物理学报 Acta Physica Sinica

Institute of Physics, CAS

非局域颗粒复合介质的相干完美吸收效应

陈志鹏 於文静 高雷

Coherent perfect absorption in nonlocal particle composite medium Chen Zhi-Peng Yu Wen-Jing Gao Lei 引用信息 Citation: Acta Physica Sinica, 68, 051101 (2019) DOI: 10.7498/aps.68.20182108 在线阅读 View online: https://doi.org/10.7498/aps.68.20182108

当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

一种广义三模腔光机械系统的相干完美吸收与透射

Coherent perfect absorption and transmission of a generalized three-mode cavity optico-mechanical system 物理学报. 2017, 66(10): 107101 https://doi.org/10.7498/aps.66.107101

线性吸收介质非局域线性电光效应的耦合波理论

Wave coupling theory of nonlocal linear electro-optic effect in a linear absorbent medium 物理学报. 2017, 66(6): 64202 https://doi.org/10.7498/aps.66.064202

非局域高次非线性介质中的多极暗孤子

Multi-pole dark solitons in nonlocal and cubic-quintic nonlinear medium 物理学报. 2018, 67(21): 214207 https://doi.org/10.7498/aps.67.20180786

基于量子相干控制吸收的准Λ型四能级原子局域化研究

Study on atomic localization of Λ -type quasi-four level atoms based on absorption with quantum coherent control 物理学报. 2015, 64(13): 134204 https://doi.org/10.7498/aps.64.134204

竞争非局域三次五次非线性介质中孤子的传输特性

Propagating properties of spatial solitons in the competing nonlocal cubic-quintic nonlinear media 物理学报. 2017, 66(5): 54208 https://doi.org/10.7498/aps.66.054208

回音壁微腔光力系统的相干控制与完全相干透射

Coherent control of whispering-gallery-mode optomechanical microresonators and perfect transparency 物理学报. 2016, 65(21): 214204 https://doi.org/10.7498/aps.65.214204

非局域颗粒复合介质的相干完美吸收效应*

陈志鹏1)2) 於文静1)3) 高雷1)2)†

1) (苏州大学物理科学与技术学院,苏州纳米科技协同创新中心,苏州 215006)

2) (苏州大学, 江苏省薄膜重点实验室, 苏州 215006)

3) (江苏理工学院数理学院,常州 213001)

(2018年11月28日收到; 2018年12月30日收到修改稿)

研究了两束相干光以相同的入射角从左、右两侧分别入射到 Au-SiO₂ 复合介质板时,在不同的体系参数 下该复合材料体系发生相干完美吸收的情形.运用有效媒质理论推导出了复合介质的有效介电常数以及有 效磁导率;在得到有效电磁参数的基础上进一步推导得到平面波入射复合介质板时的反/透射系数.通过比 较分析非局域和局域情况下颗粒复合介质的相干完美吸收现象,发现当颗粒尺寸很小时非局域效应的影响 会导致复合介质产生相干完美吸收的入射光的频率范围显著变宽.在进一步的解析计算中,通过调节复合介 质板的厚度、入射光波长、金属颗粒体积分数等参数得到了不同情况下产生的相干完美吸收现象,并由此分 析非局域情形下对于相干完美吸收现象的调控.

关键词: 非局域效应,相干完美吸收,颗粒复合介质,有效媒质理论 **PACS:** 11.10.Lm, 78.20.Ci, 88.30.mj, 42.25.Bs **DOI:** 10.7498/aps.68.20182108

1 引 言

近年来,纳米金属颗粒对电磁辐射的响应一直 是许多研究工作的主题.特别令人感兴趣的是,含 有这些粒子的复合样品在远红外中表现出反常的 吸收现象,并且这种反常的吸收依赖于颗粒的大 小、体积分数等因素,这类反常的吸收现象称之为 相干完美吸收 (coherent perfect absorption, CPA). 由于在纳米级光学操控和数据处理等方面有很多 潜在的应用,对于相干完美吸收的研究已经越来越 热门.有研究表明,通过改变这些系统参数,可以 实现可控的相干完美吸收^[1].现有的 CPA 的计算 是在平面波下近似进行的,但实验室中的普通激光 光源是以高斯光束作为输出光源,已有研究表明即 使是使用高斯光束也可以观察到相干完美吸收现 象^[2]. 而在共轭超材料构成的二维圆柱结构当中, 同样可以实现相干完美吸收^[3]. 最新的研究表明, 在红外波段下可以实现超构表面的多波段相干完 美吸收,而且吸收带宽比单波段吸收提高了3倍^[4]. 最近也有科学家研究了非线性波的相干完美吸收 现象,并在玻色-爱因斯坦凝聚体中进行了实验验证^[5].

以往的复合介质相干完美吸收的研究并没有 考虑非局域效应的存在^[1],而在小尺度金属颗粒中, 非局域效应的影响是不能忽略的.在研究非局域方 面,Ruppin^[6]第一次将 Mie 全波理论扩充到包含 纵波的模式并解决了非局域效应情况下的等离子球 体的光学性质问题.而在准静态近似中,Fuchs等^[7,8] 提出了一种比较简单的方法并以此来计算考虑介 质响应的非局域效应情况下金属纳米颗粒以及核 壳颗粒的多极极化度,并由此来研究这些颗粒的光 学响应.Leung等利用准静态下半经典非局域理 论,研究了金属纳米壳与分子相互作用^[9]以及非局

* 国家自然科学基金 (批准号: 11774252)、江苏省自然科学基金 (批准号: BK20161210)、江苏省青蓝工程、"333"工程 (批准号: BRA2015353) 和江苏省高校优势学科建设工程资助的课题.

