# 物理学报 Acta Physica Sinica



Institute of Physics, CAS

#### Ce-La-Th合金高压相变的第一性原理计算

王艳 曹仟慧 胡翠娥 曾召益

First-principles calculations of high pressure phase transition of Ce-La-Th alloy Wang Yan Cao Qian-Hui Hu Cui-E Zeng Zhao-Yi 引用信息 Citation: Acta Physica Sinica, 68, 086401 (2019) DOI: 10.7498/aps.68.20182128 在线阅读 View online: https://doi.org/10.7498/aps.68.20182128

当期内容 View table of contents: http://wulixb.iphy.ac.cn

#### 您可能感兴趣的其他文章

#### Articles you may be interested in

NbSi2奇异高压相及其热力学性质的第一性原理研究

Pressure-induced structural transition and thermodynamic properties of NbSi2 from first-principles calculations 物理学报. 2015, 64(8): 087103 https://doi.org/10.7498/aps.64.087103

Cu掺杂对TiNi合金马氏体相变路径影响的第一性原理研究 First principles study of the effect of Cu doping on the martensitic transformation of TiNi alloy 物理学报. 2017, 66(13): 130501 https://doi.org/10.7498/aps.66.130501

高压下Zn2GeO4带隙变化的第一性原理研究

First-principles study on the band-gap changes of Zn2GeO4 under high pressure 物理学报. 2015, 64(11): 114213 https://doi.org/10.7498/aps.64.114213

单层二硫化钼多相性质及相变的第一性原理研究

First-principles study on multiphase property and phase transition of monolayer MoS2 物理学报. 2016, 65(12): 127101 https://doi.org/10.7498/aps.65.127101

基于第一性原理计算Rh含量对Ir-Rh合金力学性能的影响

Effect of Rh content on the mechanical properties of Ir-Rh alloy based on the first principle 物理学报. 2016, 65(15): 156201 https://doi.org/10.7498/aps.65.156201

W-In体系溶质晶界偏聚行为的第一性原理计算

First-principles calculations of solute-segreagtion of W-In alloys at grain boundaries 物理学报. 2019, 68(7): 077101 https://doi.org/10.7498/aps.68.20190056

## Ce-La-Th 合金高压相变的第一性原理计算\*

王艳 曹仟慧 胡翠娥 曾召益†

(重庆师范大学物理与电子工程学院,重庆 401331)

(2018年12月3日收到; 2019年1月30日收到修改稿)

采用第一性原理计算对 Ce<sub>0.8</sub>La<sub>0.1</sub>Th<sub>0.1</sub> 在高压下 fcc-bct 的结构相变、弹性性质及热力学性质进行了研究 讨论. 通过对计算结果的分析,发现了合金在压力下的相变规律,压强升高到 31.6 GPa 附近时 fcc 相开始向 bct 相转变,到 34.9 GPa 时 bct 相趋于稳定. 对弹性模量的计算结果从另一角度反映了结构相变的信息. 最后,利用准谐德拜模型对两种结构的高温高压热力学性质进行了理论预测.

