物理学报 Acta Physica Sinica

Institute of Physics, CAS

SF₆分子最高占据轨道对称性的判断

武瑞琪 郭迎春 王兵兵

Determination of the symmetry of the highest occupied molecular orbitals of SF₆

Wu Rui-Qi Guo Ying-Chun Wang Bing-Bing

引用信息 Citation: Acta Physica Sinica, 68, 080201 (2019) DOI: 10.7498/aps.68.20182231 在线阅读 View online: https://doi.org/10.7498/aps.68.20182231 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

激波与SF6球形气泡相互作用的数值研究

Numerical investigations on the interaction of shock waves with spherical SF6 bubbles 物理学报. 2015, 64(1): 015201 https://doi.org/10.7498/aps.64.015201

分子轨道高时空分辨成像

Molecular orbital imaging with high spatial and temperal resolutions 物理学报. 2016, 65(22): 224207 https://doi.org/10.7498/aps.65.224207

一般完整系统Mei对称性的逆问题

Inverse problem of Mei symmetry for a general holonomic system 物理学报. 2015, 64(17): 170202 https://doi.org/10.7498/aps.64.170202

时间反演对称性破缺系统中的拓扑零能模

Topological zero-energy modes in time-reversal-symmetry-broken systems 物理学报. 2017, 66(22): 220201 https://doi.org/10.7498/aps.66.220201

电离层中释放六氟化硫效应的三维精细模拟研究

A three-dimensional refined modeling for the effects of SF6 release in ionosphere 物理学报. 2016, 65(20): 209401 https://doi.org/10.7498/aps.65.209401

SF_6 分子最高占据轨道对称性的判断^{*}

武瑞琪1) 郭迎春1)† 王兵兵2)

1) (华东师范大学物理与材料科学学院,上海 200241)

2) (中国科学院物理研究所,凝聚态物理国家研究中心,光物理实验室,北京 100190)

(2018年12月19日收到; 2019年2月20日收到修改稿)

量化计算是理论研究分子的重要手段,对于具有高对称群的分子,采用子群计算是常用的方法.分子的 电子态或分子轨道等的对称性在子群的表示中会出现重迭,从而不能从子群的结果直接给出电子态或分子 轨道对称性的归属.本文以如何判断 SF₆基态¹A_{1g}的电子组态中最高占据轨道的对称性为例来解决这个问题.针对某些文献中的 SF₆基态¹A_{1g}的电子组态中,最高占据轨道对称性是 T_{1g}却写成 T_{2g}的问题,采用 Molpro 量化计算软件,对 SF₆基态的平衡结构,进行了 HF/6-311G*计算,得到了能量三重简并的最高占据轨 道的函数表达式,进而运用 O_h群的对称操作作用在三个轨道函数上,得到各操作的矩阵表示,于是得到特征 标,最后确定了最高占据轨道为 T_{1g} 对称性.

关键词: SF₆, 最高占据轨道, 高对称分子, 轨道对称性 PACS: 02.20.-a, 31.15.A-

DOI: 10.7498/aps.68.20182231

1 引 言

多原子分子的电子结构及能级的准确计算是 研究复杂分子的电离、解离和光辐射等动力学过程 的基础.准确掌握复杂分子的能级结构和电子空间 分布已经成为物理化学领域的重要研究方向.量化 计算是理论研究分子的重要手段,电子组态的确定 是确定分子结构的重要一环,电子组态离不开电子 轨道对称性的准确描述.对于具有高对称群的分 子,采用子群计算是常用的方法.然而分子的电子 态或分子轨道等的对称性在子群的表示中会出现 重迭,因此不能从子群的结果直接给出电子态或分 子轨道对称性的归属.如何由子群的结果获得分子 轨道对称性的归属是本文关心的问题,本文将以探 讨属于*O_h*群的SF₆分子的最高占据轨道的对称性 为例来说明.