© 2019 中国物理学会 Chinese Physical Society

[†] 通信作者. E-mail: leigao@suda.edu.cn

域等离子体激元增强福斯特能量转移的非局域效 应^[10]. 在研究单分子附着的双金属核壳纳米颗粒表 面增强拉曼散射[11]和纳米颗粒表面等离激元[12] 时,还考虑了金属非局域效应的影响.时域有限差 分法 (FDTD)^[13] 被提出用于计算具有任意形状的 纳米结构的非局域效应;有限元方法 (FEM)^[14]则 同样可以研究任意二维形状的纳米结构的介电非 局域效应. 金属传导电子的量子效应引起了金属的 非局域效应,所以研究人员又提出了一种全量子的 处理方法并且可以用来很好地研究纳米尺度的结 构问题[15-18]. 在大尺寸结构中非局域效应的影响 是可忽略的,但在纳米颗粒中由于颗粒的尺度非常 小,此时非局域效应的影响就变得尤其重要.当纳 米颗粒的大小远小于入射波波长时,可采用有效媒 质理论 (EMT)^[19,20] 来研究其非局域效应, 而且已 有研究得到了纳米柱下的等价介电参数[21]. 最近有 研究表明,金属中的非局域效应对石墨烯表面等离 激元的光谱有很大影响.因此,石墨烯表面等离子 体可以成为探测金属纳米结构 (包括金属薄膜) 中 非局域效应的工具[22].

因此, 在研究纳米颗粒复合介质的相干完美吸 收效应过程中, 由于金属量子效应的存在, 金属非 局域效应的影响是不能忽略的. 本文运用有效媒质 理论研究金属球颗粒复合介质的介电参数, 发展非 局域复合体系的相干完美吸收的理论计算, 运用理 论解析和数值模拟的方法, 分析非局域效应对相干 完美吸收产生的影响并且讨论相干完美吸收产生 的条件以及调控.

2 有效媒质理论

为了研究非局域颗粒复合介质的相干完美吸 收,我们首先建立了一个模型,如图 1 所示.在 x-y 平面中厚度为 d 的复合介质板由基底介质与填充 介质构成,该填充介质是非局域金属颗粒,基底介 质是二氧化硅.这个复合层由两个相干单色波以相 同的入射角θ分别从左右两侧入射.为了方便起见,

图 1 相干完美吸收的示意图

我们分别用下标 1(2) 标记从左 (右) 入射的向前 (向后) 传播的波所产生的反射波和透射波, 分别由 图中的蓝色实线 (红色虚线) 表示.

如果从左侧入射产生的反射波 (r_1) 与从右侧 入射产生的透射波 (t_2) 的振幅相同,相位相差为 π , 即 $|r_1| = |t_2|$, $|\Delta \phi| = |\phi_{r1} - \phi_{t2}| = \pi$, $(\phi_{r1} \pi \phi_{t2} \Delta f)$ 别是 $r_1 \pi t_2$ 的相位),此时二者会相消即产生相干 完美吸收.并且由于内在的对称性,即 $r_1 = r_2$, $t_1 = t_2$,导致在介质两侧的总散射幅度也是相同的.因此,在入射介质中相消意味着在出射介质中同样会 相消,这也就导致了相干完美吸收.

在图 2 的结构当中, 非局域金属纳米颗粒的介 电常数由横模介电常数 ε_T和纵模介电常数 ε_L来描 述, 分别由下式表示^[23,24]:

$$\begin{split} \varepsilon_{\rm T}(\omega) = & \varepsilon_{\rm g} - \frac{\omega_{\rm p}^2}{\omega^2 + \mathrm{i}\omega\gamma}, \\ \varepsilon_{\rm L}(\omega, k) = & \varepsilon_{\rm g} - \frac{\omega_{\rm p}^2}{\omega^2 + \mathrm{i}\omega\gamma - \beta^2 k^2}, \end{split} \tag{1}$$

式中 ε_g 是与间带跃迁有关的背景介电常数 (如果 $\varepsilon_g = 1$,此时该金属将只考虑自由电子气对介电的 影响), ω_p 是金属的等离子频率, γ 是电子阻尼常 数.非局域参数 β 等于 $\sqrt{3/5}v_F$,其中 v_F 是金属中电 子的费米速度.纵波的波矢由方程 $\varepsilon_L(\omega, k_L) = 0$ 给 出,而横波的波矢则满足常规的色散定律: $k_T = (\omega/c)(\varepsilon_T)^{1/2}(\mu_T)^{1/2}$.

图 2 有效媒质理论模型, 红色为金属颗粒, 蓝色为基底 介质, 灰色为有效介质

Fig. 2. The model of effective medium. The red part is metal particles, the blue part is base medium, and the grey part is effective medium.

运用有效媒质理论考虑上述带壳金属纳米球 颗粒的核壳模型在有效介质中的总散射为零 (即金 属球壳对电磁波没有散射),此时带壳非局域金属 纳米球颗粒对电磁波的散射效果与有效介质一致, 两者具有相同的电磁性质.从光散射的角度来看, 可以用有效介质的介电常数 *ε*eff 和磁导率 *μ*eff 来表 示核壳纳米球的介电参数,从而描述整个颗粒复合 介质体系的有效介电参数.接下来研究核壳纳米球 在有效介质中的电磁散射问题.