关键词: Ce 基合金, 第一性原理计算, 相变, 高压 **PACS**: 64.30.Ef, 63.20.dk, 71.15.Mb

**DOI:** 10.7498/aps.68.20182128

1 引 言

稀土元素指镧 (La)、铈 (Ce)、镨 (Pr) 等 17 种 元素,能实现光、电、磁范畴内的特殊能量转换、传 导输送及储存等功能. 随着科技的不断发展, 稀土 资源已广泛应用于电子信息、污染治理、清洁能 源、航空航天、生命技术、医疗卫生等各个方面,与 稀土元素相关的研究成为了现代世界前沿科学的 重要组成部分. 储量丰富的稀土元素 Ce 目前在钢 铁、有色金属及合金和发火合金等产业中已有广泛 应用,在电子工业、原子能工业、精密仪器工业的 应用也有了新的突破,为军事、科技、生产助力. Ce作为多形相变材料的一种,电子态极容易出现 跃迁,具有丰富的相变信息.常温常压下的 Ce存 在稳定的 $\gamma$ 相,该相具有 fcc 面心立方晶体结构. Bridgman<sup>[1-3]</sup> 在测量 Ce 电导率和等温压缩线时 首先发现了 Ce 在 0.8 GPa 左右的  $\gamma - \alpha$  相变, 这 一现象引发了大量学者的关注.1949年, Lanson和 Tang<sup>[4]</sup>在 X 射线衍射实验中证实了 Ce 的  $\gamma - \alpha$  相变其实是一种同构相变,相变过程伴随着 17% 左右的体积塌缩. 2012 年,潘昊等 [6] 低压冲击金属 Ce 的  $\gamma - \alpha$  相变,进行了数值模拟研究. 我们前期运用第一性原理计算结合晶格动力学的方法证明,随着压强的升高,Ce 的相变顺序为 $\alpha$ -Ce→ $\alpha''$ -Ce→bct-Ce,相变压强分别为 5.36 GPa 和 14.37 GPa<sup>[6]</sup>.

Ce 基合金由于其良好的固溶性, 是核武器关 键材料钚 (Pu) 潜在的替代品, 由于目前的国际规 则, 并不能对 Pu 进行直接的实验研究, 因此 Ce 基 合金作为其潜在的替代品成为了研究的热点. 目前 已有学者对 Ce-Th, Ce-La, Ce-La-Th 合金的物理 性质进行了一系列的理论预测与实验测量, 主要关 注同构相变的信息. Lawson 等 [7] 用实验测得了 Ce<sub>0.9</sub>Th<sub>0.1</sub>存在  $\gamma - \alpha$  同构相变. Lawrence 等 [8] 测 量了温度在 4.2—300 K 区间、压强在 0—12 kPa 区间时不同组分 Ce<sub>0.9-x</sub>La<sub>x</sub>Th<sub>0.1</sub> 体系 (x = 0.10, 0.11, 0.14, 0.17) 的电阻率变化情况, 以此确定了 Ce-La-Th 合金的  $\gamma - \alpha$  同构相变的压强温度边界. Drymiotis 等 [9] 实验测量了 Ce<sub>0.8</sub>La<sub>0.1</sub>Th<sub>0.1</sub> 中  $\gamma - \alpha$ 

\* 国家自然科学基金 (批准号: 11504035)、重庆市教委科学技术研究项目 (批准号: KJ1703044, KJ1703062) 和重庆市科技计划 (批 准号: cstc2018jcyiAX0820) 资助的课题.

© 2019 中国物理学会 Chinese Physical Society

<sup>†</sup> 通信作者. E-mail: zhaoyizeng@126.com

相变中伴随的外加磁场变化, Ruff 等<sup>[10]</sup> 通过 X 射 线衍射实验证实了 Ce0.8La0.1Th0.1 也存在体积塌 缩的同构相变. 目前对于 Ce 基合金高压相变的研 究较为匮乏.我们前期用第一性原理计算了  $Ce_{r}Th_{1-r}$ 合金体系的结构相变随组分的变化规律<sup>[11]</sup>, 发现 fcc-bct 相变压强随 Ce 组分的增加而减小,也 即随着 Th 的加入, 提高了合金的相变压强. 我们 采用密度泛函理论结合准谐近似对两种不同组分 的 Ce-La 合金的相变及状态方程 (EOS) 进行了研 究<sup>[12]</sup>,发现在压力的作用下,Ce-La 合金从 fcc 结 构转变到 bet 结构, 而在 fcc 结构中, 又有  $\gamma - \alpha$  同 构相变发生. 本文分别计算了两种不同组分的 Ce-La 合金 (Ce<sub>0.875</sub>La<sub>0.125</sub> 和 Ce<sub>0.963</sub>La<sub>0.037</sub>)的相变压 强,结果表明随着 La 含量的增加,相变压强升高. 高压环境下对 Ce-La-Th 体系的科学研究还较为 匮乏,本文对 Ce<sub>0.8</sub>La<sub>0.1</sub>Th<sub>0.1</sub>在压力下 fcc-bct 的 相变情况和热力学性质进行了研究讨论.

