

Institute of Physics, CAS

钙钛矿铁电半导体的光催化研究现状及其展望

崔宗杨 谢忠帅 汪尧进 袁国亮 刘俊明

Research progress and prospects of photocatalytic devices with perovskite ferroelectric semiconductors Cui Zong-Yang Xie Zhong-Shuai Wang Yao-Jin Yuan Guo-Liang Liu Jun-Ming 引用信息 Citation: Acta Physica Sinica, 69, 127706 (2020) DOI: 10.7498/aps.69.20200287 在线阅读 View online: https://doi.org/10.7498/aps.69.20200287 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

铁电材料光催化活性的研究进展

Research progress on photocatalytic activity of ferroelectric materials 物理学报. 2017, 66(16): 167702 https://doi.org/10.7498/aps.66.167702

石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算 First-principle calculation on electronic structures and optical properties of hybrid graphene and BiOI nanosheets 物理学报. 2018, 67(11): 116301 https://doi.org/10.7498/aps.67.20172220

三氧化钨/氧化银复合材料的水热法合成及其光催化降解性能研究

Photocatalytic activity of tungsten trioxide/silver oxide composite under visible light irradiation for methylene blue degradation 物理学报. 2018, 67(16): 167802 https://doi.org/10.7498/aps.67.20180663

等离激元共振能量转移与增强光催化研究进展

Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis 物理学报. 2019, 68(14): 147301 https://doi.org/10.7498/aps.68.20190276

反馈脉冲棘轮的能量转化效率研究

Energy conversion efficiency of feedback pulsing ratchet 物理学报. 2018, 67(19): 190501 https://doi.org/10.7498/aps.67.20181066

专题: 电介质材料和物理

钙钛矿铁电半导体的光催化研究现状及其展望*

崔宗杨1) 谢忠帅1) 汪尧进1) 袁国亮1)† 刘俊明2)

1) (南京理工大学材料科学与工程学院,南京 210094)

2) (南京大学物理学院,固体微结构物理国家重点实验室,南京 210093)

(2020年2月25日收到; 2020年4月6日收到修改稿)

钙钛矿材料可以分为 ABO₃ 氧化物和 ABX₃ (X = Cl, Br 或 I) 卤化物两大类, 它们都具有丰富的物理性 质和优异的光电性能, 比如铁电性和光催化性能. 本文介绍了 BiFeO₃ 和 MAPbI₃ 等铁电半导体光催化材料和 异质结的制备方法, 总结了它们在光电催化方面的研究进展. 目前研究者已经针对氧化物光催化材料做了各 种研究, 包括: 降低吸光层铁电材料的带隙, 制备铁电/窄带半导体吸光层异质结, 制备比表面积很大的纳米 片、纳米棒或者其他纳米结构, 以便吸收更多可见光; 让铁电极化及其退极化场垂直于光催化工作电极表面, 通过铁电/半导体异质结能带弯曲提供内电场, 通过外电场进行光电催化, 从而通过内、外电场高效分离光 生-电子空穴对; 通过光催化或者光电催化降解染料、分解水制氢、将 CO₂ 转换为燃料; 通过铁电、热释电和 压电协同效应提高催化效应和能量转换效率. MAPbI₃ 等卤素钙钛矿具有优异的半导体性质, 其铁电性可能 是引起超长的少数载流子寿命和载流子扩散长度的原因. 通过优化光催化多层膜结构并添加防止电解液渗 透的封装层可以避免 MAPbI₃ 被电解液分解, 从而制备了具有很高能量转换效率的光电催化结构. 最后, 我 们分析和比较了这些钙钛矿铁电半导体在光电催化领域面临的挑战, 并展望了其应用前景.

关键词:光催化,铁电极化,电子-空穴对,能量转换效率 **PACS**: 77.84.-s, 77.22.Ch, 81.16.Hc, 81.15.-z

DOI: 10.7498/aps.69.20200287

1 引 言

目前,随着社会、经济与人口的迅速发展,能 源匮乏与环境污染问题逐渐成为制约经济与社会 发展的重要因素.因此,解决环境污染以及能源短 缺,不仅是国家发展的重要战略,也是改善人类生 存环境的重大问题.半导体光催化材料可以利用太 阳光产生电子-空穴对,电子、空穴分离后迁移到材 料表面并帮助其他物质发生还原、氧化反应.光催 化技术利用自然界最丰富的能源——光能分解有 机污染物、生产燃料、固氮等,此技术有望同时解 决环境污染与能源匮乏问题.近几年来,光催化技 术发展迅速,其污染物分解效率与产氢效率不断提 升.早在1972年,Fujishima和Honda^[1]发现TiO₂ 材料在紫外光的照射下可以在溶液中发生明显的 氧化还原反应,该发现为研究者们打开了光催化世 界的大门.TiO₂的能带带隙是 3.2 eV,因此其只能 在紫外光照射下产生光催化反应,但是太阳光谱的 主要成分由可见光(波长 400—800 nm)组成,因 此需要研究较低能带带隙半导体光催化材料,从而 更有效地利用可见光.随后在多种材料中(例如: ZnO^[2],BiVO₄,SrTiO₃和BaTiO₃^[3]等)均发现了 光催化效应^[4].光催化材料的性能主要由光生电 子-空穴对的产生、分离和转移决定.电子和空穴往 往在几皮秒到数十纳秒时间内就可以在光催化剂

* 国家自然科学基金 (批准号: 51790492, 51431006, 51902159, 61874055) 和国家重点研发计划 (批准号: 2016YFA0300101) 资助 的课题.