SF₆是一种惰性气体分子, 是很好的绝缘介质, 常被用于断路器、开关设备及传输线等材料中^[1–3]. 因为SF₆分子对低能电子具有较大的吸收截面^[4,5], 它被广泛应用于电子捕获材料.在高分子领域, SF₆更是重要的聚合物掺杂剂,由于SF₆可以从高 分子聚合物中吸收一个电子而在聚合物链上形成 空穴,所以带有SF₆掺杂的聚合物呈现明显的导电 性.此外, SF₆也是一种重要的温室气体, 温室效应 远大于CO₂^[6], 所以SF₆的排放链被严格控制, 其形 成和解离过程也成为研究热点.

近年来,对于SF₆分子电子结构、电子组态及 以S-F原子距离为函数的势能曲线等已开展了大 量的研究工作. 文献 [7—11] 给出了SF₆基电子态¹A_{1g} 的电子组态为 (core)²²(4a_{1g})²(3t_{1u})⁶(2e_g)⁴(5a_{1g})² (4t_{1u})⁶(1t_{2g})⁶(3e_g)⁴(1t_{2u})⁶(5t_{1u})⁶(1t_{1g})⁶,最高占据轨

^{*} 国家自然科学基金 (批准号: 61275128, 11774411, 11474348) 资助的课题.

[†] 通信作者. E-mail: ycguo@phy.ecnu.edu.cn

^{© 2019} 中国物理学会 Chinese Physical Society

道的对称性为T1a;实验上文献 [12—15] 给出了关 于电子动量谱学T_{1q}等轨道的信息. 文献 [5,16,17] 则认为最高占据轨道的对称性为T2g.产生这种分 歧的原因在于:对SF6的量化计算中采用的是Ob群 的对称阿贝尔子群 D2h 群,从而波函数的对称性由 D_{2b} 群的对称性进行描述, SF₆最高占据的三条简 并轨道的对称性分别表达为 D2h 中的 B1a, B2a 和 B3g, 而O_h中的不可约表示与D_{2h}中的不可约表示 不是一一对应的, O_h 中的不可约表示 T_{1g} 和 T_{2g} 在 D_{2h} 中都约化成 B_{1g} , B_{2g} 和 B_{3g} 的和, 所以不能从 量化计算的结果直接区分开T1a和T2a.轨道对称 性的正确认识会影响选择定则的确定,更会决定光 谱的正确指认. 本文通过具体分析最高占据轨道的 波函数,结合群论的理论,验证了SF₆基态的最高 占据轨道的对称性为 T_{1q} 而不是 T_{2q} ,通过SF₆这个 例子,本文为高对称分子的轨道对称性的判断提供 了方法.本文的安排如下,第2节采用 HF/6-311G* 给出最高占据轨道的波函数, 第3节通过 O_h群的对称操作作用在波函数上,给出最高占据 轨道对称性,最后给出结论.

2 SF₆最高占据轨道的计算

SF₆分子具有 O_h 群对称性,所以分子中轨道的 对称性用 O_h 群的不可约表示来描述. O_h 群具有 A_{1g} , A_{2g} , E_g , T_{1g} , T_{2g} , A_{1u} , A_{2u} , E_u , T_{1u} 和 T_{2u} 10种不可约表示, SF₆的轨道函数对称性属于 哪个不可约表示,则它就是该不可约表示的基函 数^[18].所以本文将首先给出SF₆的最高占据轨道波 函数,然后再确定它是哪个不可约表示的基函数. 本文全篇采用原子单位.