#### 2 计算细节

采用基于密度泛函理论的虚晶近似 (VCA) 对 无序合金 Ce<sub>0.8</sub>La<sub>0.1</sub>Th<sub>0.1</sub>进行计算模拟. VCA 是 通过将元素的赝势进行混合来产生一种新的势函 数. 我们前期也采用这种方法成功预测了 Ce-Th 合金随组分变化的相图<sup>[11]</sup>. Ce 存在 f 电子, 在 计算中,需要慎重处理.我们前期采用密度泛函理 论 (DFT)+U的方法对纯 Ce 做了较为深入的探 讨<sup>[12]</sup>. 发现 f 电子在较低的压强区间, 对 Ce 的同 构相变起决定性的作用. 但是在较高压强区间 (同 构相变之后),对 fcc-bct 的相变影响并不明显.在 前期计算纯 Ce 和 Ce-La 合金时, 高压对 f 电子的 关联效应有较强的抑制作用, DFT+U方法计算的 体系能量与直接的 DFT 方法没有明显的差异.因 此,本文采用 DFT 直接计算较高压强下的 fcc 和 bct 结构的物理性质. 在电子结构计算时, 使用了 CASTEP 程序包的平面波赝势方法,交换关联相 互函数采用的是广义梯度近似 (GGA) 框架下的 Perdew-Burke-Ernzerhof (PBE)形式, 为获得准确 的计算结果,我们的平面波截断能均取为 500 eV, Ce, La 和 Th 的价电子分别取 5s<sup>2</sup>5p<sup>6</sup>4f<sup>1</sup>5d<sup>1</sup>6s<sup>2</sup>, 5s<sup>2</sup>5p<sup>6</sup>5d<sup>1</sup>6s<sup>2</sup>和 6s<sup>2</sup>6p<sup>6</sup>6d<sup>2</sup>7s<sup>2</sup>. 计算中对 fcc 和 bct 两种结构分别采用了 15 × 15 × 15 和 13 × 13 × 17 Monkhorst pack 网格, 为了保证计算的

精度使得总能的收敛精度达到 10<sup>-6</sup> eV/atm. 本文 利用准谐德拜模型计算热力学性质, 非平衡的 Gibbs 自由能 (*G*<sup>\*</sup>) 包含了静态能量、晶格振动能 以及体积变化带来的能量改变, 可以写成如下形 式:

 $G^*(x; P, T) = E(x) + PV(x) + A_{Vib}(x; T),$  (1) 其中 E(x) 为静态能量,可以直接从电子结构计算 中得到; PV项代表压强作用下焓值的改变;  $A_{Vib}$ 是 Helmholtz 自由能,包含了晶格振动对内能 的贡献和熵的改变. Blanco 等<sup>[13]</sup> 发展了考虑热效 应的准谐 Debye 模型. 根据这个模型,  $A_{Vib}$  可以用 如下近似求得<sup>[14-17]</sup>:

$$A_{\rm Vib}(\Theta;T) = nkT \left[\frac{9}{8}\frac{\Theta}{T} + 3\ln(1 - e^{-\Theta/T}) - D(\Theta/T)\right]$$
(2)

其中 $\Theta$ 是 Debye 温度, n是每个单位分子式中原子的数目,  $D(\Theta/T)$  是德拜函数, 定义如下:

$$D(y) = \frac{3}{y^3} \int_0^y \frac{x^3}{e^x - 1} \mathrm{d}x.$$
 (3)

当获得了高温高压的自由能之后,通过适当的热力 学表达式就能求其他热力学性质.采用这种方法, 邓世杰等<sup>[18]</sup>对 Ti<sub>2</sub>AlX (X = C, N)的热力学性质 做了成功的预测.

