3.120903	3.500412	4.129428	4.273733	4.244199	4.206411	4.139361
$C^2\Pi$	G_{v}/cm^{-1}	33822.25	34298.68	34607.21	34880.81	35124.57	35352.15	35566.01	35770.85	35971.25	36169.15
	$B_v/{\rm cm}^{-1}$	0.056049	0.057354	0.058912	0.059995	0.060974	0.062071	0.063032	0.063843	0.064515	0.065071
	$10^8 D_v/{\rm cm}^{-1}$	0.293093	1.069720	1.371596	2.128287	2.433073	3.023576	3.386636	3.382563	3.426546	3.529599
$3^2\Sigma^+$	G_{v}/cm^{-1}	36879.56	37294.02	37638.56	37944.07	38221.43	38480.16	38726.99	38965.82	39199.02	39428.18
	$B_v/{ m cm}^{-1}$	0.055079	0.056481	0.057758	0.059028	0.060242	0.061377	0.062432	0.063414	0.064332	0.065193
	$10^8 D_v/{\rm cm}^{-1}$	0.363052	0.690909	1.002658	1.373820	1.690530	1.922724	2.122355	2.300506	2.453955	2.583320

3.4 束缚态的跃迁偶极矩、Franck-Condon 因子和辐射寿命

图 3 给出了最低五个束缚态的跃迁偶极矩的 绝对值随键长的变化.从图 3 发现,在 Franck-Condon 区域, $C^2\Pi - X^2\Sigma^+$ 跃迁的偶极矩的绝对 值明显大于 $A^2\Pi - X^2\Sigma^+$ 跃迁的数值.当核间距越 来越大,最终五个束缚态的跃迁偶极矩都趋于 0. 表 3 列出了利用 LEVEL 软件程序包计算最低五 个束缚态的 Franck-Condon 因子,可看出 $B^2\Sigma^+ - X^2\Sigma^+$ 跃迁的 0-0 带具有最大的 Franck-Condon 因 子为 0.861288,且对角化比较明显.这正好符合激 光冷却分子体系的条件,因此 $Sr^{35}Cl$ 分子可以作为 激光冷却的候选分子体系.其次较大的为 $A^2\Pi - X^2\Sigma^+$ 跃迁的 0-0 带因子为 0.656888,但是没有明 显的对角化;而 $C^2\Pi - X^2\Sigma^+ \pi 3^2\Sigma^+ - X^2\Sigma^+$ 的因 子非常小,这可能是由于两者的平衡核间距较大的 原因.

基于计算得到的激发态-基态的跃迁偶极矩、

Fig. 3. Transition dipole moments of 5 bound states of $Sr^{35}Cl$.

电子态的势能曲线和振动能级,本文计算了最低五 个束缚激发态振动能级的辐射寿命.激发态振动能 级 v/的辐射寿命计算公式如下^[33, 34]:

$$\begin{aligned} \tau_{v'} &= (A_{v'})^{-1} \\ &= \frac{3h}{64\pi^4 |a_0 \cdot e \cdot \overline{TDM}|^2 \sum_{v''} q_{v',v''} (\Delta E_{v',v''})^3} \\ &= \frac{4.936 \times 10^5}{(\overline{TDM})^2 \sum_{v''} q_{v',v''} (\Delta E_{v',v''})^3}, \end{aligned}$$