采用 Molpro 软件^[19],运用 HF 方法^[20],利用 6-311G*基组^[21],对 SF₆的基电子态¹A_{1g}态进行计 算,得到的电子组态中分子轨道的排序与引言中的 排序相同,因此得到的电子组态是正确的.计算得 到的平衡位置的核间距为 2.923 a.u.,与实验值 2.957 a.u. 基本相符.所以计算的结果是可靠的. 计算得到 3 条最高占据轨道能量简并,对称性分别 属于 D_{2h} 群的 B_{1g} , B_{2g} 和 B_{3g} ,对应的波函数用 $\Psi_{B_{1g}}, \Psi_{B_{2g}}$ 和 $\Psi_{B_{3g}}$ 表示.具体如下:

$$\begin{split} \Psi_{B_{1g}}(x,y,z) &= 0.232814 \left\{ \left[\Phi_{py}^{(1)}(r,2) - \Phi_{py}^{(1)}(r,3) \right] - \left[\Phi_{px}^{(1)}(r,4) - \Phi_{px}^{(1)}(r,5) \right] \right\} \\ &+ 0.356464 \left\{ \left[\Phi_{py}^{(2)}(r,2) - \Phi_{py}^{(2)}(r,3) \right] - \left[\Phi_{px}^{(2)}(r,4) - \Phi_{px}^{(2)}(r,5) \right] \right\} \\ &+ 0.321731 \left\{ \left[\Phi_{py}^{(3)}(r,2) - \Phi_{py}^{(3)}(r,3) \right] - \left[\Phi_{px}^{(3)}(r,4) - \Phi_{px}^{(3)}(r,5) \right] \right\} \\ &+ 0.011441 \left\{ \left[\Phi_{d2-}(r,4) + \Phi_{d2-}(r,5) \right] - \left[\Phi_{d2-}(r,2) + \Phi_{d2-}(r,3) \right] \right\}, \end{split}$$
(1)
$$\begin{split} \Psi_{B_{2g}}(x,y,z) &= 0.232814 \left\{ \left[\Phi_{pz}^{(1)}(r,2) - \Phi_{pz}^{(1)}(r,3) \right] - \left[\Phi_{px}^{(1)}(r,6) - \Phi_{px}^{(1)}(r,7) \right] \right\} \\ &+ 0.356464 \left\{ \left[\Phi_{pz}^{(2)}(r,2) - \Phi_{pz}^{(2)}(r,3) \right] - \left[\Phi_{px}^{(2)}(r,6) - \Phi_{px}^{(2)}(r,7) \right] \right\} \\ &+ 0.321731 \left\{ \left[\Phi_{pz}^{(3)}(r,2) - \Phi_{pz}^{(3)}(r,3) \right] - \left[\Phi_{px}^{(3)}(r,6) - \Phi_{px}^{(3)}(r,7) \right] \right\} \\ &+ 0.011441 \left\{ \left[\Phi_{d1+}(r,6) + \Phi_{d1+}(r,7) \right] - \left[\Phi_{d1+}(r,2) + \Phi_{d1+}(r,3) \right] \right\}, \end{aligned}$$
(2)
$$\begin{split} \Psi_{B_{3g}}(x,y,z) &= 0.232814 \left\{ \left[\Phi_{pz}^{(1)}(r,4) - \Phi_{pz}^{(1)}(r,5) \right] - \left[\Phi_{py}^{(2)}(r,6) - \Phi_{py}^{(2)}(r,7) \right] \right\} \\ &+ 0.356464 \left\{ \left[\Phi_{pz}^{(2)}(r,4) - \Phi_{pz}^{(2)}(r,5) \right] - \left[\Phi_{py}^{(2)}(r,6) - \Phi_{py}^{(3)}(r,7) \right] \right\} \\ &+ 0.321731 \left\{ \left[\Phi_{pz}^{(3)}(r,4) - \Phi_{pz}^{(3)}(r,5) \right] - \left[\Phi_{py}^{(3)}(r,6) - \Phi_{py}^{(3)}(r,7) \right] \right\} \\ &+ 0.321731 \left\{ \left[\Phi_{pz}^{(3)}(r,4) - \Phi_{pz}^{(3)}(r,5) \right] - \left[\Phi_{py}^{(3)}(r,6) - \Phi_{py}^{(3)}(r,7) \right] \right\} \\ &+ 0.011441 \left\{ \left[\Phi_{d1-}(r,6) + \Phi_{d1-}(r,7) \right] - \left[\Phi_{d1-}(r,4) + \Phi_{d1-}(r,5) \right] \right\}, \end{aligned}$$