#### 3 结果与分析

#### 3.1 结构相变

我们计算了 Ce<sub>0.8</sub>La<sub>0.1</sub>Th<sub>0.1</sub> 合金 fcc 相及 bct 相的能量-体积关系,获得了其各自的状态方程.得 到的 fcc 相及 bct 相在 0 GPa, 0 K下的平衡体积  $V_0$ ,体积模量  $B_0$ 的数据如表 1 所列,同时表中也 列出了 Ce<sub>0.875</sub>La<sub>0.125</sub> 及纯 Ce 的理论值和实验值作 为参照. Ce<sub>0.8</sub>La<sub>0.1</sub>Th<sub>0.1</sub> 合金 bct 相的平衡体积  $V_0 = 28.91$  Å<sup>3</sup>,体积模量  $B_0 = 35.96$  GPa. 随着 La, Th 的加入,相对于纯 Ce 而言,平衡体积  $V_0$  增 加,而体模量  $B_0$  减小. 随着 Th 的加入和 La 成分 的 减 少, Ce<sub>0.8</sub>La<sub>0.1</sub>Th<sub>0.1</sub> 合金 的体模量 略大于 Ce<sub>0.875</sub>La<sub>0.125</sub> 合金.

对 Ce<sub>0.8</sub>La<sub>0.1</sub>Th<sub>0.1</sub> 合金的 fcc—bct 相变进行 计算和分析, 将得到的 fcc 相和 bct 相的体积-压强 关系,与纯 Th<sup>[10]</sup>、纯 Ce<sup>[20]</sup>、Ce<sub>0.76</sub>Th<sub>0.24</sub><sup>[21]</sup>及 Ce<sub>0.875</sub>La<sub>0.125</sub><sup>[12]</sup>的数据进行比对,如图 1.本文的数

| Table 1. Equilibrium volume $(V_0)$ and bulk modulus $(B_0)$ of Ce-La-1h of fcc phase at 0 GPa and 0 K. |                                                       |                             |                                         |
|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------|-----------------------------------------|
|                                                                                                         |                                                       | $V_0/{ m \AA}^3$            | $B_0 \ / \ { m GPa}$                    |
| Present                                                                                                 | $\mathrm{Ce}_{0.8}\mathrm{La}_{0.1}\mathrm{Th}_{0.1}$ | 28.91                       | 35.96                                   |
| Calc. <sup>[12]</sup>                                                                                   | $Ce_{0.875}La_{0.125}$                                | 28.00                       | 32.50                                   |
| Calc.                                                                                                   | Pure Ce                                               | $27.07^{[6]}, 24.7^{[22]}$  | $41.72^{[6]},  48.4^{[22]},  37^{[23]}$ |
| Expt.                                                                                                   | Pure Ce                                               | $29.0^{[20]}, 28.06^{[24]}$ | $20^{[20]},  35.0^{[25]}$               |

表 1 零温零压下 fcc 相 Ce-La-Th 合金的平衡体积  $(V_0)$  及体积模量  $(B_0)$ ble 1. Equilibrium volume  $(V_0)$  and bulk modulus  $(B_0)$  of Ce-La-Th of fcc phase at 0 GPa and 0 K.



图 1 体积随压强变化的规律 (黑色实点为直接加压结构 优化后的结果, 黑色实线为状态方程拟合结果), 并与已有 的 Ce<sup>[20]</sup>, Th<sup>[19]</sup>, Ce<sub>0.875</sub>La<sub>0.125</sub><sup>[12]</sup> 的计算值及 Ce<sub>0.76</sub>Th<sub>0.24</sub><sup>[21]</sup> 实 验值进行比较

Fig. 1. The EOS of fcc and bct Ce-La-Th together with the experimental data (the black solid point is the result of the structure optimization, the black solid line is the fitting result of the EOS), together with the experimental data for  $Ce_{0.75}Th_{0.24}^{[21]}$  and the calculated results for  $Ce^{[20]}$ ,  $Th^{[19]}$ ,  $Ce_{0.875}La_{0.125}^{[12]}$ .