† 通信作者. E-mail: yuanguoliang@njust.edu.cn

© 2020 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

内部和表面快速复合.目前绝大部分半导体材料的 光生载流子寿命短、平均扩散长度短,其光生电子-空穴对分离效率低,光催化活性较低,它们的光催 化性能还远远不能满足实际应用的需求.

为了实现有效且持久的太阳能到氢气的转化, 光催化材料需要以下特征:有效且较宽的光吸收范 围,快速的电荷分离以及出色的稳定性^[6].窄带隙 半导体 (例如硅和 III-IV 族复合材料) 可以有效地 吸收光并分离电子-空穴对^[6],然而它们在氧化还 原反应过程中会遭受表面腐蚀和钝化,因而其寿命 往往在数小时之内. TiO₂, Fe₂O₃, BiVO₄和 WO₃ 等类型的氧化物半导体具有出色的化学稳定性,成 为光催化应用的热门材料,但是它们的带隙较宽、 电子-空穴对复合率较高. 光催化反应的效率可以 通过多种方法提高,比如:改变催化材料的物质形 态(纳米片、纳米颗粒、纳米花和纳米棒等)提高其 比表面积,通过半导体/金属肖特基结、半导体/半 导体异质结等设计弯曲的能带结构和相应的内电 场 (例如 ZnO-TiO2 异质结 [7]), 通过离子掺杂 (例 如 Fe³⁺, Ru³⁺和 V⁴⁺等掺杂 ZnO 等^[8,9]) 调控光催 化剂的载流子浓度并提高其迁移率.

近年来,钙钛矿材料在可见光范围内表现出较 高的光吸收率和能量转换效率 (PCE 为输出能量/ 输入能量)[10,11],在光伏、光催化等可再生能源生产 中显示出很好的应用前景.钙钛矿材料在光催化方 向的研究从 SrTiO₃ 材料开始, 但是随着研究的不 断深入, Miyauchi 等^[12] 发现 SrTiO₃ 的带隙较大 (3.2 eV),导致其只能在紫外光的波长范围内分解 水,进而影响了铁电材料的光催化效率.在光催化 的实际应用中,人们往往希望得到在可见光范围内 发生反应的材料,因此更多的低带隙材料得到广泛 的研究,如BiFeO3 (2.16—2.7 eV)^[13,14], Bi2FeCrO6 (1.4—2.1 eV)^[15] 和 MAPbI₃ (1.5 eV) 等. 近几年 来,在钙钛矿铁电材料的光催化研究方面取得了 一系列进展,这大体上分为两类:1)铁电光催化材 料,包括BiFeO3,BaTiO3,NaNbO3,PbZr1-rTirO3 (PZT), Bi₂FeCrO₆, Bi₂MoO₆和 MAPbI₃等; 2) 铁 电/半导体复合材料,即通过钙钛矿铁电材料与传 统光催化材料构建异质结,利用铁电体的退极化 场(E_p)帮助分离光催化材料中光生电子-空穴对 并增强光催化性能,比如 BiFeO₃/TiO₂, BaTiO₃/ CdS 等^[4].

铁电材料由于具有铁电极化 (P), 其 Ep 可用

于分离光生电子-空穴对,在光伏和光催化方面具 有独特的优势,这为提高光催化的能量转换效率开 辟了一条新的道路.钙钛矿氧化物铁电体,即 ABO3及其衍生物,已被应用在电容器、传感器、致 动器、存储器、能量存储等方面.近几年来,铁电材 料成为了光催化、力催化和热催化领域的研究热 点. 由于优异的光催化材料对于光催化反应过程中 电子-空穴对的分离与运输要求极高,研究者往往 通过外在条件, 例如: 外加电场, 构建电子传输层 与空穴传输层等方法,来增加电子-空穴对的分离 与载流子的运输效率. 铁电材料因其 Ep 的存在, 具备天然优势,材料本身就可以达到增加电子-空 穴对分离与运输效率的目的. 铁电极化及其 E-在 调控光催化半导体材料及其异质结的能带结构和 帮助分离光生电子-空穴对等方面具有巨大的发展 空间[16-20]. 当铁电材料参与异质结时, 其极化将在 相邻的半导体中引起大量的自由载流子重新分布, 因此可以将半导体耗尽区的大小和宽度有效地朝 着有利的方向调整^[19].各种研究已经证明了铁电 极化调制半导体器件性能的有效性[21]. 例如, 铁电 极化及其 Ep 可以提高光生电子-空穴对的分离效 率,从而提高太阳能电池及光催化材料的 PCE.铁 电极化还能够调节 BaTiO₃, PbZr_{1-x}Ti_xO₃ (PZT) 和 BiFeO₃ 材料表面的电化学反应, 例如罗丹明 B、乙烯、刚果红、甲基橙和甲基蓝的降解^[22-24].当 将铁电极化适当地引入到这样的系统中时,有望显 著提高材料的光电转换效率 (IPCE) 和 PCE.

本文阐明了铁电极化及其 *E*_P 增强光催化性能的物理和电化学机制, 描述了 *E*_P 帮助分离光生电子-空穴对、分解水产氢、分解污染物或 CO₂ 的结构设计和实验过程, 介绍了 BiFeO₃, BaTiO₃, Bi₂Fe CrO₆等氧化物铁电材料和 *MA*PbI₃ 卤素钙钛矿材料在光催化性能研究方面的最新研究进展, 分析了钙钛矿铁电材料在光催化研究和应用方面的挑战和机遇, 讨论了钙钛矿铁电光催化材料的发展方向.