平面波入射时,入射电场可用如下公式表示:

$$E^{\mathrm{I}} = E_{0} \mathrm{e}^{-\mathrm{i}\omega t} \sum_{l=1}^{\infty} \mathrm{i}^{l} \frac{2l+1}{l(l+1)} \{ \nabla \times [\mathbf{r} \cdot \mathrm{j}_{l}(k_{\mathrm{eff}}r) \times \mathrm{P}_{l}^{(1)}(\cos\theta)\sin\phi] - \mathrm{i} \cdot \frac{1}{k_{\mathrm{eff}}} \nabla \times \nabla \times [\mathbf{r} \cdot \mathrm{j}_{l}(k_{\mathrm{eff}}r) \cdot \mathrm{P}_{l}^{(1)}(\cos\theta)\cos\phi] \}, \qquad (2)$$

散射电场表示为

$$E^{\mathrm{R}} = E_{0} \mathrm{e}^{-\mathrm{i}\omega t} \sum_{l=1}^{\infty} \mathrm{i}^{l} \frac{2l+1}{l(l+1)} \{ \nabla \times [\boldsymbol{r} \cdot a^{\mathrm{R}} \mathrm{h}_{l}(k_{\mathrm{eff}}r) \times \mathrm{P}_{l}^{(1)}(\cos\theta) \sin\phi] - \mathrm{i} \cdot \frac{1}{k_{\mathrm{eff}}} \nabla \times \nabla \times [\boldsymbol{r} \cdot b^{\mathrm{R}} \mathrm{h}_{l}(k_{\mathrm{eff}}r) \mathrm{P}_{l}^{(1)}(\cos\theta) \cos\phi] \}, \qquad (3)$$

这里的 $j_l(x)$ 和 $h_l(x)$ 分别是第一类球面贝塞尔函数 和球汉克尔函数, k_{eff} 是有效介质中横波的波矢, 其中 $k_{\text{eff}} = (\omega/c)(\varepsilon_{\text{eff}})^{1/2}(\mu_{\text{eff}})^{1/2}$.

壳层中的电场表示为

$$E^{s} = E_{0} e^{-i\omega t} \sum_{l=1}^{\infty} i^{l} \frac{2l+1}{l(l+1)} \{ \nabla \times [\boldsymbol{r} \cdot [\boldsymbol{a}_{s}^{TM} \mathbf{j}_{l}(k_{s}r) + \boldsymbol{b}_{s}^{TM} \mathbf{y}_{l}(k_{s}r)] \cdot \mathbf{P}_{l}^{(1)}(\cos \theta) \sin \phi]$$

$$- i \cdot \frac{1}{k_{s}} \nabla \times \nabla \times [\boldsymbol{r} \cdot [\boldsymbol{a}_{s}^{TE} \mathbf{j}_{l}(k_{s}r) + \boldsymbol{b}_{s}^{TE} \mathbf{y}_{l}(k_{s}r)] \cdot \mathbf{P}_{l}^{(1)}(\cos \theta) \cos \phi] \}, \qquad (4)$$

式中 $y_l(x)$ 是诺依曼函数; a_s , b_s 分别是壳层磁散射 系数和电散射系数; $k_s = (\omega/c)(\varepsilon_s)^{1/2}(\mu_s)^{1/2}$ 是壳层 中横波的波矢.

非局域金属纳米球颗粒中的电场既有横向电场,也有纵向电场,它们分别表示为:

$$E^{\mathrm{T}} = E_{0} \mathrm{e}^{-\mathrm{i}\omega t} \sum_{l=1}^{\infty} \mathrm{i}^{l} \frac{2l+1}{l(l+1)} \{ \nabla \times [\mathbf{r} \cdot a_{\mathrm{c}}^{\mathrm{T}} \mathrm{j}_{l}(k_{\mathrm{T}} r) \\ \times \mathrm{P}_{l}^{(1)}(\cos\theta) \sin\phi] - \mathrm{i} \cdot \frac{1}{k_{\mathrm{T}}} \nabla \times \nabla \\ \times [\mathbf{r} \cdot b_{\mathrm{c}}^{\mathrm{T}} \mathrm{j}_{l}(k_{\mathrm{T}} r) \cdot \mathrm{P}_{l}^{(1)}(\cos\theta) \cos\phi] \},$$
(5)

$$E^{\mathrm{L}} = E_{0} \mathrm{e}^{-\mathrm{i}\omega t} \sum_{l=1}^{\infty} \mathrm{i}^{l} \frac{2l+1}{l(l+1)} \cdot \frac{1}{k_{\mathrm{L}}} \nabla [a_{\mathrm{c}}^{\mathrm{L}} \mathrm{j}_{l}(k_{\mathrm{L}}r) \times \mathrm{P}_{l}^{(1)}(\cos\theta)\cos\phi], \qquad (6)$$

其中ac, bc 分别为核层磁散射系数和电散射系数.

结合电场和磁场的边界条件可以计算出各式 中的相关系数.值得注意的是,由于非局域金属纳 米球核内存在附加的纵波,在金属纳米球核和外壳 之间的界面上应该有附加的边界条件.这里我们选 用 $n \cdot P_{ex} = 0$ 作为附加的边界条件,其中 $P_{ex} = D - \varepsilon_0 \varepsilon_g E$ 表示介电材料中极化矢量的极子部分^[25].