据与已有的 Ce 基合金及纯 Ce 的体积-压强变化的 规律相吻合.

通过对总能的计算结果表明, fcc 和 bct 两种 相结构之间焓的差异非常小, 几乎接近计算误差 值, 这意味着不能再通过比较焓变的差异来判断相 变压强.

对 bct 相固定体积进行结构优化, 晶格常数的 计算结果如图 2 所示. 随着体积的减小, 当体积减 小至 20.14 Å<sup>3</sup>时, 晶格常数 *a*, *c* 的线性规律发生 变化, 这意味着晶体结构出现了变化, 相变开始发 生. 计算得到的轴向比 *c/a* 与已有的 Ce<sub>0.76</sub>Th<sub>0.24</sub><sup>[21]</sup>, Ce<sup>[6]</sup>, Th<sup>[11]</sup>, Ce<sub>0.875</sub>La<sub>0.125</sub><sup>[12]</sup>数据进行了对比. 当压 强小于 31.6 GPa 时, *c/a* 的值约等于, 随着压强的 增加, fcc 相变得不稳定, 开始向 bct 相转变. 在 34.9 GPa 附近时, bct 相趋于稳定 *c/a* 的值约等 于 1.65, 与我们前期计算得到的 CeTh, CeLa 合金 的 fcc 相, bct 相的 *c/a* 的值在误差范围内吻合<sup>[11, 12]</sup>.



图 2 (a) 晶格参数随体积的变化关系; (b) 轴向比 c/a 随 压强的变化关系,并与已有的 Ce<sub>0.76</sub>Th<sub>0.24</sub><sup>[21]</sup>实验结果和 Ce<sub>0.875</sub>La<sub>0.125</sub><sup>[12]</sup>、纯 Ce<sup>[6]</sup>、纯 Th<sup>[11]</sup>计算结果进行比较

Fig. 2. (a) Lattice constants a and c of  $Ce_{0.8}La_{0.1}Th_{0.1}$  as functions of volume; (b) the calculated axial ratio (c/a) of bct phase as functions of pressure.

#### 3.2 弹性性质

本文计算了 Ce<sub>0.8</sub>La<sub>0.1</sub>Th<sub>0.1</sub> 合金 fcc 相及 bct 相结构的弹性性质,在不同压强下的弹性常数如 图 3 所示.对于 fcc 相而言,随压强增加,所有的弹 性常数都是线性增加的.弹性常数 C<sub>11</sub>, C<sub>44</sub> 在相变 压强附近开始出现非线性的变化.对 bct 相而言, 在压强增加的变化趋势下,越过相变压强后弹性常 数线性增加的趋势变得更加明显.根据弹性常数, 能够计算出多晶的弹性模量,对于 Ce<sub>0.8</sub>La<sub>0.1</sub>Th<sub>0.1</sub> 合金,多晶的弹性模量 (剪切模量 G、体模量 B和 杨氏模量 E)能够根据 Voigt-Reuss-Hill 近似得出.

如图 4 所示,随着压强的增加,弹性模量呈线 性增加的趋势,而杨氏模量 *E* 和剪切模量 *G* 则在 相变压强附近出现"变软"的趋势;随着相变的完 成,新相趋于稳定,杨氏模量 *E* 和剪切模量 *G* 随压 强增加的关系再次趋于线性.通过弹性模量,能够 计算德拜温度.如图 5 所示,在 0 GPa 压强下, Ce<sub>0.8</sub>La<sub>0.1</sub>Th<sub>0.1</sub>合金的德拜温度为 228.85 K,高于



图 3 Ce-La-Th 合金 fcc 相及 bct 相弹性常量随压强的变化 Fig. 3. Elastic constants as functions of pressure.