2 铁电半导体光催化基本原理

2.1 铁电材料及其特性

铁电材料具有外电场可以翻转的铁电极化^[25], 其铁电性源于其晶格结构的不对称性,晶体内部的 正负电荷中心不重合导致其内部存在电偶极子,也

就是说铁电材料的晶体结构具有非中心对称性,只 有单晶和多晶材料具有铁电性, 非晶材料不具有铁 电性. 晶体材料有 32 种不同的点群, 其中 11 种中 心对称点群, 21种非中心对称点群.在这 21种群 中,20种群具有热释电性和压电性^[26-28],其中只 有 10 种具有铁电性, 它们分别是: 三斜晶系 1 (C1) 点群、单斜晶系 m (Cs) 点群和 2 (C2) 点群、 正交晶系 mm2 (C2v) 点群、三方晶系 3 (C3) 点群 和 3m (C3v) 点群、四方晶系 4 (C4) 点群和 4mm (C4v) 点群、六方晶系 6 (C6) 点群和 6mm (C6v) 点群. 20世纪 50年代以来,研究者发现 BaTiO3 与 PZT 等材料的铁电和压电性能十分优异,因而 掀起了这类材料的研究热潮.如图 1(a)所示, ABX3型钙钛矿铁电体的晶胞中6个带负电的 X阴离子组成了1个八面体, X阴离子的负电荷中 心与 A 和 B 阳离子的正电荷中心不重合,因此产 生了电偶极子^[29,30]. 如图 1(b) 所示, 由于 P 与外电 场(E)的滞后关系,其曲线称为 P-E 电滞回线,它 可以用于判断材料是否为铁电体, 也是评价材料铁

电极化强弱的标准之一. 由于铁电极化 P 不仅仅 取决于外加电场 E, 同时和其极化翻转的历史有 关,铁电材料可以用于信息存储,这和铁磁材料 M-H磁滞回线及其存储功能类似. P-E回线中与 X轴的交点,即P为零时的外电场称为矫顽场 (E_c); 曲线与 Y轴的交点, 即 E 为零时的铁电极化, 称为剩余铁电极化 (P_r), 这可以用来衡量铁电体保 持铁电极化强度的能力. P随着 E的变化而变化, 当 E 增加到一定程度时, P 将不再增大, 这表示铁 电体极化可以达到的最大值,即饱和铁电极化 (P_s) . 通过 E_c , P_r 与 P_s 三者的结合, 可以容易地判 断材料的铁电性能的强弱. 翻转铁电极化往往需要 较大的外电场,大部分已知的铁电材料能带带隙都 比较高,即属于宽禁带半导体材料甚至典型的绝缘 材料. 如图 1(c) 所示, 铁电材料属于热释电材料, 它们都属于压电材料,因此所有的铁电材料同时具 有铁电性、热释电性和压电性^[31].

引进铁电畴的概念可以更好地理解铁电体内 部极化的情况,铁电畴是指在铁电晶体内部特定的

图 1 (a) ABX3型钙钛矿铁电材料结构图; (b) P-E电滞回线; (c) 铁电光催化、热释电催化、压电催化机制及其应用

Fig. 1. (a) Structure diagram of ABX_3 type perovskite ferroelectric material; (b) P-E hysteresis loop. (c) photocatalysis, piezocatalysis and pyrocatalysis of a ferroelectric semiconductor and their application.

微小区域内,所有的电偶极子的取向均为统一取向,并且该区域中电偶极子的取向不同于其他区域的电偶极子取向,将这样的小区域称为铁电畴,铁电畴的存在对于本文所涉及的光催化材料有着重要的影响.铁电材料通常具有很多的铁电畴,各个铁电畴也通常具有随机取向的 P, 宏观上 P 通常为零.因此,当对材料施加一定方向的外电场 E 后,使得材料内部原本混乱的铁电畴出现一定程度的取向,导致材料沿外电场方向的两个表面富集相反的束缚电荷.相反的束缚电荷产生退极化场 E_P,其方向与外电场 E 方向相反. E_P 可以加速材料内部 电子-空穴对的分离,这对于铁电材料在光催化领域的发挥起到了至关重要的作用.

对 ABO3 型钙钛矿材料来说, A, B和 O 元素 都会对光催化活性有一定的影响.导带底通常是 由 O 元素的 2p 轨道和 B 元素的 nd 轨道形成的反 键轨道决定,而价带顶则通常是由 O 元素的非成 键 2p 轨道来决定. 其中 B 元素对光催化活性有着 至关重要的影响; B元素 d 轨道和 O 元素 2p 轨道 的相互作用决定着其费米面附近的电子结构. 例如 对于 Bi₂FeCrO₆ 薄膜来说, 通过控制 Fe/Cr 阳离 子序参量及其在薄膜中的分布,可在 1.4—2.1 eV 的范围内调控 Bi₂FeCrO₆的带隙,从而获得更强 的光吸收.对 A 位离子而言,其可以间接影响光催 化效率,在晶格内可以起到电荷补偿的作用,并且 A 位离子半径的大小影响着 BO₆⁴⁻八面体的结构 畸变,较大或者较小半径的 A 位离子会引起整个 晶格的膨胀或者收缩, 使 B-O 键长发生变化, 从 而影响材料的带隙宽度[32].