式中 $\tau_{v'}$ 为激发态振动能级 v'的辐射寿命, $A_{v'}$ 为激 发态 v'振动能级和基态 v'振动能级之间的爱因斯 坦系数, $\Delta E_{v'v'}$ 是激发态振动能级 v'和基态振动 能级 v''之间的能量差 (单位为 cm⁻¹), TDM 为平 均跃迁偶极矩(激发电子态的振动能级对应的 经典回转点区域内的平均值, 单位为 a.u.), q_{v' v"}为 Franck-Condon 因子 (FCFs). 根据上式计算的四 个激发态到基态跃迁振动带的辐射寿命,其中 3²Σ⁺—X²Σ⁺跃迁态的寿命非常大,实验上不容易 观测到, 表 4 仅列出了 $A^2\Pi - X^2\Sigma^+$, $B^2\Sigma^+ - X^2\Sigma^+$ 和 $C^2\Pi - X^2\Sigma^+$ 跃迁态的辐射寿命. 本文给出的 $B^{2}\Sigma^{+} - X^{2}\Sigma^{+}$ 跃迁的 v' = 1寿命 38.89 ns 与实验 研究给出的 39.6 ns ± 1.6 ns 值符合较好^[17], 相对 误差仅为 1.8%. A²Π—X²Σ⁺和C²Π—X²Σ⁺跃迁 的 v' = 1 寿命分别为 31.35 ns和 26.01 ns, 与文献 测量值 31.3 ns ± 2.7 ns 和 26.1 ns ± 1.9 ns 都比 较接近^[35]. 实验研究尚未给出 $3^2\Sigma^+ - X^2\Sigma^+$ 跃迁态 振动能级的辐射寿命,这可能是寿命较大,不方便 测量的原因.

4 结 论

利用高精度的内收缩多参考组态相互作用方 法 (ic-MRCI),考虑多种相关修正研究了 Sr³⁵Cl 分 子对应最低三个解离极限的激发态电子结构、势能 曲线和偶极矩等.结果表明 14 个低激发态分别对 应三个不同解离极限,B²Σ⁺对应离子对解离极限, 其中五个束缚态都存在势阱,且以基态 X²Σ⁺的势 阱最深,说明这个态在实验上更稳定,更容易在实 验中观测到.B²Σ⁺出现了双势阱,A²Π和 C²Π, B²Σ⁺和 3²Σ⁺出现了避免交叉现象,B²Σ⁺和 A²Π 发生了两次相交,当考虑了自旋-轨道效应后,这两 个交叉点就会产生避免交叉现象而分开.通过分析 束缚态的电偶极矩,发现有些地方出现了偶极矩反 转,这也正是由于避免交叉现象引起的,与势能函 数曲线得到的结论一致.本文给出了五个束缚态的