经过一系列的推算,我们得到了散射系数*a*_n 和*b*_n:

$$b_{n} = \frac{\begin{vmatrix} -\frac{[k_{eff}b_{jl}(k_{eff}b) & -j_{l}(k_{s}b) & -y_{l}(k_{s}b) & 0\\ -\frac{[k_{eff}b_{jl}(k_{s}d)]'}{\mu_{eff}} & -\frac{[k_{s}b_{jl}(k_{s}b)]'}{\mu_{s}} & -\frac{[k_{s}b_{jl}(k_{s}b)]'}{0} & 0\\ 0 & j_{l}(k_{s}a) & y_{l}(k_{s}a) & -j_{l}(k_{T}a) \\ 0 & \frac{[k_{s}a_{jl}(k_{s}a)]'}{\mu_{s}} & \frac{[k_{s}a_{jl}(k_{s}a)]'}{\mu_{T}} & -\frac{[k_{t}b_{jl}(k_{t}b)]'}{\mu_{T}} \\ \end{vmatrix}}{\left| \frac{h_{l}(k_{eff}b) & -j_{l}(k_{s}b) & -y_{l}(k_{s}b) & 0\\ \frac{[k_{eff}b_{1l}(k_{eff}b)]'}{\mu_{eff}} & -\frac{[k_{s}b_{jl}(k_{s}b)]'}{\mu_{s}} & -\frac{[k_{s}b_{jl}(k_{s}b)]'}{\mu_{s}} & 0\\ 0 & j_{l}(k_{s}a) & y_{l}(k_{s}a) & -j_{l}(k_{T}a) \\ 0 & \frac{[k_{s}a_{jl}(k_{s}a)]'}{\mu_{s}} & \frac{[k_{s}a_{jl}(k_{s}b)]'}{\mu_{s}} & -\frac{[k_{s}b_{jl}(k_{s}b)]'}{\mu_{T}} \\ 0 & \frac{[k_{sa}a_{jl}(k_{s}a)]'}{\mu_{s}} & \frac{[k_{s}a_{jl}(k_{s}a)]'}{\mu_{s}} & -\frac{[k_{s}a_{jl}(k_{s}a)]'}{\mu_{T}} \\ 0 & \frac{[k_{sa}a_{jl}(k_{s}a)]'}{\mu_{s}} & \frac{[k_{s}b_{jl}(k_{s}b)]'}{\mu_{T}} & 0\\ 0 & \frac{[k_{sa}a_{jl}(k_{s}a)]'}{\mu_{s}} & \frac{[k_{s}b_{jl}(k_{s}a)]'}{\mu_{s}} & -\frac{[k_{s}b_{jl}(k_{s}a)]'}{\mu_{T}} \\ \frac{[k_{eff}b_{1l}(k_{eff}b) & -\frac{k_{s}}{k_{s}}j_{l}(k_{s}b) & -\frac{k_{s}}{k_{s}}y_{l}(k_{s}b) & 0\\ 0 & \frac{[k_{sa}a_{jl}(k_{s}a)]'}{\mu_{s}} & \frac{[k_{s}b_{jl}(k_{s}a)]'}{\mu_{s}} & -\frac{[k_{s}b_{jl}(k_{s}a)]'}{\mu_{T}} \\ \frac{[k_{eff}b_{1l}(k_{eff}b) & -\frac{k_{s}}{k_{s}}j_{l}(k_{s}b) & -\frac{k_{s}}{k_{s}}y_{l}(k_{s}a) & -\frac{k_{s}}{k_{s}}j_{l}(k_{s}a) & 0\\ \frac{[k_{eff}b_{1l}(k_{eff}b) & -\frac{k_{s}}{k_{s}}j_{l}(k_{s}a) & \frac{k_{s}}{k_{s}}y_{l}(k_{s}a) & -\frac{k_{s}}{k_{s}}j_{l}(k_{s}a) & 0\\ \frac{[k_{eff}b_{1l}(k_{eff}b) & -\frac{k_{s}}{k_{s}}j_{l}(k_{s}a) & \frac{k_{s}}{k_{s}}y_{l}(k_{s}a) & -\frac{k_{s}}{k_{s}}j_{l}(k_{s}a) & 0\\ \frac{[k_{eff}b_{1l}(k_{eff}b) & -\frac{k_{s}}{k_{s}}j_{l}(k_{s}b) & -\frac{k_{s}}}{k_{s}}y_{l}(k_{s}a) & 0 & 0\\ \frac{[k_{eff}b_{1l}(k_{eff}b) & -\frac{k_{s}}{k_{s}}j_{l}(k_{s}b) & -\frac{k_{s}}}{k_{s}}y_{l}(k_{s}a) & 0 & 0\\ \frac{[k_{eff}b_{1l}(k_{eff}b) & -\frac{k_{s}}}{k_{s}}j_{l}(k_{s}b) & -\frac{k_{s}}}{k_{s}}y_{l}(k_{s}a) & 0 & 0\\ \frac{[k_{eff}b_{1l}(k_{eff}b) & -\frac{k_{s}}}{k_{s}}j_{l}(k_{s}b) & -\frac{k_{s}}}{k_{s}}y_{l}(k_{s}a) & -\frac{k_{s}}}{k_{s}}j_{l}(k_{s}a) & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0$$