2.2 铁电材料的半导体性质

光催化铁电材料的能带结构 (包括带隙大小、 直接/间接半导体等)、少数载流子寿命与迁移率、 载流子平均扩散长度、内/外量子效率等均对半导 体材料的光催化性能有重大的影响. 材料吸收光的 能力也是影响光催化材料效率的重要因素. 材料的 带隙大小主要影响吸收可见光的范围, 带隙越小, 吸收可见光的范围越大. 少数载流子是指在对应 的 p 型或 n 型半导体中相对数量最少的载流子, 少数载流子有一定的生存时间, 电子-空穴对并不 会直接复合, 其存在的时间有的长有的短, 因此少 数载流子寿命就称为 τ_m . 间接带隙半导体往往具 有较长的 τ_m , 因此能带的结构包括直接与间接带

隙都会影响载流子的分离过程,对材料的传输效率 产生重要的影响. 少数载流子在半导体内部并不是 有序的运动, 而是处于无序不规则运动状态, 因此 用载流子扩散长度 (L_m)来衡量载流子的运动能 力. 载流子在半导体内部的传输是一个复杂的过 程,半导体的传输能力主要由少数载流子决定,半 导体材料传输能力的大小与 $\tau_{\rm m}$ 和 $L_{\rm m}$ 相关联.铁 电材料的铁电极化 P 及其 E_P, 可以有效地帮助半 导体材料中光生电子-空穴对分离和沿特定方向的 运动. 量子效率是指材料内部载流子数目与入射太 阳光能量所具有的光子数目的比例. 量子效率分为 内量子效率与外量子效率, 内量子效率是指材料的 电荷载流子数目与从外部入射到材料内部并被吸 收的光子数目之比;外量子效率是指材料内部载流 子数目与入射太阳光能量所具有的光子数目的比 例,一般可以直接测试材料的外量子效率,内量子 效率需要通过测试材料的透射率与反射率来计算. 材料的入射光子/电流转换效率简称光电转换效 率 (IPCE), 是研究光伏或光催化材料性能的一个 重要指标,其计算公式如下:

$$\eta_{\rm IPCE} = \frac{n_{\rm e}(\lambda)}{n_{\rm ph}(\lambda)} = \frac{\left[1240 \times J\left({\rm mA} \cdot {\rm cm}^{-2}\right)\right]}{\left[\lambda\left({\rm nm}\right) \times I\left({\rm mW} \cdot {\rm cm}^{-2}\right)\right]}.$$
 (1)

其中 λ (nm)表示入射光的波长, I(mW·cm⁻²)表示 入射光的光通量, $n_{\rm ph}(\lambda)$ 表示入射光的光子数量, $n_{\rm e}(\lambda)$ 表示入射光在半导体中增加的自由电子数 量, J(mA·cm⁻²)表示半导体中产生的光电流密度. IPCE 不同于 PCE, IPCE 越高越有利于提高 PCE.

2.3 光催化基本原理

光催化是指利用自然界中最丰富的能量-光能, 通过催化反应,转变为电能或者化学能,来分解有 机物或者产生化学能.光催化作为一种化学反应, 属于氧化还原反应,通过电子的得失得到电能以及 化学能.光催化过程中,必须具备两个核心要素: 光能与催化剂,光能承担着启动光催化反应以及维 持化学反应进行的任务;而催化剂承担降低反应 活化能,加快反应进行的任务.如图 2(a)所示,光 催化材料必须保证导带的底部低于 H⁺/H₂ 的氧化 电位 0 eV;价带的顶部高于 H₂O/O₂ 的还原电位 1.23 eV. 热力学上驱动该反应所需要的最小光子 能量为 1.23 eV,根据 $E_{ph}(eV) = 1240/\lambda(nm)$,该 光子的波长是 1008 nm. 波长为 λ 的光源既可以是

图 2 (a) 光催化分解水的基本原理; (b) 光催化产氢、析氧反应步骤^[33]

Fig. 2. (a) Basic principle of photocatalytic water-splitting process; (b) photocatalytic reaction steps for hydrogen and oxygen production^[33].

自然光,也可以是人工光源,为了使半导体的价带 电子发生跃迁,光子能量需要大于等于半导体催化 剂的带隙 (E_g),即 $E_g \ge 1240/\lambda$ (nm). 当激发能量 足够时,电子发生跃迁,在半导体材料内部与表面 产生光生电子-空穴对. H⁺/H₂和O₂/H₂O 的氧化 还原电位可能夹在价带的顶部和导带的底部之 间^[33],因此需要比光催化剂的带隙大得多的光子 能量.以带隙为 3.2 eV 的 TiO₂ 半导体材料为例, 想要激发此催化剂,则需要光源的波长小于或等 于 388 nm.

在实际光催化反应中大部分光生电子 (e⁻)-空 穴 (h⁺) 对都会重新复合, 产生热能, 其反应式为

$$2H_2O + 4h^+ \to O_2 + 4H^+,$$
 (2)

 $O_2 + 4H^+ + 4e^- \to 2H_2O.$ (3)

上述 (2) 式和 (3) 式表明电子-空穴对在半导体表面进行循环的氧化还原反应, 在半导体表面形成了原电池结构, 这并不能进行光电能量转换.因此, 半导体光催化主要是由"半反应"来进行.目前光催化的应用主要有两方面:降解有机染料和分解水并生产 H₂.降解有机染料是通过光生载流子与有机物或氧化物的相互作用, 来完成能量转换的过程, 其反应式为^[34-36]:

 $OH^- + h^+ \rightarrow OH, \tag{4}$

光催化降解染料的过程中,设定 C₀为染料的 初始浓度,C为 t 时刻的染料浓度,光催化分解染 料的动力学速率常数 (K_{obs})满足:

$$\ln\left(C_0/\mathcal{C}\right) = K_{\rm obs} \cdot t,\tag{6}$$

*K*_{obs} 即为 ln(*C*₀/*C*) 与时间 *t* 曲线的切线斜率或一 阶近似下直线的斜率.