表 3	B Sr ³⁵ Cl 分子 A ² Π -X ² Σ +, B ² Σ +-X ² Σ +, C ² Π -X	$\chi^2\Sigma^+$ 和 $3^2\Sigma^+$ — $\chi^2\Sigma^+$ 跃迁的 Franck-Condon 因子
Table 3.	The Franck-Condon factors of the transitions $A^2\Pi - X^2$	$^{2}\Sigma^{+}$, $B^{2}\Sigma^{+} - X^{2}\Sigma^{+}$, $C^{2}\Pi - X^{2}\Sigma^{+}$ and $3^{2}\Sigma^{+} - X^{2}\Sigma^{+}$.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$)00000)0137)0312)2903 .8761 '7211
$ \begin{array}{c} v' = 0 \\ 1 \\ 0.272308 \\ 0.192420 \\ 0.320947 \\ 0.150685 \\ 0.466479 \\ 0.002170 \\ 0.000520 \\ 0.000163 \\ 0.000163 \\ 0.000048 \\ 0.000007 \\ 0.00 \\ 0.000174 \\ 0.000007 \\ 0.000007 \\ 0.00000007 \\ 0.00000007 \\ 0.0000000000$	00000 0137 00312 02903 .8761 7211
1 0.272308 0.192420 0.320947 0.150685 0.466479 0.012567 0.033544 0.008655 0.000174 0.00 2 0.061741 0.365100 0.012591 0.236003 0.200935 0.086356 0.027568 0.007557 0.001791 0.00	00137 00312 02903 .8761 '7211
$2 \qquad 0.061741 \qquad 0.365100 \qquad 0.012591 \qquad 0.236003 \qquad 0.200935 \qquad 0.086356 \qquad 0.027568 \qquad 0.007557 \qquad 0.001791 \qquad 0.001$	00312 02903 .8761 '7211
)2903 18761 7211
$3 \qquad 0.008378 \qquad 0.145153 \qquad 0.330434 \qquad 0.013476 \qquad 0.132392 \qquad 0.200767 \qquad 0.112395 \qquad 0.041433 \qquad 0.012093 \qquad 0.0012093 \qquad 0.0012093$	18761 '7211
4 0.000641 0.027499 0.211170 0.231162 0.064589 0.062086 0.184983 0.134977 0.058263 0.0	7211
$5 \qquad 0.000040 0.003015 0.053925 0.25428 0.132467 0.115528 0.018774 0.155878 0.151198 0.053925 0.25428 0.132467 0.115528 0.018774 0.155878 0.151198 0.053925 0.25428 0.132467 0.115528 0.018774 0.155878 0.151198 0.053925 0.25428 0.132467 0.115528 0.018774 0.155878 0.151198 0.053925 0.25428 0.132467 0.115528 0.018774 0.155878 0.151198 0.053925 0.25428 0.132467 0.115528 0.018774 0.155878 0.151198 0.053925 0.25428 0.132467 0.115528 0.018774 0.155878 0.151198 0.053925 0.25428 0.132467 0.115528 0.018774 0.155878 0.151198 0.053925 0.25428 0.132467 0.115528 0.018774 0.155878 0.151198 0.053925 0.25428 0.151198 0.053925 0.25428 0.151198 0.053925 0.25428 0.151198 0.053925 0.25428 0.151198 0.053925 0.25428 0.151198 0.053925 0.25428 0.151198 0.053925 $	
$6 \qquad 0.000004 0.000182 0.008221 0.084623 0.271397 0.058393 0.151118 0.000803 0.117380 0.198393 0.151118 0.000803 0.117380 0.198393 0.151118 0.000803 0.117380 0.198393 0.151118 0.000803 0.117380 0.198393 0.151118 0.000803 0.117380 0.198393 0.151118 0.000803 0.117380 0.198393 0.151118 0.000803 0.117380 0.198393 0.151118 0.000803 0.117380 0.198393 0.151118 0.000803 0.117380 0.198393 0.151118 0.000803 0.117380 0.198393 0.151118 0.000803 0.117380 0.198393 0.151118 0.000803 0.117380 0.198393 0.151118 0.000803 0.117380 0.198393 0.151118 0.000803 0.117380 0.198393 0.198393 0.151118 0.000803 0.117380 0.1983933 0.1983933 0.1983933 0.1983933 0.1983933 0.1983933 0.1983933 0.1983933 0.1983933 0.1983933 0.1983933 0.1983933 0.1983933 0.1983933 0.1983933 0.1983933 0.1983933 0.19839333 0.19839333 0.19839333 0.19839333 0.19839333 0.19839333 0.19839333 0.198393333333333 0.19839333 0.19839$	57174