其中原子轨道函数 $\Phi_{pw}^{(1)}(\mathbf{r},k), \Phi_{pw}^{(2)}(\mathbf{r},k), \Phi_{pw}^{(3)}(\mathbf{r},k), \Phi_{d2-}(\mathbf{r},k), \Phi_{d1+}(\mathbf{r},k)$ 和 $\Phi_{d1-}(\mathbf{r},k)$ 是高斯函数的线性组合,即

$$\Phi_{pw}^{(1)}(\boldsymbol{r},k) = \sum_{i=1}^{3} \frac{2^{\frac{7}{4}} \alpha_i^{\frac{5}{4}}}{\pi^{\frac{3}{4}}} c_i(w-w_k) \mathrm{e}^{-\alpha_i r_k^2}, \quad (4)$$

$$\Phi_{pw}^{(2)}(\boldsymbol{r},k) = \frac{2^{\frac{7}{4}} \alpha_4^{\frac{5}{4}}}{\pi^{\frac{3}{4}}} c_4(w-w_k) \mathrm{e}^{-\alpha_4 r_k^2}, \qquad (5)$$

$$\Phi_{pw}^{(3)}(\boldsymbol{r},k) = \frac{2^{\frac{7}{4}} \alpha_5^{\frac{5}{4}}}{\pi^{\frac{3}{4}}} c_5(w-w_k) \mathrm{e}^{-\alpha_5 r_k^2}, \qquad (6)$$

$$\Phi_{d2-}(\boldsymbol{r},k) = \frac{2^{\frac{11}{4}} \alpha_6^{\frac{7}{4}}}{\pi^{\frac{3}{4}}} c_6(x-x_k)(y-y_k) \mathrm{e}^{-\alpha_6 r_k^2}, \quad (7)$$

$$\Phi_{d1+}(\boldsymbol{r},k) = \frac{2^{\frac{11}{4}} \alpha_6^{\frac{7}{4}}}{\pi^{\frac{3}{4}}} c_6(x-x_k)(z-z_k) \mathrm{e}^{-\alpha_6 r_k^2}, \quad (8)$$

$$\Phi_{d1-}(\boldsymbol{r},k) = \frac{2^{\frac{11}{4}} \alpha_6^{\frac{1}{4}}}{\pi^{\frac{3}{4}}} c_6(y-y_k)(z-z_k) \mathbf{e}^{-\alpha_6 r_k^2}, \quad (9)$$

这里 w代表电子坐标 r 的任一分量 x, y或z; k = 1—7 对应 1个 S 原子及 6个 F 原子; x_k , y_k , z_k 为 1个 S 原子以及 6个 F 原子的核坐标, 取值如表 1 所列; r_k 是电子到第 k个原子核的距离; c_i 表示组 成原子轨道的高斯函数的系数, α_i 是高斯函数参 数, c_i 与 α_i 取值如表 2 所列.

为更好地理解上面的三个轨道函数以及方便 后面的分析,图 1 给出了函数 $\Psi_{B_{1q}}, \Psi_{B_{2q}} \pi \Psi_{B_{3q}}$ 的

表 1 SF₆ 的分子结构

Table 1. Molecular structure of SF_6 .

	k	$x_k/\mathrm{a.u.}$	y_k /a.u.	z_k /a.u.
\mathbf{S}	1	0	0	0
F	2	2.923	0	0
F	3	-2.923	0	0
F	4	0	2.923	0
F	5	0	-2.923	0
F	6	0	0	2.923
\mathbf{F}	7	0	0	-2.923

表 2 6-311G*基组中高斯函数的参数表

Table 2. Parameters of Gaussian functions of 6-311G* basis.