在光催化分解水并生产 H_2 的过程中, 光催化 半导体材料称为工作电极,为了提高电子-空穴对 的分离效率,通常会为催化剂配备参比电极和对电 极.首先,需要定义理想状态下的标准氢电极 (SHE)作为电势参照的参比电极.将镀有海绵状铂 黑的铂片插入到 H+浓度是 1.0 mol/L 的酸性溶液, 再持续输入压强为 100 kPa 的高纯 H₂ 使铂黑吸 附 H₂ 至饱和, 这时铂片就可以等同于 SHE. 我们 规定任何温度下标准状态的氢电极的电势为零,其 他电极的"氢标"电势就是其与标准氢电极 SHE 的 电势差.标准氢电极都是可逆氢电极 (RHE), 而 RHE 不一定会是 SHE. 另外, 在常用的三电极光 催化反应系统中, Ag/AgCl 通常代替标准氢电极 SHE 作为参比电极. Pt 通常是对电极, 当向催化 剂施加一定的正向偏压之后,会迫使光生电子向 Pt 电极方向移动,从而使电子-空穴对分离,减少 两者发生复合的机会,使得光催化效率大大提升. 图 2(b) 解释了光催化产氢、析氧反应过程, 光催化 材料受到光激发后,电子与空穴分离,电子参与还 原反应产生氢气, 空穴参与氧化反应产生氧气[37-39].

目前, 提高光催化材料的催化活性和能量转换 效率 PCE, 主要从两点出发: 1) 调控光催化材料的 能带结构, 增加材料吸收光的波长范围、少数载流 子的寿命 τ_m 和平均扩散长度 L_m ; 2) 提高光生电 子-空穴对的分离效率、外量子效率和 PCE. 主要 有以下六种方式:

1) 离子掺杂改善半导体性能

通过离子掺杂, 尤其是过渡金属离子, 可以有效提高载流子的寿命, 降低电子空穴对的复合速率, 增加半导体内部电子-空穴对的分离程度. 以TiO₂为例, Litter和 Navio^[40]以及 Choi等^[41]发现对 TiO₂进行 Mo²⁺, Fe³⁺, Ru³⁺, Re⁵⁺, Os³⁺, Rh³⁺, V⁴⁺的掺杂, 可以明显提高 TiO₂的光催化效率. 但是, 对于金属离子的掺杂存在着一定的极限值, 高于此极限值后, 半导体材料的光催化性能会急剧下降.

2) 半导体/半导体异质结分离电子-空穴对

在半导体催化剂表面复合一层带隙较小的半导体材料,可以有效地提高半导体内光生载流子的分离效率,并且可以扩大光谱的吸收范围.二者的复合必须满足能级匹配的条件,所复合的半导体材料的带隙必须小于催化剂半导体本身的带隙,且其导带能级必须高于催化剂半导体的导带能级.表1 列举和比较了各种铁电材料、异质结和肖特基结的光催化性能^[14,18,42-59].

3) 通过半导体/金属的肖特基结分离电子-空 穴对

当特定半导体材料与金属材料复合时,由于两 者的费米能级不同,电子从能级较高的半导体材料 向能级较低的金属材料传输时导致载流子重新分 布,直到二者的费米能级相同,形成肖特基势垒, 相应的内电场可以有效地捕获电子,阻止电子空穴 的重新复合.

4) 通过外电场分离电子-空穴对

外电场对光催化反应有着重要的影响,外电场帮助催化剂进行电子-空穴对的分离.同时,对于不同的催化剂材料,存在一个特定的最佳电压值,而且在不同的实验条件下,此数值也不同.表2列举和比较了各种铁电材料及其异质结的光电催化性能^[15,50,60-73].

5) 优化反应溶液 pH 值

溶液 pH 值的影响原理比较复杂, 在不同的情况以及不同的材料中, pH 值表现出了不同的影响, 具体的原理还需要进一步的探究.

6) 调控溶液中的氧含量

氧对光催化反应过程的影响主要来自两方面: O₂直接参与光催化反应;O₂直接影响半导体电极 的开路电位光电压响应,O₂会影响光生电子向 Pt 对电极的运动,催化剂表面的氧成分会大量吸 收电子,阻碍电子-空穴对的转移.

3 钙钛矿氧化物铁电体的光催化研究 进展

3.1 BiFeO₃的光催化

近年来 BiFeO₃ 等铁电材料的光电催化效率如 表 2 所示^[60-67]. 2008 年,南京大学的 Cho 等^[14] 发 现 BiFeO₃ 纳米粉体的带隙可以降低到 2.18 eV, 带隙能量能够很好地与光催化分解水的氧化还原 反应匹配,电子-空穴对在退极化场的作用下容易 分离,有利于光催化效率的提升,该 BiFeO₃ 粉体 具有优异的光催化性能,开启了铁电半导体材料光 催化研究的热潮.为了方便比较,对于基片/底电 极/光催化剂/电解液结构,指定钙钛矿铁电材料作 为阳极使用的为光阳极,作为阴极使用的为光阴 极,外电场及其电压、铁电极化方向指向电解液为 正向电场/正电压 (+*E*/+*V*)、正向极化 (+*P*),外 电场及其电压、铁电极化方向指向底电极为反向电 场/负电压 (-*E*/-*V*)、反向极化 (-*P*).