$7 \qquad 0.000000 0.000021 0.006253 0.016398 0.117920 0.263055 0.014702 0.164939 0.005113 0.005$	7068
$8 \qquad 0.000000 \qquad 0.000000 \qquad 0.000052 \qquad 0.001674 \qquad 0.027547 \qquad 0.151418 \qquad 0.233623 \qquad 0.000068 \qquad 0.157208 \qquad 0.000068 \qquad 0.000$	24940
$9 \qquad 0.000000 0.000000 0.000007 0.000118 0.003627 0.041888 0.181283 0.190225 0.008630 0.181283 0.190225 0.008630 0.181283 0.190225 0.008630 0.1812833 0.1812833 0.1812833 0.1812833 0.1812833 0.1812833 $	33109
$\mathrm{B}^{2}\Sigma^{+}-\mathrm{X}^{2}\Sigma^{+}$	
v' = 0 0.861288 0.125494 0.011927 0.001065 0.000142 0.000047 0.000025 0.000091 0.000000 0.000000 0.000000 0.0000000 0.000000)0000
$1 \qquad 0.129692 \qquad 0.603795 \qquad 0.220001 \qquad 0.038332 \qquad 0.006251 \qquad 0.001365 \qquad 0.000411 \qquad 0.000120 \qquad 0.000019 \qquad 0.0000019 \qquad 0.0000019 \qquad 0.0000019 \qquad 0.0000019 \qquad 0.0000019 \qquad 0.0000019 \qquad 0.00000019 \qquad 0.0000000000000000000000000000000000$	0000
$2 \qquad 0.008650 \qquad 0.241321 \qquad 0.360072 \qquad 0.284163 \qquad 0.081308 \qquad 0.018646 \qquad 0.004456 \qquad 0.001109 \qquad 0.000226 \qquad 0.00100 \qquad 0.0000226 \qquad 0.00100 \qquad 0.0000000000000000000000000$)0018
$3 \qquad 0.000365 \qquad 0.027661 \qquad 0.352567 \qquad 0.179385 \qquad 0.288215 \qquad 0.112584 \qquad 0.030079 \qquad 0.007227 \qquad 0.001600 \qquad 0.0016000 \qquad 0.0016000 \qquad 0.0016000 \qquad 0.00160000 \qquad 0.0016000 \qquad 0.001600000 \qquad 0.0016000000000000000000000000000000000$)0265
$4 \qquad 0.000002 \qquad 0.001707 \qquad 0.051462 \qquad 0.411903 \qquad 0.083378 \qquad 0.268533 \qquad 0.131641 \qquad 0.039281 \qquad 0.009668 \qquad 0.0096666666666 \qquad 0.0096666666666666666666666666666666666$)2055
$5 \qquad 0.000001 0.000017 0.003843 0.078423 0.421433 0.034730 0.246976 0.148790 0.049663 0.0563$	12870
$6 \qquad 0.000000 0.000000 0.000117 0.006341 0.108918 0.407382 0.009402 0.221296 0.163711 0.009402 0.009$	31334
7.8 0.000000 0.000003 0.000001 0.000333 0.009581 0.141252 0.381199 0.000074 0.190975 0.1	'4597
0.000000 0.000002 0.000007 0.000002 0.000763 0.014168 0.173321 0.346687 0.003801 0.1	58106
9 0.000000 0.000000 0.000000 0.000000 0.000000	.1104
$C^{-11} - \chi^2 \Sigma^{+}$	0749
v = 0 0.000002 0.000037 0.000400 0.002491 0.013257 0.048581 0.121107 0.211164 0.245965 0.12	19742
	14393
2 0.000216 0.004536 0.018057 0.052861 0.110648 0.119527 0.040456 0.002385 0.059184 0.05	08927
3 0.000894 0.014294 0.042688 0.083192 0.097065 0.033697 0.003920 0.060262 0.039865 0.0	10817
$3^{-}\Sigma^{+} = X^{2}\Sigma^{+}$	17040