考虑极限情况 keffb << 1时, 带壳非局域金属纳米球颗粒的总散射截面主要由 (7) 式中级次 n = 1的项

决定.因此,有效介电常数 ε_{eff} 和有效磁导率 μ_{eff} 则分别由 $a_1 = 0$ 和 $b_1 = 0$ 项决定.例如,对于 b_n 有:

$$-\frac{[k_{\rm eff}b \cdot j_l(k_{\rm eff}b)]'}{k_{\rm eff}b} - \frac{[k_s b \cdot j_l(k_s b)]'}{k_s b} - \frac{[k_s b \cdot y_l(k_s b)]'}{k_s b} = 0 \qquad 0 \\
-\frac{k_{\rm eff}}{\mu_{\rm eff}} j_l(k_{\rm eff}b) - \frac{k_s}{\mu_s} j_l(k_s b) - \frac{k_s}{\mu_s} y_l(k_s b) = 0 \qquad 0 \\
0 \qquad \frac{[k_s a \cdot j_l(k_s a)]'}{k_s a} - \frac{[k_s b \cdot y_l(k_s a)]'}{k_s a} - \frac{[k_T a \cdot j_l(k_T a)]'}{k_T a} - \frac{j_l(k_L a)}{k_L a} \\
0 \qquad 0 \qquad 0 \qquad 0 \qquad l(l+1)(\varepsilon_g - \varepsilon_T) \frac{j_l(k_T a)}{k_T a} - \varepsilon_g[j_l(k_L a)]'$$

$$= 0. (8)$$

考虑上述极限的情况下, 令 $x = k_{eff}r$ (或 $x = k_Tr$), 函数 $j_l(x)$, $h_l(x)$, $y_l(x)$ 可以近似为 $j_1(x) \cong \frac{x}{3}$, $h_1(x) \cong \frac{x}{3} - \frac{i}{x^2}, y_1(x) \cong -\frac{1}{x^2}, 则有效介电常数可表示为:$ $2 = j_1(k_s b)$ εr) ε

$$\frac{eff - 2\varepsilon_{s} \frac{\left[k_{s}b \cdot j_{1}(k_{s}b)\right]'}{\left[k_{s}b \cdot y_{1}(k_{s}b)\right]'}}{\left[k_{s}b \cdot y_{1}(k_{s}b)\right]'} = \frac{\left[k_{s}b \cdot y_{1}(k_{s}b)\right]' \left\{Q_{1} \cdot \left[k_{s}a \cdot j_{1}(k_{s}a)\right]'\varepsilon_{T} - j_{1}(k_{s}a)\varepsilon_{s}\right\}}{\left[k_{s}b \cdot j_{1}(k_{s}b)\right]' \left\{Q_{1} \cdot \left[k_{s}a \cdot y_{1}(k_{s}a)\right]'\varepsilon_{T} - y_{1}(k_{s}a)\varepsilon_{s}\right\}},$$
(9)

式中

$$Q_1 = \frac{\varepsilon_{g} j_1(k_{T}a) j'_1(k_{L}a)}{\varepsilon_{g} [k_{T}a \cdot j_1(k_{T}a)]' j'_1(k_{L}a) - 2(\varepsilon_{g} - \varepsilon_{T}) j_1(k_{T}a) j_1(k_{L}a)/(k_{L}a)}.$$
(10)

同样地, $a_1 = 0$ 时可以得到复合介质的有效磁导率:

• (1 1)

$$\frac{\mu_{\rm eff} - 2\mu_{\rm s} \frac{\mathbf{j}_{1}(k_{\rm s}0)}{[k_{\rm s}b \cdot \mathbf{j}_{1}(k_{\rm s}b)]'}}{\mu_{\rm eff} - 2\mu_{\rm s} \frac{\mathbf{y}_{1}(k_{\rm s}b)}{[k_{\rm s}b \cdot \mathbf{y}_{1}(k_{\rm s}b)]'}} = \frac{[k_{\rm s}b \cdot \mathbf{y}_{1}(k_{\rm s}b)]' \left\{ [k_{\rm s}a \cdot \mathbf{j}_{1}(k_{\rm s}a)]'\mathbf{j}_{1}(k_{\rm T}a)\mu_{\rm T} - [k_{\rm T}a \cdot \mathbf{j}_{1}(k_{\rm T}a)]'\mathbf{j}_{1}(k_{\rm s}a)\mu_{\rm s} \right\}}{[k_{\rm s}b \cdot \mathbf{j}_{1}(k_{\rm s}b)]' \left\{ [k_{\rm s}a \cdot \mathbf{y}_{1}(k_{\rm s}a)]'\mathbf{j}_{1}(k_{\rm T}a)\mu_{\rm T} - [k_{\rm T}a \cdot \mathbf{j}_{1}(k_{\rm T}a)]'\mathbf{y}_{1}(k_{\rm s}a)\mu_{\rm s} \right\}}.$$
(11)

在有效媒质理论的基础上,如果不考虑金属纳 米颗粒的非局域效应,此时金属颗粒中不存在纵 波,可以得到局域情况下复合介质的有效电磁参数 $\varepsilon_{\rm eff}$, $\mu_{\rm eff}$:

 $\frac{\varepsilon_{\rm eff} - \varepsilon_{\rm s}}{\varepsilon_{\rm eff} + 2\varepsilon_{\rm s}} = f \cdot \frac{\varepsilon_{\rm m} - \varepsilon_{\rm s}}{\varepsilon_{\rm m} + 2\varepsilon_{\rm s}}, \quad \frac{\mu_{\rm eff} - \mu_{\rm s}}{\mu_{\rm eff} + 2\mu_{\rm s}} = f \cdot \frac{\mu_{\rm m} - \mu_{\rm s}}{\mu_{\rm m} + 2\mu_{\rm s}},$ (12)

式中f为非局域金属颗粒的体积分数, $f = (a/b)^3$; ε_m 为金属的介电常数, ε_s 为壳层介质的介电常数.