对于 BiFeO3 材料而言,其既可以独自作为光 电极使用,也可以作为辅助性材料与 C₃N₄ 等经典 光催化材料复合,也可以在 BiFeO3 材料基础上进 行修饰改性 (例如, 与 Au 复合等)^[74-76]. 2014年, Cao 等^[77]在 ITO 导电玻璃上利用旋涂法制备了 高质量的 BiFeO3 多晶薄膜, ITO 薄膜的厚度为 100 nm, BiFeO3 薄膜厚度为 300 nm. 二者的势垒 高度为 1.24 eV, 为典型的肖特基结. 在进行光催 化测试之前, BiFeO3 薄膜电极被置于碳酸丙烯脂 溶液中进行电化学预处理,施加10s的±8V偏 压对 BiFeO3 薄膜进行不同方向的铁电极化预处 理,控制电荷转移的方向并改变能带结构,以便提 高 BiFeO3 薄膜的光催化效率. 稳态荧光光谱法是 分析光致电荷转移动力学的一种简便方法,分别对 薄膜进行+8 V 与-8 V 极化之后,可以发现不同极 化方向的 BiFeO3 薄膜的荧光强度发生了显著的变 化. 如图 3(a) 所示, BiFeO3 薄膜经过+8 V 外电压 极化后,其铁电极化 P方向指向电解液,其退极化 场-E_P(即 E_{bi})指向底电极,能带在左边缘处向上 弯曲、右边缘处向下弯曲,导致耗尽层宽度增加, 加大电子-空穴对的分离效率,同时电子与空穴更 容易的导出,它的荧光强度显著大于初始薄膜的荧 光强度. 如图 3(b) 所示, BiFeO3 薄膜经过-8 V 电

	Ï	able 1. Photo	catalytic degradation of o	rganic compounds using	a variety of catalytic methods.			
材料及结构 (铁电材料为粗体)	铁电	带隙/eV	激励源	催化降解物	催化活性	污染性	稳定性(性能/时间)	文献
BiFeO。纳米粉体	斑	2.18	紫外可见光	甲基橙	8 山降解90%	Ŧ		[14]
FTO玻璃/BiVO4/BiFeO3/CuInS2	强	2.1 - 2.7	可见光	对硝基苯酚	$K_{ m obs}=0.02~{ m min}^{-1}$	₽	相对稳定/5次循环	[56]
NaNbO ₃ 纳米棒	强	3.3	光+超声振动	甲基蓝		弱	98%/3次循环	[42]
BaTiO3@Ag纳米颗粒	强	3.2	光	罗丹明B	$K_{ m obs}=0.087~{ m min}^{-1}$	弱		[43]
${ m BaTiO_3/MoO_3}$	强	3.2	紫外-可见光	罗丹明B	60 min降解86%	령정	95%/5次循环	[44]
BaTiO ₃ /Ag ₂ O纳米棒	围	3.2	紫外光+ 超声振动	罗丹明B $(c = 15 \text{ mg·L}^{-1})$	$K_{ m obs}=0.031~{ m min}^{-1}$	弱	50%/5次循环	[18]
$BaTiO_3 @ # 鼎BaTiO_{3-x}$	强	3.2	可见光	甲基蓝	5 山降解62.4%	弱	97%/5次循环	[45]
PbTiO ₃ /TiO ₂ 纳米片	围	3.6	氙灯可见光	甲基蓝	$K_{ m obs} = 0.057 { m mm}^{-1}$ 132.6 $\mu{ m mol}{ m .h}^{-1} { m .g}^{-1}$ $ m p^{22}{ m H}_2$	强		[46]
$\mathrm{KNbO_3/g\text{-}C_3N_4}$	强	3.28	氙灯可见光		180 μ mol·h ⁻¹ ·g ⁻¹ $\overrightarrow{p^{+}}$ H ₂	弱	95%/4次循环	[47]
{001} Bi ₃ TiNbO ₉ 纳米片	ĺ	3.3	氙灯可见光		$342.6 \ \mu mol \cdot h^{-1} \cdot g^{-1} \ j^{22}H_2$	Ŧ		[48]
KNbO ₃ 颗粒	强	3.28	光	罗丹明B	$K_{ m obs}=0.317~{ m min}^{-1}$	렸		[49]
KNbO ₃ 纳米片	围	3.07	可见光+超声振动	罗丹明B	$K_{ m obs} = 0.022 ~{ m min}^{-1} ~2 ~{ m h}$ 降 $m_{ m 02.6\%}$	경국		[50]
FTO玻璃/ZnSnO ₃ 纳米线	弱	3.7	光+压力	甲基蓝	$K_{ m obs} = 0.007 \ { m min}^{-1}$	弱	$90\%/1~{ m h}$	[51]
FTO/ZnSnO _{3 <i>"</i>纳米线}	射랑	2.4 - 3.7	光、超声振动、 光和超声振动		3562, 3453, 3882 µmol·h ¹ ·g ⁻¹ ј ^э ́Н ₂	弱	在振动下相对稳定/7 h	[52]
${ m FTO/Zn_{l-x}SnO_3}$ 纳米线	現	2.4 - 3.7	紫外光+振动	甲基蓝	$K_{ m obs} = 0.015~{ m min}^{-1}$	弱		[53]
PZT@TiO ₂ 核壳结构	斑	3.6	光+搅拌	罗丹明B	80 min完全降解	强		[54]
BiOI-BaTiO ₃ 纳米粒子	强	3.2	可见光	甲基橙	90 min降解95.4%	弱		[55]
ZnO纳米线	压电	3.37	光+摇摆	甲基蓝	$K_{ m obs}=0.025~{ m min}^{-1}$	弱	99%/3次循环	[57]
ZnO纳米片/TiO ₂ 纳米颗粒	压电	3.37	可见光	甲基橙	$K_{ m obs}=0.038~{ m min}^{-1}$	령되	相对稳定/11 h	[58]
Ag-ZnO纳米线	压电	3.37	光+弯折	罗丹明B	$K_{ m obs} = 0.052~{ m min}^{-1}$	컒됫	90%/8次循环	[59]