v = 0 0.000005 0.000100 0.001014 0.005583 0.025973 0.082055 0.174625 0.265206 0.257744 0.17	27940
$1 \qquad 0.000072 \qquad 0.001726 \qquad 0.007985 \qquad 0.028959 \qquad 0.080861 \qquad 0.133268 \qquad 0.106890 \qquad 0.018946 \qquad 0.019348 \qquad 0.1080861 \qquad 0.133268 \qquad 0.008941 \qquad 0.025169 \qquad 0.019348 \qquad 0.1080861 \qquad 0.018946 \qquad 0.0$)/924)/961
$2 \qquad 0.000444 \qquad 0.008122 \qquad 0.028147 \qquad 0.008099 \qquad 0.114004 \qquad 0.085095 \qquad 0.008341 \qquad 0.025044 \qquad 0.075108 \qquad 0.0.$	24201
5 0.001887 0.022014 0.004048 0.090749 0.070404 0.007949 0.022004 0.002244 0.010184 0.0	1472
4 0.005823 0.057375 0.098715 0.079207 0.013459 0.015420 0.050215 0.010480 0.018087 0.0	14820
0 = 0.013104 = 0.093074 = 0.093009 = 0.027430 = 0.000003 = 0.031927 = 0.010773 = 0.012448 = 0.040906 = 0.0100752 = 0.000020 = 0.022212 = 0.002266 = 0.02212 = 0.004752 = 0.000020 = 0.022212 = 0.002266 = 0.02212 = 0.004752 = 0.000020 = 0.022212 = 0.002266 = 0.02212 = 0.004752 = 0.000020 = 0.022212 = 0.002266 = 0.02212 = 0.004752 = 0.000020 = 0.022212 = 0.002266 = 0.02212 = 0.004752 = 0.000020 = 0.022212 = 0.002266 = 0.02212 = 0.004752 = 0.000020 = 0.022212 = 0.002266 = 0.02212 = 0.004752 = 0.000020 = 0.002266 = 0.02266 = 0.02212 = 0.004752 = 0.000020 = 0.00200 = 0.022212 = 0.002266 = 0.02212 = 0.000020 = 0.00200 = 0.00200 = 0.002266 = 0.022266 = 0.02212 = 0.004752 = 0.000020 = 0.00206 = 0.002066 = 0.002066 = 0.000020 = 0.000020 = 0.002066 = 0.002066 = 0.002066 = 0.0000752 = 0.0000750 = 0.000000000000000000000000000000000	71448 02015
0 0.025407 0.109140 0.002550 0.000059 0.045254 0.055515 0.005500 0.042212 0.004752 0.0	01910
i 0.050052 0.100010 0.020510 0.019069 0.05080 i 0.001 i 54 0.05028 0.01 i 051 0.012099 0.0)1057
0 = 0.060548 = 0.057180 = 0.008520 = 0.060007 = 0.001701 = 0.038480 = 0.06712 = 0.024666 = 0.015200 = 0.00070 = 0.01701 = 0.028480 = 0.008712 = 0.024666 = 0.015200 = 0.00070 = 0.001701 = 0.028480 = 0.008712 = 0.024666 = 0.015200 = 0.00070 = 0.001701 = 0.028480 = 0.008712 = 0.024666 = 0.015200 = 0.00070 = 0.001701 = 0.028480 = 0.008712 = 0.024666 = 0.015200 = 0.00070 = 0.001701 = 0.028480 = 0.008712 = 0.024666 = 0.015200 = 0.00070 = 0.001701 = 0.028480 = 0.008712 = 0.024666 = 0.015200 = 0.00070 = 0.001701 = 0.028480 = 0.008712 = 0.024666 = 0.015200 = 0.00070 = 0.001701 = 0.028480 = 0.008712 = 0.024666 = 0.015200 = 0.00070 = 0.001701 = 0.028480 = 0.008712 = 0.024666 = 0.015200 = 0.00070 = 0.00070 = 0.001701 = 0.028480 = 0.008712 = 0.024666 = 0.015200 = 0.00070 = 0.000700 = 0.00070 = 0.000700 = 0.000700 = 0.000700 = 0.000700 = 0.000700 = 0.000700 = 0.000700 = 0.000700 = 0.000700 = 0.000700 = 0.000700 = 0.000700 = 0.000700 = 0.000700 = 0.000700 = 0.0000700 = 0.0000700 = 0.0000700 = 0.0007000 = 0.000700 = 0.000700	13407