i	1	2	3	4	5	6
c_i	0.035461	0.237451	0.820458	1.0	1.0	1.0
α_i /a.u.	55.4441	12.6323	3.71756	1.16545	0.321892	1.75

空间分布,颜色代表函数的取值. $\Psi_{B_{1g}} \stackrel{}{=} x_{y}$ 截面内 为中心对称的八个花瓣形状的分布 (图 1(c)),有四 条节线,另两个截面没有节线 (图 1(a), (b)). $\Psi_{B_{2g}}$

图 1 $\Psi_{B_{1g}}$, $\Psi_{B_{2g}}$ 和 $\Psi_{B_{3g}}$ 波函数截面图 (a) $\Psi_{B_{1g}}$ 在 x = 0.8 a.u.处的 yz 截面图; (b) $\Psi_{B_{1g}}$ 在 y = 0.8 a.u.处的 xz 截面图; (c) $\Psi_{B_{1g}}$ 在 z = 0 a.u.处的 xy 截面图; (d) $\Psi_{B_{2g}}$ 在 y = 0 a.u.处的 xz 截面图; (e) $\Psi_{B_{3g}}$ 在 x = 0 a.u.处的 yz 截面图; (f) $C_2'^{1}$ 作用在 $\Psi_{B_{1g}}$ 后取 y = 0 a.u.处的 xz 截面图

Fig. 1. Functions of $\Psi_{B_{1g}}$, $\Psi_{B_{2g}}$ and $\Psi_{B_{3g}}$: (a) $\Psi_{B_{1g}}$ in the yz plane for x = 0.8 a.u.; (b) $\Psi_{B_{1g}}$ in the xz plane for y = 0.8 a.u.; (c) $\Psi_{B_{1g}}$ in the xy plane for z = 0 a.u.; (d) $\Psi_{B_{2g}}$ in the xz plane for y = 0 a.u.; (e) $\Psi_{B_{3g}}$ in the yz plane for x = 0 a.u.; (f) the function obtained by acting $C_{2}^{(1)}$ on $\Psi_{B_{1g}}$ in the xz plane for y = 0 a.u.

和 $\Psi_{B_{3g}}$ 相似,分别对应xz截面 (图 1(d))和yz截面 (图 1(e))内的八个花瓣形状分布,在另外的两个截面内没有节线.

3 SF6 最高占据轨道对称性的确定

确定 SF₆ 的三条最高占据轨道的对称性需要以 下步骤:1) 以这三个函数为基函数,将O_h的各个 操作(见表 3) 用矩阵表示出来;2) 计算各个矩阵 的迹,对比特征标表(表 3 给出了T_{1g}和T_{2g}的特征 标),确定最高占据轨道的对称性.下面以6C[']₂操作 为例具体说明.

根据计算中坐标轴的选取,如图 2 所示,S 原 子核处在正方体的重心,6个 F 原子核处在六个面 心上,与表 1 中 7 个核的核坐标是一致的.6个 C₂ 的二重对称轴为图 2 中正方体平行且不相邻的两 条棱中点的连线,共6条,采用 C₂^{'i}(*i* = 1,2,3,4,5, 6) 来表示 6 个 C₂[']操作.图 2 给出了其中的一个 C₂ 的对称轴,同时还给出了一个 C₃轴、一个 C₄轴和 一个 C₂轴 (C₄轴和 C₂轴重合).

由图 2 所示的坐标轴的选取方法, 可得 C'2 作

$$\begin{split} C_{2}^{'1} \begin{pmatrix} \Psi_{B_{1g}} \\ \Psi_{B_{2g}} \\ \Psi_{B_{3g}} \end{pmatrix} &= \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \Psi_{B_{1g}} \\ \Psi_{B_{2g}} \\ \Psi_{B_{3g}} \end{pmatrix}, \\ C_{2}^{'3} \begin{pmatrix} \Psi_{B_{1g}} \\ \Psi_{B_{2g}} \\ \Psi_{B_{3g}} \end{pmatrix} &= \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \Psi_{B_{1g}} \\ \Psi_{B_{2g}} \\ \Psi_{B_{3g}} \end{pmatrix}, \\ C_{2}^{'5} \begin{pmatrix} \Psi_{B_{1g}} \\ \Psi_{B_{2g}} \\ \Psi_{B_{3g}} \end{pmatrix} &= \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} \Psi_{B_{1g}} \\ \Psi_{B_{2g}} \\ \Psi_{B_{3g}} \end{pmatrix}, \end{split}$$