图 4 剪切模量 G、体模量 B和杨氏模量 E随压强的变化 Fig. 4. Shear modulus G, bulk modulus B and Young's modulus E as functions of pressure.



图 5 德拜温度随压强的变化 Fig. 5. The Debye temperature as a function of pressure.

纯 Ce 已有的德拜温度研究值<sup>[26, 27]</sup>. 根据已有的研究<sup>[12]</sup>,德拜温度随着 La 组分的增加而增加,Ce<sub>0.875</sub>La<sub>0.125</sub>在零温零压下德拜温度为 140.9 K,遂认为在 Ce<sub>0.8</sub>La<sub>0.1</sub>Th<sub>0.1</sub>合金中,La 和 Th 元素的掺杂导致了德拜温度的升高,原子间作用力也会因

此升高,本文的计算结果是合理的. 在大约 34.4 GPa 时,fcc 相德拜温度随压强增加呈减小的趋势,而 bct 结构与 fcc 结构的德拜温度十分接近,并随压 强增加呈线性增加的趋势. 意味着结构相变开始发 生,在 41.6 GPa 附近,fcc 结构转变为 bct 结构, 此时德拜温度为 330 K.

#### 3.3 热力学性质

利用准谐德拜模型获得了 Ce<sub>0.8</sub>La<sub>0.1</sub>Th<sub>0.1</sub> 的 热力学性质和不同温度下的等温压缩曲线. 如图 6 所示, 当温度为 300 K, 压强从 0 GPa 上升到 40 GPa 时, fcc 相体积缩小了约 34.6%. 而在零压下, 当温 度从 300 K 上升到 1000 K 时, fcc 的体积膨胀了 约 11.1%. 高压状态下温度对体积的影响逐渐减



图 6 不同温度下的等温线,其中 V<sub>0</sub>为零温零压下的体积,小图为零压下体积随温度的变化

Fig. 6. Isotherms at different temperatures, where  $V_0$  is the volume at zero temperature and zero pressure; the volumes at zero pressure as functions of temperature (the insert).



图 7 定容热容  $C_V$ 随温度 (a) 和压强 (b) 的变化, 以及熵 S 随温度 (c) 和压强 (d) 的变化; 图中阴影区域包含 fcc 和 bct 两相的数据 Fig. 7. The constant volume heat capacity  $C_V$  versus temperature (a) and pressure (b), and the entropy S versus temperature (c) and pressure (d).

小,高温的非谐效应在压力的作用下被抑制.当压强大于 40 GPa 时 bct 相稳定存在,当温度为 300 K, 压强从 40 GPa 上升到 80 GPa 时, bct 相体积缩小了约 13.9%,而在零压下,当温度从 300 K 上升到 1000 K 时, bct 相体积膨胀了约 8.2%.

分别计算了 fcc 相和 bct 相定容热容 *C<sub>V</sub>* 随温 度和压强变化的关系, 以及熵 *S* 随温度和压强的变 化关系.如图 7 所示, *C<sub>V</sub>* 随着温度升高迅速增加, 在高温下接近 25 J/(mol·K) 的极限, 热容在不同 温度下随压强的变化情况几乎是单调递减的. 当温 度超过 600 K 后, 不同等温线之间的差距变小. 计 算得到在常温常压下的熵值约为 49.44 J/(mol·K), 随温度的升高, 熵值几乎迅速单增, 在不同的温度 下, 熵值随压强的增加而减小.