表 4 Sr³⁵Cl 分子 A²П — X²Σ⁺, B²Σ⁺ — X²Σ⁺ 和 C²П — X²Σ⁺ 跃迁的辐射寿命 Table 4. Radiative lifetimes of the transitions A²П – X²Σ⁺, B²Σ⁺ – X²Σ⁺ and C²Π – X²Σ⁺.

	Radiative lifetimes/ns				
1 ransition	v' = 0	v' = 1	v'=2		
$A^2\Pi - X^2\Sigma^+$	31.23	31.35	31.56		
$B^2\Pi - X^2\Sigma^+$	38.83	38.89	39.12		
$C^2\Pi - X^2\Sigma^+$	25.92	26.01	26.18		

光谱常数,与近来的理论计算和实验值都符合得较好;同时还给出了更多激发态的振动能级和分子常数,部分结果与实验值的百分误差都在7%以内;最后给出了Franck-Condon因子和辐射寿命等跃迁性质,获得了比较完善的激发态光谱性质.这些精确的光谱跃迁特性可为进一步构建 Sr³⁵Cl 分子激光冷却方案提供理论支持.

参考文献

- [1] Micheli A, Brennen G, Zoller P 2006 Nat. Phys. 2 341
- [2] Baron J, Campbell W C, DeMille D, Doyle J M, Gabrielse G, Gurevich Y V, Hess P W, Hutzler N R, Kirilov E, Kozyryev I, O'Leary B R, Panda C D, Parsons M F, Petrik E S, Spaun B, Vutha A C, West A D 2014 Science 343 269
- [3] Krems R V 2008 Phys. Chem. Chem. Phys. 10 4079
- [4] Walters O H, Barratt S 1928 Proc. R. Soc. London Ser. A 118 120
- [5] Nakagawa J, Domaille P J, Steimle T C, Harris D O 1978 J. Mol. Spectrosc. 70 374
- [6] Dulick M, Bernath P F, Field R W 1980 Can. J. Phys. 58 703
- [7] Domaille P J, Steimle T C, Wong N B, Harris D O 1977 J. Mol. Spectrosc. 65 354
- [8] Berg L E, Klynning L, Martin H 1980 Phys. Scr. 21 173
- [9] Bernath P F, Field R W, Pinchemel B, Lefebvre Y, Schamps J 1981 J. Mol. Spectrosc. 88 175
- [10] Reisner D E, Bernath P F, Field R W 1981 J. Mol. Spectrosc.
 89 107
- [11] Zare R N, Schmeltekopf A L, Harrop W J, Albritton D L 1973 J. Mol. Spectrosc. 46 37
- [12] Singh J, Nair K P R, Upadhya K N, Rai D K 1970 Opt. Pure Appl. 3 76
- [13] Brinkmann U, Schmidt V H, Telle H 1982 Chern. Phys. 64 19
- [14] Schiitze Pahlmann H V, Ryzlewicz C H, Hoeft J, Torring T 1982 Chern. Phys. Lett. 93 74

- [15] Ernst W E, Schröder J O 1984 J. Chem. Phys. 81 136
- [16] Schruder J O, Zeller B, Ernst W E 1988 J. Mol. Spectrosc. 127 255
- [17] Berg L E, Royen P, Weijnitz P 1990 Mol. Phys. 69 385
- [18] Werner H J, Knowles P J, Knizia G, et al. 2012 MOLPRO, Version 2012.1, A Package of ab initio Programs
- [19] Peterson K A, Figgen D, Goll E, Stoll H, Dolg M 2003 J. Chem. Phys. 119 11099
- [20] Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053
- [21] Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259
- [22] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
- [23] Knowles P J, Werner H J 1988 Chem Phys Lett. 145 514
- [24] Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasi-bound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663
- [25] Fu M K, Ma H T, Cao J W, Bian W S 2016 J. Chem. Phys. 144 184302
- [26] Adema Z, Makhlouf S, Taher F 2016 Comput. Theor. Chem. 1093 48
- [27] Huber K P, Herzberg G 1979 Constants of Diatonic Molecules, Molecular Spectra Molecular Structure (Vol. IV) (New York: Van Nostrand Reinhold)
- [28] Lima J C B D, Ornellas F R 2013 J. Mol. Spectrosc. 283 22
- [29] Wu D L, Lin C Q , Wen Y F, Xie A D, Yan B 2018 Chin. Phys. B 27 083101
- [30] Wu D L, Tan B, Wen Y F, Zeng X F, Xie A D, Yan B 2016 Spectrochim Acta Part A 161 101
- [31] Wei C L, Liang G Y, Liu X T, Yan P Y, Yan B 2016 Acta Phys. Sin. 65 163101 (in Chinese) [魏长立, 梁桂颖, 刘晓婷, 颜培源, 闫冰 2016 物理学报 65 163101]
- [32] Zhang X M, Liang G Y, Li R, Shi D D, Liu Y C, Liu X S, Xu H F, Yan B 2014 Chem. Phys. 443 142
- [33] Okabe H 1978 Photochemistry of Small Molecules (New York: Wiley-Interscience)
- [34] Zou W L, Liu W J 2005 J. Comput. Chem. 26 106
- [35] Paul J D, Howard W C, Richard N Z 1974 J. Chem. Phys. 60 2330