对于平面波入射,其波矢分布在 x-y平面内, 且在y方向的分量Q是相同的,在x方向的分量 q可以由波动方程 $q^2 = \varepsilon_{\text{eff}} \mu_{\text{eff}} \frac{\omega^2}{c^2} - Q^2$ 给出, Q则 表示为 $Q = \frac{\omega}{c} \sqrt{\varepsilon_1 \mu_1} \sin \theta$.可以推导得出平面波入 射复合介质板时的反射系数 r 和透射系数 t:

$$r = \frac{(S_1^2 - S_2^2)(\mathsf{e}^{-\mathsf{i}qd} - \mathsf{e}^{\mathsf{i}qd})}{(S_1 + S_2)^2 \mathsf{e}^{-\mathsf{i}qd} - (S_1 - S_2)^2 \mathsf{e}^{\mathsf{i}qd}},$$
(13a)

$$t = \frac{4S_1S_2}{(S_1 + S_2)^2 e^{-iqd} - (S_1 - S_2)^2 e^{iqd}},$$
 (13b)

式中c是光在真空中的传播速度, ω 为入射光的频率, d 为复合介质板的厚度; 相关系数 $S_1 = \frac{\sqrt{\varepsilon_1 \mu_1} \cos \theta}{c \varepsilon_0 \varepsilon_1}$, $S_2 = \frac{q}{\omega \varepsilon_0 \varepsilon_{\text{eff}}}.$

3 理论计算与讨论

为了研究复合介质的相干完美吸收效应,我们 分别计算了金属颗粒体积分数 f为 0.1, 0.01, 0.0012 时有效介电常数 ε_{eff} 的实部以及虚部随入射 光波长λ的变化情况,如图3所示.

从图 3 中可以发现, 考虑非局域效应对复合介 质相干完美吸收的影响,金属颗粒的体积分数较低 时 (f = 0.01, 0.0012) ε_{eff} 的实部会在入射波波长 310 nm 左右有一个峰值, 当体积分数较高 (f为 0.1) 时这一峰值会出现在 320 nm 附近, 这表明金 属颗粒体积分数会影响非局域效应下复合介质的 相干完美吸收,金属颗粒体积分数越小复合介质的 有效介电常数实部的峰值也会减小.

图 3 (a1) f = 0.1, (b1) f = 0.01, (c1) f = 0.0012 时有效介电常数的实部; (a2) f = 0.1, (b2) f = 0.01, (c2) f = 0.0012 时有效介电 常数的虚部随 λ 的变化; 此时 d 为 5 μ m, a 为 2 nm

Fig. 3. (a1), (b1) and (c1) are the real parts of effective permittivity as function of λ , for (a1) f = 0.1, (b1) f = 0.01, (c1) f = 0.0012; (a2), (b2), (c2) are the imaginary parts of effective permittivity as function of λ , for (a2) f = 0.1, (b2) f = 0.01, (c2) f = 0.0012. $d = 5 \mu m$, a = 2 nm.

图 4 (a1), (b1), (c1) a = 2, 5, 10 nm 时, 局域效应下 lg $|r_1 + t_2|^2 = \lambda \pi f$ 的函数关系; (a2), (b2), (c2) 对应情况下考虑非局域效应时的结果; 入射角 $\theta = 45^{\circ}$

Fig. 4. $\lg |r_1+t_2|^2$ as functions of λ and f with different metallic nanoparticle radius (a) a = 2 nm, (b) a = 5 nm, (c)a = 10 nm: (a1), (b1) and (c1) are within the local description and (a2), (b2) and (c2) are within the nonlocal description. The incident angle is $\theta = 45^{\circ}$.

图 5 (a) $d = 2 \ \mu m$, (b) $d = 5 \ \mu m$, (c), $d = 10 \ \mu m$ 时散射光强对数 $\log_{10}|r_1 + t_2|^2 = \lambda \pi f$ 的函数关系图,此时入射角 $\theta \to 45^{\circ}$ Fig. 5. $\log_{10}|r_1 + t_2|^2$ as functions of λ and f with thickness of medium plate (a) $d = 2 \ \mu m$, (b) $d = 5 \ \mu m$, (c) $d = 10 \ \mu m$. The incident angle is $\theta = 45^{\circ}$.

本文研究了散射光强的对数 $\log_{10}|r_1 + t_2|^2$, 认 为当 $\log_{10}|r_1 + t_2|^2 < -3$ 时, 两侧的散射很小, 可以 忽略不计, 在同时满足 $|r_1| = |t_2|$, $|\Delta \phi| = |\phi_{r1} - \phi_{t2}| = \pi$ 时即可产生所谓的相干完美吸收. 图 4 绘制出了 非局域和局域情况下用不同尺寸的金属颗粒填充 复合介质时 $\log_{10}|r_1 + t_2|^2 = \lambda \pi f$ 的函数关系.

从图 4(a1), (b1), (c1) 的对比可以很清楚地看 到, 金属颗粒的尺度越小, 各体积分数下产生完美 吸收的入射光波长的范围就越宽, 而且波长的极大 值也会对应减小, 即频率增加. 从图 4(a1) 和 (a2), (b1) 和 (b2) 的对比也很容易看出, 金属颗粒的尺 寸越小, 在非局域效应的影响下会导致完美吸收产 生的入射光的频率显著增加, 当 *a* = 10 nm 时, 非 局域和局域的结果几乎没有区别, 即金属非局域效 应的影响完全可以忽略不计. 这也进一步说明金属 非局域效应在小尺度结构中的影响是不能忽略的.