#### 4 结 论

本文采用第一性原理计算对 Ce-La-Th 合金 在高压下 fcc—bct 的相变及热力学性质进行了研 究讨论.获得了 Ce-La-Th 合金体积随压强变化的 规律,随着压强的增加,体积减小至 20.1 Å<sup>3</sup>时,晶 格常数 *a*, *c* 的线性变化规律发生突变,这意味着晶 体结构出现了改变, fcc 相开始变得不稳定.通过分 析轴向比 c/a 的值随压强变化的关系发现, 压强在 大约 31.6 GPa 时 fcc 相开始向 bct 相转变, 在大 约 34.9 GPa时, bct 相趋于稳定. 弹性性质的计算 结果表明,随着压强的增加,在相变压强附近,某 些弹性常量出现非线性增加的情况,当新相结构变 得稳定再次趋于线性. 根据弹性常量计算得出的体 模量随压强呈线性增加的趋势,而杨氏模量 E和 剪切模量 G则在相变压强附近出现"变软"的趋势, 当新相 bct 相趋于稳定时弹性模量再次趋于线性. 弹性德拜温度的计算结果与结构变化的规律类似, 从另一角度说明了相变的信息. 热力学性质的研究 结果表明定容热容 Cv随着温度升高而迅速增加, 在不同温度下随压强的变化呈单调递减. 随温度升 高, 熵值迅速单增, 而在不同的温度下, 熵值随压 强的增加而减小. 高压对温度带来的非谐效应有明 显的抑制作用.

#### 参考文献

- [1] Bridgman P W 1927 Proc. Am. Acad. Arts Sci. 62 207
- [2] Bridgman P W 1951 Proc. Am. Acad. Arts Sci. 79 149
- [3] Bridgman P W 1954 Proc. Am. Acad. Arts Sci. 83 1
- [4] Lanson A W, Tang T Y 1949 Phys. Rev. 76 301
- [5] Pan H, Hu X M, Wu Z H, Dai C D, Wu Q 2012 Acta Phys. Sin. 61 206401 (in Chinese) [潘昊, 胡晓棉, 吴子辉, 戴诚达,

吴强 2012 物理学报 61 206401]

- [6] Hu C E, Zeng Z Y, Zhang L, Chen X T, Cai L C 2011 *Physica B* 406 669
- [7] Lawson A C, Williams A, Wire M S 1988 J. Less-common Met. 142 177
- [8] Lawrence J M, Thompson J D, Fisk Z, Smith J L, Batlogg B 1984 Phys. Rev. B 29 4017
- [9] Drymiotis F, Singleton J, Harrison N, Lashley J C, Bangura A, Mielke C H, Balicas L, Fisk Z, Migliori A, Smith J L 2005 J. Phys.: Condens. Matter 17 L77
- [10] Ruff J P C, Islam Z, Das R K, Nojiri H, Cooley J C, Mielke C H 2012 Phys. Rev. B 85 024104
- [11] Hu C E, Zeng Z Y, Zhang L, Chen X R, Cai L C 2010 Solid State Commun. 150 2362
- [12] Zeng Z Y, Hu C E, Li Z G, Zhang W, Cai L C 2015 J. Alloys Compd. 640 201
- [13] Blanco M A, Francisco E, Luaña V 2004 Comput. Phys. Commun. 158 57
- [14] Blanco M A, MartínPendás A, Francisco E, Recio J M, Franco R 1996 J. Mol. Struct.: Theochem 368 245
- [15] Francisco E, Recio J M, Blanco M A, Pendás A M 1998 J. Phys. Chem. 102 1595
- [16] Francisco E, Sanjurjo G, Blanco M A 2001 Phys. Rev. B 63