上面的结果也可由波函数的截面图 (图 1) 直 观地看出, 以 $C_2'^1 \Psi_{B_{1g}} = -\Psi_{B_{2g}}$ 来说明. 因为 $C_2'^1$ 的 作用结果是x成为-x, y成为-z, z成为-y, $C_2'^1$ 作用在 $\Psi_{B_{1g}}$ 上后, 由于x轴将变为-x轴, y轴将变 为-z轴, 于是 $\Psi_{B_{1g}}$ 在xy截面的花瓣分布 (图 1(c))将成为xz平面的花瓣分布 (图 1(f)), 可见它 与 $\Psi_{B_{2g}}$ 的花瓣分布 (图 1(d))数值上恰好互为相反

图 2 SF₆ 对称操作 C'_2 , C_3 , C_4 和 C_2 的对称轴 Fig. 2. Symmetric axes of symmetric operators C'_2 , C_3 , C_4 and C_2 on SF₆.

用在波函数上的结果应该为

$$C_{2}^{\prime 1}\Psi(x, y, z) = \Psi(-x, -z, -y),$$

$$C_{2}^{\prime 2}\Psi(x, y, z) = \Psi(-x, z, y),$$

$$C_{2}^{\prime 3}\Psi(x, y, z) = \Psi(-z, -y, -x),$$

$$C_{2}^{\prime 4}\Psi(x, y, z) = \Psi(z, -y, x),$$

$$C_{2}^{\prime 5}\Psi(x, y, z) = \Psi(-y, -x, -z),$$

$$C_{2}^{\prime 6}\Psi(x, y, z) = \Psi(y, x, -z).$$
(10)

将上面 6 个 C'_2 操作作用在 $\Psi_{B_{1g}}, \Psi_{B_{2g}}$ 和 $\Psi_{B_{3g}}$ 上, 经过简单运算可得

$$C_{2}^{'2} \begin{pmatrix} \Psi_{B_{1g}} \\ \Psi_{B_{2g}} \\ \Psi_{B_{3g}} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \Psi_{B_{1g}} \\ \Psi_{B_{2g}} \\ \Psi_{B_{3g}} \end{pmatrix},$$

$$C_{2}^{'4} \begin{pmatrix} \Psi_{B_{1g}} \\ \Psi_{B_{2g}} \\ \Psi_{B_{3g}} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \Psi_{B_{1g}} \\ \Psi_{B_{2g}} \\ \Psi_{B_{3g}} \end{pmatrix},$$

$$C_{2}^{'6} \begin{pmatrix} \Psi_{B_{1g}} \\ \Psi_{B_{2g}} \\ \Psi_{B_{3g}} \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \Psi_{B_{1g}} \\ \Psi_{B_{2g}} \\ \Psi_{B_{3g}} \end{pmatrix}.$$
(11)

数,从而说明 $C_2^{\prime 1}\Psi_{B_{1g}} = -\Psi_{B_{2g}}$.

由 (11) 式可见, 6 个 C₂'的矩阵对角线元素之 和为-1, 即其特征标是-1, 对照表 3, T_{2g}不可约表 示的 6C₂'的特征标是 1, T_{1g}不可约表示的 6C₂'的特 征标是-1. 可见, 它符合 T_{1g}不可约表示. 同样地, 结合图 1 中波函数的图像以及借助图 2 中的对称 轴,运用上面相同的方法, 可以求得 O_h群的另外九

	表 3	O _h 群的部分特征标表	
Table 3.	Part	of character table of O_h	group.