在研究小尺度颗粒填充情况下金属非局域效

图 6 a = 2 nm, $d = 5 \mu m$, $\log_{10} |r_1 + t_2|^2 与 \lambda \mathcal{D} f$ 的函数关系

Fig. 6. Color map of $\log_{10}|r_1 + t_2|^2$ as functions of λ and f for a = 2 nm, d = 5 µm.

应的影响时,选取 a = 2 nm,讨论非局域效应下不同的系统参数的变化对复合介质的相干完美吸收 产生的影响.首先,考虑复合介质板的厚度 d 对相 干完美吸收的影响.图 5 绘制了不同介质板厚度 下, $\log_{10}|r_1 + t_2|^2 = \lambda \pi f$ 的函数关系图像.

图 5 的结果表明, 在体积分数相同的情况下, 复合介质板较窄时可以出现完美吸收的入射光的 波长的范围也较窄.

为了得到产生相干完美吸收所需要的 $f \mathcal{Q} \lambda$, 我们同样采取了以上的方法,在相干完美吸收所需 条件的基础上,首先研究散射光强的问题. 图 6 绘 制了 $\log_{10}|r_1 + t_2|^2 与 \lambda 和 f$ 的函数关系图,此时选 取 f的范围为 0—0.01.

考虑到当散射强度对数 $\log_{10}|r_1 + t_2|^2 < -3$ 时可以产生完美吸收,可以在图中找到一个符合该条件的点,如图 6 中圆圈所示.该点的位置在 *f* 为 0.0012 左右, λ 为 310 nm 左右.接下来我们要确定 *f* = 0.0012, λ = 310 nm 时能否满足产生相干完美吸收所需要的条件.

首先考虑 f = 0.0012 时 $|r_1|$, $|t_2| 与 \lambda$ 、 $|\Delta \phi| / \pi$ 与 λ 以及 $\log_{10}|r_1 + t_2|^2 与 \lambda$ 的函数关系,如图 7 所示.

在图 7(a) 中箭头所示为平面波入射复合介质 时满足相干完美吸收条件的点,可以清楚地看到该 满足条件的点在 λ为 310 nm 处,而此时采用的 f值为 0.0012.

接下来考虑 λ 为 310 nm 时 $|r_1|$, $|t_2|$ 与 f, $|\Delta\phi|/\pi$ 与 f 以及 $\log_{10}|r_1 + t_2|^2$ 与 f 的函数关系, 如 图 8 所示.

如图 8(a) 箭头所示, 满足相干完美吸收条件 时 f在 0.0012 处. 图 7 和图 8 的结果充分验证了

图 7 f = 0.0012, $\theta = 45^{\circ}$ 时, (a) $|r_1|(蓝 \oplus), |t_2|(红 \oplus) = \lambda$ 的 函 数 关 系, (b) $|\Delta \phi| / \pi = \lambda$ 的 函 数 关 系, (c) $\log_{10}|r_1 + t_2|^2 = \lambda$ 的函数关系

Fig. 7. For f = 0.0012, $\theta = 45^{\circ}$, (a) $|r_1|$ (blue), $|t_2|$ (red) as function of λ , (b) $|\Delta \phi| / \pi$ as function of λ , (c) $\log_{10}|r_1 + t_2|^2$ as function of λ .

图 6 中所选的点在 *f* 为 0.0012, λ 为 310 nm, 此时 满足相干完美吸收所需要的条件, 而且该波长也正 好是图 4 所示的 *f* 为 0.0012 时复合介质的有效介 电常数实部的峰值, 二者结果相吻合.

4 结 论

本文主要研究了非局域金属颗粒填充的复合 介质的相干完美吸收效应,研究了金属非局域效应 对复合介质的相干完美产生的影响以及调控.运用 有效媒质理论建立了由非局域金属颗粒组成的复 合材料体系的电磁散射理论,计算得出了非局域金 属颗粒复合材料的有效介电常数及有效磁导率.

通过对局域和非局域下复合介质相干完美吸 收的研究和对比,我们发现由于金属非局域效应的 存在,对于尺寸非常小的金属颗粒,可以显著提高 复合介质相干完美吸收产生的频率,而小尺寸金属

图 8 $\lambda = 310$ nm, $\theta = 45^{\circ}$ 时, (a) $|r_1|$ (蓝色), $|t_2|$ (红 色) 与 f的函数关系; (b) $|\Delta \phi| / \pi 5$ f的函数关系; (c) $\log_{10}|r_1 + t_2|^2 5 f$ 的函数关系

Fig. 8. For $\lambda = 310$ nm, $\theta = 45^{\circ}$, (a) $|r_1|$ (blue), $|t_2|$ (red) as function of f, (b) $|\Delta \phi| / \pi$ as function of f, (c) $\log_{10}|r_1 + t_2|^2$ as function of f.

颗粒填充也会导致相干完美吸收在更宽的频率范 围内产生.进一步研究复合介质的厚度、金属颗粒 的体积分数等系统参数对复合介质相干完美吸收 的影响,得出了小体积分数下复合介质相干完美吸 收时的金属颗粒体积分数以及入射光波长.

利用非局域金属颗粒的体积分数、非局域金属 颗粒的半径以及复合介质板的厚度等系统参数的 变化,结合非局域效应对复合介质相干完美吸收的 影响,实现对非局域颗粒复合介质的相干完美吸收 的调控.本文对今后的纳米复合材料的光学吸收的 研究有一定的帮助.