094107

- [17] Flórez M, Recio J M, Francisco E, Blanco M A, Pendás A M 2002 Phys. Rev. B 66 144112
- [18] Deng S J, Zhao H Y, Hou H, Wen Z Q, Han P D 2017 Acta Phys. Sin. 66 146101 (in Chinese) [邓世杰, 赵宇宏, 侯华, 文 志勤, 韩培德 2017 物理学报 66 146101]
- [19] Vohra Y K, Holzapfel W B 1993 High Pressure Res. 11 223
- [20] Olsen J S, Gerward L, Benedict U, Itié J P 1985 Physica  $B\!+\!C\,({\rm Amsterdam})~{\bf 133}~{\bf 129}$
- [21] Gu G, Vohra Y K, Winand J M, Spirlet J C 1995 Scr. Metall. Mater. 32 2081
- [22] Svane A 1996 Phys. Rev. B 53 4275
- [23] Soderlind P, Eriksson O, Wills J M, Boring A M 1993 Phys. Rev. B 48 9306
- [24] Koskenmaki D C, Gschneidner K A 1978 Handb. Phys. Chem. Rare Earths 1 337
- [25] Gerward L, Olsen J S, Diffr P 1993 Powder Diffr. 8 127
- [26] Decremps F, Antonangeli D, Amadon B, Schmerber G 2009 Phys. Rev. B 80 132103
- [27] Lipp M J, Kono Y, Jenei Z, Cynn H, Aracne-Ruddle C, Park C, Kenney-Benson C, Evans W J 2013 J. Phys: Condens. Matter 25 34

### First-principles calculations of high pressure phase transition of Ce-La-Th alloy<sup>\*</sup>

Wang Yan Cao Qian-Hui Hu Cui-E Zeng Zhao-Yi<sup>†</sup>

(School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China) (Received 3 December 2018; revised manuscript received 30 January 2019)

#### Abstract

The lanthanide and actinide metals and alloys are of great interest in experimental and theoretical highpressure research, because of the unique behavior of the f electrons under pressure and their delocalization and participation in bonding. Cerium (Ce) metal is the first lanthanide element with a 4f electron. It has a very complex phase diagram and displays intriguing physical and chemical properties. In addition, it is expected to be an excellent surrogate candidate for plutonium (Pu), one of the radioactive transuranic actinides with a 5f electron. The bulk properties and phase transformation characteristics of Ce-based alloys are similar to those of Pu and its compounds. Thus, the investigations of Ce-based alloys are necessary and can potentially advance the understanding of the behavior of Pu. In this work, the equation of state, phase transition, elastic and thermodynamic properties of  $Ce_{0.8}La_{0.1}Th_{0.1}$  alloy at high pressure are investigated by using first-principles calculations based on the density-functional theory. The structural properties of the  $Ce_{0.8}La_{0.1}Th_{0.1}$  alloy are in good agreement with the available experimental and theoretical data. The lattice constant a decreases with pressure increasing, while c shows an opposite variation. It is found that the lattice parameter c shows abnormal jump. And the critical volume is located at 20.1 Å<sup>3</sup>. The axial ratio jumps from a value of about  $\sqrt{2}$ (corresponding to the fcc structure) to a higher value, which indicates that the fcc-bct transition occurs. And the corresponding transition pressure is located at  $\sim 31.6$  GPa. When the pressure rises to 34.9 GPa, the bet structure displays a saturated c/a axial ratio close to about 1.67. The Young's modulus E, shear modulus G and the Debye temperature of the fcc phase tend to be "softened" around the phase transition pressure. The vibrational free energy is obtained by using the quasi-harmonic Debye model. And then the thermodynamic properties including the thermal equation of state, heat capacity and entropy under high pressure and high temperature are also predicted successfully. The results show that the heat capacity and entropy increase rapidly with temperature increasing, and decrease with pressure increasing. The high pressure can suppress part of the anharmonicity caused by temperature.

Keywords: Ce-based alloy, density functional theory, phase transformation, high pressurePACS: 64.30.Ef, 63.20.dk, 71.15.MbDOI: 10.7498/aps.68.20182128

<sup>\*</sup> Project supported by the National Natural Science Foundation of China (Grant No. 11504035), the Scientific and Technological Research of Chongqing Municipal Education Commission, China (Grant Nos. KJ1703044, KJ1703062), and the Chongqing Science and Technology Project, China (Grant No. cstc2018jcyiAX0820).

<sup>†</sup> Corresponding author. E-mail: <a href="mailto:zhaoyizeng@126.com">zhaoyizeng@126.com</a>