表 1 部分压电和铁电材料的光催化降解甲基橙染料或 CO₂的性能比较

127706-7

C61-butyric acid methyl ester, PEI	E is eth	oxylated pc	lyethylenimine,	PEDOT:PSS is poly(3, 4	ethylenedioxythio	phene) polystyrene sul	fonate and FM is In_0	$0.51 \mathrm{Bi}_{0.325} \mathrm{Sn}_{0.1}$	165 as protective l	ayer.
材料和结构 (铁电材料为粗体)	铁电	PCE/%	带隙/eV	电解液	光源	工作电极电势	光电流密度/ mA·cm ⁻²	污染性	稳定性 (性能/时间)	文献
ITO/BiFeO ₃ /Au	斑		2.16 - 2.7	0.1 mol/L KCl	AM1.5G	0 V vs. Ag/AgCl	0.05	弱		[09]
$\rm SrTiO_3/SrRuO_3/(111)BiFeO_3$	强		2.16 - 2.7	$0.5 \text{ mol/L Na}_2 \mathrm{SO}_4$	AM1.5G	0 V vs. Ag/AgCl	0.08	량	$100\%/700 \ { m s}$	[61]
$SrTiO_3/CaRuO_3/(111)~Bi_2FeCrO_6$	題		1.9 - 2.1	$1~{\rm mol/L~Na_2SO_4}$	AM1.5G	0 V vs. Ag/AgCl	-2.02			[15]
$SrTiO_3/SrRuO_3/Bi_2FeCrO_6/~NiO$	斑		1.82.7	$1~{\rm mol/L~Na_2SO_4}$	AM1.5G	1.2 V vs. RHE	0.0		$95\%/7~{ m h}$	[62]
TiO2@PbTiO3核壳结构	强		3.6		贏 灯100 mW·cm ⁻²		132 μ mol·g ⁻¹ H ₂	困		[63]
$FTO/NaNbO_3$	斑		3.37	$0.5 \text{ mol/L } \mathrm{Na_2SO_4}$	AM1.5G	1 V vs. Ag/AgCl	0.51	弱		[64]
ITO/KNbO ₃ 纳米片	斑		2.86	$0.5 \text{ mol/L } \mathrm{Na_2SO_4}$	AM1.5G	0 V vs. Ag/AgCl	0.82	弱		[50]
(001) LiNbO ₃ 单晶	斑	[3.26	$ m mol/LK_3PO_4$	AM1.5G	1.23 V vs. RHE	0.15	弱		[65]
$\rm FTO/TiO_2 @BaTiO_3/Ag_2O$	斑		3.2	$1 \mathrm{mol/LNaOH}$	AM1.5G	0.8 V vs. Ag/AgCl	1.8	覒	$97\%/1~{ m h}$	[99]
FTO/TiO ₂ @SrTiO ₃ (10 nm四方铁电相)			3.2	1 mol/LNaOH	AM1.5G	1.23 V vs. RHE $$	1.43			[29]
Glass/FTO/m-TiO ₂ /CH ₃ NH ₃ PbI ₃ / Spiro-MeOTAD/Au/Ni	駩	14.4	1.5	ļ	AM1.5G	1.0 V vs. SHE	17.4	强	$66\%/1~{ m h}$	[68]
FTO/PEDOT:PSS/CH ₃ NH ₃ PbI ₃ / PCBM/PEIE/Ag/FM	影	7.7	1.5		AM1.5G	1.2 V vs. RHE	15.0	强	$80\%/1~{ m h}$	[69]
ITO/NiO/CH ₃ NH ₃ PbI ₃ / PCBM/Ag/Ti/Pt	影	16.1	1.5	$0.5 \ \mathrm{mol/L} \ \mathrm{H_2SO_4}$	AM1.5G	1.2 V vs. RHE	18	强	70%/12 h	[10]
CH ₃ NH ₃ PbI ₃ solar cells, a cell for H ₂ O splitting	影	15.7	1.5		AM1.5G	[10	强	$75\%/10~{ m h}$	[11]
FTO/BiVO ₄ /black-phosphorene/ NiOOH	R		2.4 - 2.5	$\begin{array}{l} 0.5 \hspace{0.1 cm} \mathrm{mol/L} \hspace{0.1 cm} \mathrm{KH_2PO_4} \\ \mathrm{K_2HPO_4} \end{array}$	AM1.5G	1.23 V vs. RHE	4.48	围	d 09%/60	[72]
$FTO/H:TiO_2$	无	1.63	3.2	1 mol/LNaOH	AM1.5G	-0.6 V vs. Ag/AgCl	1.97		$94\%/28~{ m h}$	[73]

近年部分铁电材料光电催化分解水的研究进展(这里 ITO, FTO, SrTiO₃, Nb-SrTiO₃和 glass 是薄膜基片, PCBM 是 [6,6]-苯基 C61-丁酸甲酯, PEIE 是乙氧基化聚乙烯亚

表 2

图 3 (a), (b) 对 BiFeO₃ 薄膜进行+8 V 和-8 V 极化后的能带结构示意图; (c) 极化之前和+8 V 和-8 V 极化之后 BiFeO₃ 电极 测量的外量子效率; (d) 不同铁电极化状态的 BiFeO₃ 工作电极的光电流与电势曲线^[24]

Fig. 3. Energy band structure diagram of the BiFeO₃ thin film after (a) +8 V and (b) -8 V poling; (c) external quantum yield spectra of BiFeO₃ film before poling and after +8 V and -8 V poling; (d) photocurrent–potential characteristics of the photoelectrodes with different polarization states^[24].