_											
	O_h	E	$8C_3$	$6C'_2$	$6C_4$	$3C_2$	P	$6S_4$	$8S_6$	$3\sigma_h$	$6\sigma_d$
	T_{1g}	3	0	-1	1	-1	3	1	0	-1	-1
	T_{2g}	3	0	1	-1	-1	3	-1	0	-1	1

类对称操作作用在最高占据轨道波函数后的矩阵 表示,以及特征标.这些特征标都符合表 3 中 *T*₁*g* 的特征标.由此能够确定三条最高占据轨道的对称 性为*T*₁*g*,而不是*T*₂*g*.

4 结 论

本文采用 Molpro 软件、HF 方法和 6-311G* 基组,基于 D_{2h} 对称群,计算了 SF₆基态¹A_{1g}态平 衡结构处的波函数,得到了能量三重简并的最高占 据轨道,写出了轨道的函数表达.本文进一步运用 O_h群的对称操作作用在三条轨道上,确定了最高 占据轨道是 O_h 对称群的 T_{1g}不可约表示的基函数, 从而验证了 SF₆ 的基态¹A_{1g}态的最高占据轨道的对 称性为 T_{1g}.本文的工作为如何判断高对称分子的 分子轨道对称性的归属提供了可借鉴的方法.

参考文献

- Tang B, Zhang L F, Han F Y, Luo Z C, Liang Q Q, Liu C Y, Zhu L P, Zhang J M 2018 AIP Adv. 8 015016
- [2] Zhang X, Gockenbach E, Liu Z L, Chen H B, Yang L H 2013 *Electr. Power Syst. Res.* 103 105
- [3] Okubo H, Beroual A 2011 IEEE Electr. Insul. M. 27 34
- [4] Yoshino K, Hayashi S, Kohno Y, Kaneto K, Okube J, Moriya T 1984 Jpn. J. Appl. Phys. 23 L198
- [5] Tachikawa H, Yamano T 2001 Chem. Phys. 264 81

- [6] Ravishankara A R, Solomon S, Turnipseed A A, Warren R F 1993 Science 259 194
- [7] Niessen W V, Kraemer W P, Diercksen G H F 1979 Chem. Phys. Lett. 63 65
- [8] Christophorou L G, Olthoff J K 2000 J. Phys. Chem. Ref. Data 29 267
- [9] Decleva P, Fronzoni G, Kivimaki A, AlvarezRuiz J, Svensson S 2009 J. Phys. B: At. Mol. Opt. Phys. 42 055102
- [10] Jose J, Lucchese R R, Rescigno T N 2014 J. Chem. Phys. 140 481
- [11] Hay P J 1977 J. Am. Chem. Soc. 8 1003
- [12] Weigold E, Zheng Y 1991 Chem. Phys. 150 405
- [13] Li Y, Agrena H, Carravettab V, Vahtrasa O, Karlssonc L, Wannberge B, Hollandd D M P, MacDonald M A 1998 J. Electron. Spectrosc. 94 163
- [14] Zhao M F, Shan X, Yang J, Wang E L, Niu S S, Chen X J 2015 Chin. J. Chem. Phys. 28 539
- [15] Watanabe N, Yamazaki M, Takahashi M 2016 J. Electron. Spectrosc. 209 78
- [16] Hay P J 1982 J. Chem. Phys. **76** 502
- [17] Tachikawa H 2002 J. Phys. B: At. Mol. Opt. Phys. 35 55
- [18] Xu Y Z 1988 Theory of Molecular Spectroscopy (Beijing: Tsinghua University Press) p75 (in Chinese) [徐亦庄 1988 分 子光谱理论 (北京:清华大学出版社) 第75页]
- [19] Werner H J, Knowles P J, Lindh R, Manby F R, Schutz M, Celani P, Korona T, Rauhut G, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Hampel C, Hetzer G, Lloyd A W, McNicholas S J, Meyer W, Mura M E, Nicklass A, Palmieri P, et al. *Molpro, A Package of ab initio Programs* (Version 2006.1) http://www.molpro.net [2018-12-12]
- [20] Delhommelle J, Boutio A, Tavitian B, Mackie A D, Fuchs A H 1999 Mol. Phys. 96 719
- [21] Krishnan R, Binkley J S, Seeger R, Pople J A 1979 J. Chem. Phys. 72 650