参考文献

- Dutta-Gupta S, Martin O J F, Gupta S D, Agarwal G S 2012 Opt. Express 20 001330
- [2] Sanjeeb D 2015 Opt. Commun. **356** 515
- [3] Fu Y Y, Xu Y D, Chen H Y, Cummer S 2017 New J. Phys. 20 013015

- [4] Huang S, Xie Z W, Chen W D, Lei J Q, Wang F L, Liu K, Li L 2018 Opt. Express 26 7066
- [5] Müllers A, Santra B, Baals C, Jiang J, Benary J, Labouvie R, Zezyulin D A, Konotop V V, Ott H 2018 Sci. Adv. 4 eaat6539
- [6] Ruppin R 1973 Phys. Rev. Lett. **31** 1434
- [7] Fuchs R, Claro F 1987 Phys. Rev. B **35** 3722
- [8] Rojas R, Claro F, Fuchs R 1988 *Phys. Rev. B* 37 6799
- [9] Chang R, Leung P T 2006 Phys. Rev. B 73 125438
- [10] Xie H Y, Chung H Y, Leung P T, Tsai D P 2009 Phys. Rev. B 80 155448
- [11] Huang Y, Gao L 2013 Prog. Electromagn. Res. 133 591
- [12] Huang Y, Bian X, Ni Y X, Miroshnichenko A E, Gao L 2014 Phys. Rev. A 89 053824
- [13] McMahon J M, Gray S K, Schatz G C 2010 Nano Lett. 10 3473
- [14] Toscano G, Raza S, Jauho A P, Mortensen N A, Wubs M 2012 Opt. Express 20 4176
- [15] Zuloaga J, Prodan E, Nordlander P 2009 Nano Lett. 9 887

- [16] Esteban R, Borisov A G, Nordlander P, Aizpurua J 2012 Nat. Commun. 3 825
- [17] Dong T Y, Ma X K, Mittra R 2012 Appl. Phys. Lett. 101 233111
- [18] Stell L, Zhang P, García-Vidal F J, Rubio A, García-González P 2013 J. Phys. Chem. C 117 8941
- [19] Maxwell G J C 1906 Philos. Trans. Roy. Soc. London 205 237
- [20]~Bruggeman D A G 1935 Ann. Phys. (Leipzig) ${\bf 24}$ 636
- [21] Huang Y, Gao L 2013 J. Phys. Chem. C 117 19203
- [22] Dias E J C, Iranzo D A, Gonçalves P A D, Hajati Y, Bludov Y V, Jauho A P, Mortensen N A, Koppens F H L, Peres N M R 2018 Phys. Rev. B 97 245405
- [23] Agarwal G S, O'Neil S V 1983 Phys. Rev. B 28 487
- [24] Mcmahon J, Gray S, Schatz G 2009 Phys. Rev. Lett. 103 097403
- [25] Dasgupta B B, Fuchs R 1981 Phys. Rev. B $\mathbf{24}$ 554

Coherent perfect absorption in nonlocal particle composite medium^{*}

Chen Zhi-Peng^{1)2) Yu Wen-Jing^{1)3) Gao Lei^{1)2)\dagger}

1) (School of Physical Science and Technology, Soochow University, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China)

2) (Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China)

3) (School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213001, China)

(Received 28 November 2018; revised manuscript received 30 December 2018)

Abstract

We explore the coherent perfect absorption of light in a nonlocal metal-dielectric composite film in which metallic nanoparticles (gold) are randomly embedded in the dielectric host medium (silica). The two coherent light beams illuminate the gold-silica composite slab respectively from the left and right sides at the same angle of incidence and the conditions required for coherent perfect absorption are investigated each as a function of different system parameters. Under different system parameters, we study the coherent perfect absorption of a nonlocal particle composite medium. A nonlocal effective medium theory is proposed to approximately describe the metal-dielectric composite film. The effective permittivity and effective permeability of the composite medium are approximated by using the effective medium theory under the model of coated sphere with core and shell. According to the effective dielectric parameters of the composite medium, we can obtain the transmission coefficient and reflection coefficient of the plane wave incident on the slab. By comparing and analyzing the coherent perfect absorptions of the composite medium under nonlocal and local conditions, we find that under the influence of nonlocal effect when the size of particle is very small, the frequency range of incident light that produces the coherent perfect absorption of the composite medium increases and the small size can also cause the coherent perfect absorption to occur in wider frequency range. Especially, we pay attention to the choosing of physical parameters in the design of coherent perfect absorption with macroscopic composite slab when we take the nonlocal effect (or spatial dispersion) into account. In the further calculation, the coherent perfect absorption of the composite medium can be realized by changing the system parameters such as the thickness of composite slab, the wavelength of incident light, the volume fraction of metal particles, etc. We also bring about the coherent perfect absorption at a small volume fraction which satisfies all the conditions. Finally, according to these results, we can realize the control of the coherent perfect absorption with nonlocal effect. Our study may be helpful in designing the optical nanoabsorbers.

Keywords: nonlocal effect, coherent perfect absorption, composite media, effective medium theory

PACS: 11.10.Lm, 78.20.Ci, 88.30.mj, 42.25.Bs

DOI: 10.7498/aps.68.20182108

^{*} Project supported by National Natural Science Foundation of China (Grant No. 11774252), the National Science of Jiangsu Province, China (Grant No. BK20161210), the Qing Lan Project of Jiangsu Province, the "333" Project (Grant No. BRA2015353), and the PAPD of Jiangsu Higher Education Institutions, China.

 $[\]dagger\,$ Corresponding author. E-mail: <code>leigao@suda.edu.cn</code>