Spectrum and transition characteristics of low excited state of strontium chloride molecule^{*}

Wu Dong-Lan[†] Yuan Jin-Hong Wen Yu-Feng Zeng Xue-Feng Xie An-Dong

(College of Mathematic and Physical, Jinggangshan University, Ji'an 343009, China)
 (Received 26 September 2018; revised manuscript received 11 December 2018)

Abstract

Sr³⁵Cl is a candidate system for laser cooling. The spectrum and transition characteristics are very important for constructing laser cooling schemes. In this paper, the spectral properties are analyzed by using the Davidson's modified internal contraction multi-reference interaction (ic-MRCI + Q) method, in combination with the relativistic effective core pseudopotential group (aug-cc-pV5Z-PP) as the base group for the calculation of the Sr atom and the related consistent quintile aug-cc-pV5Z as the Cl atom. The potential energy curves and dipole moments of 14 low excited electron states of $Sr^{35}Cl$ molecule are optimized. In order to obtain more accurate spectral parameters, nuclear valence electron correlation and relativistic effect correction are introduced into the calculation. Using the LEVEL 8.0 program to fit the modified potential energy curves of 5 bound states, the spectral properties such as spectral constants, vibration energy levels, and molecular constants of the corresponding electron states are obtained. The results show that there is a double potential well in $B^2\Sigma^+$ state and the cross phenomena are avoided in $A^2\Pi$ and $C^2\Pi$, $B^2\Sigma^+$ and $3^2\Sigma^+$ respectively. The spectrum and molecular constants are in good agreement with the recently obtained theoretical calculations and experimental values except the adiabatic excitation energy. It may be due to the fact that the effect of the interaction of electronic states is taken into account. The transition properties such as Frank-Condon factor and radiation lifetime are also given. It can be seen that the 0-0 band of $B^2\Sigma^+ - X^2\Sigma^+$ transition has the largest Franck-Condon factor of 0.861288, and the diagonalization is obvious, which is the condition for laser cooling. The lifetime of $B^2\Sigma^+ - X^2\Sigma^+$ transition is 38.89 ns, which is in accordance with the experimental value 39.6 ns ± 1.6 ns. These precise spectral transition characteristics may provide theoretical support for further constructing the laser cooling scheme of Sr³⁵Cl molecule.

Keywords: Sr³⁵Cl molecule, internal contraction multi-reference interaction, spectroscopic and molecular constant, vibration levels, transition characteristics

PACS: 31.15.A-, 31.15.vn, 33.15.Mt, 31.50.Df

DOI: 10.7498/aps.68.20181770

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11564019, 11147158) and the Science and Technology Project of Jiangxi Provincial Education Department, China (Grant No. GJJ170654).

 $[\]dagger\,$ Corresponding author. E-mail: wudonglan1216@sina.com