Determination of the symmetry of the highest occupied molecular orbitals of SF_6^*

Wu Rui-Qi¹⁾ Guo Ying-Chun^{1)†} Wang Bing-Bing²⁾

1) (School of Physics and Materials Science, East China Normal University, Shanghai 200241, China)

2) (Laboratory of Optical Physics, Beijing National Laboratory of Condensed Matter Physics, Institute of Physics,

Chinese Academy of Sciences, Beijing 100190, China)

(Received 19 December 2018; revised manuscript received 20 February 2019)

Abstract

Quantum chemical calculation is an important method to investigate the molecular structures for multiatom molecules. The determination of electronic configurations and the accurate description of the symmetry of molecular orbitals are critical for understanding molecular structures. For the molecules belonging to high symmetry group, in the quantum chemical calculation the sub-group is always adopted. Thus the symmetries of some electric states or some molecular orbitals, which belong to different types of representations of high symmetry group, may coincide in the sub-group presentations. Therefore, they cannot be distinguished directly from the sub-group results. In this paper, we provide a method to identify the symmetry of molecular orbitals from the theoretical sub-group results and use this method to determine the symmetry of the highest occupied molecular orbitals (HOMO) of the sulfur hexafluoride SF_6 molecule as an example. Especially, as a good insulating material, an important greenhouse gas and a hyper-valent molecule with the high octahedral O_h symmetry, SF_6 has received wide attention for both the fundamental scientific interest and practical industrial applications. Theoretical work shows that the electronic configuration of ground electronic state ${}^{1}A_{1g}$ of SF₆ is $(\operatorname{core})^{22}(4a_{1g})^2(3t_{1u})^6(2e_g)^4(5a_{1g})^2(4t_{1u})^6(1t_{2g})^6(3e_g)^4(1t_{2u})^6(5t_{1u})^6(1t_{1g})^6$ and the symmetry of the HOMOs is T_{1g} . However, in some literature, the symmetry of HOMOs of SF₆ has been written as T_{2g} instead of T_{1g} . The reason for this mistake lies in the fact that in the ab initial quantum chemical calculation used is the Abelian group D_{2h} , which is the sub-group of O_h , to describe the symmetries of molecular orbitals of SF₆. However, there does not exist the one-to-one matching relationship between the representations of D_{2h} group and those of O_h group. For example, both irreducible representations T_{1g} and T_{2g} of O_h group are reduced to the sum of B_{1q} , B_{2q} and B_{3q} of D_{2h} . So the symmetry of the orbitals needs to be investigated further to identify whether it is T_{1g} or T_{2g} . In this work, we calculate the orbital functions in the equilibrium structure of ground state of SF_6 by using $HF/6-311G^*$ method, which is implemented by using the Molpro software. The expressions of the HOMO functions which are triplet degenerate in energy are obtained. Then by exerting the symmetric operations of O_h group on three HOMO functions, we obtain their matrix representations and thus their characters. Finally, the symmetry of the HOMOs is verified to be T_{1q} . By using this process, we may determine the molecular orbital symmetry of any other molecules with high symmetry group.

Keywords: SF_6 , the highest occupied molecular orbitals, molecule with high symmetry group, orbital's symmetry

PACS: 02.20.–a, 31.15.A–

DOI: 10.7498/aps.68.20182231

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 61275128, 11774411, 11474348).

[†] Corresponding author. E-mail: ycguo@phy.ecnu.edu.cn