压极化后,其结果与+8 V极化相反,空穴难以从 电解液传输到 BiFeO3, 电子难以从 BiFeO3 传输 到电解液.如图 3(c) 所示,经过+8 V极化的 Bi FeO3薄膜的外量子产生效率是-8 V极化后薄膜 外量子效应的 10 倍, 这说明了 BiFeO3 的铁电极 化方向能够明显的影响材料的外量子效率,可以通 过铁电极化翻转调节外量子效率和光电流密度.如 图 3(d) 所示, BiFeO3 薄膜的铁电极化状态不同, 光催化的电流密度也随之变化.首先,BiFeO3工作 电极为 0 V (vs. Ag/AgCl) 时, +8 V 和-8 V 极化 后的 BiFeO3 显示的光电流都为负, 这是因为 Bi FeO3/ITO 界面上存在 1.24 eV 肖特基势垒, 这会 阻碍电子并促进空穴向 ITO 电极的转移, 从而无 论 BiFeO3 薄膜如何极化, 都只能获得光阴极电流. 其次, BiFeO3 薄膜的极化状态可以大幅度调节光 电流. 当 BiFeO3 工作电极为 0 V 时, -8 V 极化后 的 BiFeO3 薄膜的光电流密度为 0, +8 V 极化后 的 BiFeO₃ 的光电流密度为-10 μA/cm².

2018年 Song 等^[61]研究发现: (111)_{pc} BiFeO₃ 单晶外延薄膜具有最大的宏观铁电极化及其 *E*_P, 能够显著地提高薄膜样品的光电催化性能.为了方 便比较,根据 *ABO*₃ 伪立方结构表示 BiFeO₃ 的晶 面和晶向,并标记 pc. 通过脉冲激光沉积 (PLD) 薄膜方法在 SrTiO₃ 基片生长 La_{0.67}Sr_{0.33}MnO₃ 或 SrRuO₃ 底电极. 然后,分别生长 (001)_{pc}, (110)_{pc}, (111)_{pc} 三种晶面的外延 BiFeO₃ 薄膜. 由于菱面体 相 BiFeO₃ 的铁电极化方向在 *AB*O₃ 晶胞的体对 角线方向,即沿伪立方体的 $\langle 111 \rangle$ 晶向, (111)_{pc} BiFeO₃ 外延薄膜具有最大的宏观铁电极化,因此 被广泛研究^[78–86]. 先前的研究表明 (111)_{pc} 晶面的 BiFeO₃ 薄膜的宏观铁电极化约 90—110 μ C/cm², 而 (001)_{pc} 和 (110)_{pc} BiFeO₃ 薄膜的宏观铁电极化 分别为 55—76 μ C/cm² 和 80—91 μ C/cm². 铁电 极化增加会增加 *E*_P,从而提高铁电半导体材料的 光生电子-空穴对和相应的光催化效率.

Song 等^[61] 构建了 Mott-Schottky 曲线并计算 了 BiFeO₃ 薄膜光阳极的带边位置, 阐明了不同晶 体取向的 BiFeO₃ 薄膜的光催化性能差异. 首先, 根据图 4(a) 的 Mott-Schottky 曲线的正斜率可以 判断 BiFeO₃ 薄膜为 n 型半导体, 此行为是由氧空 位引起的. 另外, $V_{\rm fb}+kT/e$, 可通过 Mott-Schottky 方程中获得

$$1/C^{2} = 2\left(V - V_{\rm fb} - kT/e\right) / (\varepsilon_{\rm r}\varepsilon_{\rm 0}A^{2}eN_{\rm d}).$$
(7)

图 4 (a) 三种 50 nm 厚外延 BiFeO₃ 薄膜光阳极的 Mott-Schottky 曲线, 相对于 Ag/AgCl 参比电极的平带电势由曲线斜率与横 轴交点决定; (b) 400—800 nm 入射光波长范围内的 BiFeO₃ 薄膜的吸光度; (c) 三种外延 BiFeO₃ 薄膜光阳极的能带位置; (d) BiFeO₃ 薄膜光阳极的电化学阻抗谱^[7]

Fig. 4. (a) Mott-Schottky plots for the 50-nm-thick epitaxial $BiFeO_3$ thin-film photoanodes with different crystallographic orientations, where the flat-band potentials are obtained from the intercepts of the extrapolated lines; (b) absorbance measurements for these three $BiFeO_3$ thin films with incident light at 400–800 nm wavelength; (c) band positions for the epitaxial $BiFeO_3$ thin-film photoanodes; (d) electrochemical impedance spectroscopy spectra of the $BiFeO_3$ thin-film photoanodes^[77].

其中 *C* 是半导体工作电极的空间电荷层的电容, *e* 是电子的电荷, ε_r 是半导体的相对介电常数, ε_0 是真空的介电常数, N_d 是自由载流子密度, *V* 是施 加的外电势, V_{fb} 是平带电势.相对于 Ag/AgCl, BiFeO₃ 薄膜的平带电势的计算值为–0.576, –0.806 和–0.856 V. 工作电极的可逆氢电极 (RHE) 的电 势 V_{RHE} 的计算公式如下:

 $V_{\text{RHE}} = V_{\text{Ag/AgCl}} + 0.059 \times \text{pH} + V_{\text{Ag/AgCl}(1 \text{ M KCl})}^{\circ}$, (8) 其中 $V_{\text{Ag/AgCl}(1 \text{ M KCl})}^{\circ}$ 在 25 °C 和 1 M KCl (1 M = 1 mol/L)溶液中为 0.235 V, $V_{\text{Ag/AgCl}}$ 为工作电极 在溶液中相对于 Ag/AgCl 的电势.因此,相对于 可逆氢电势, (001)_{pc}, (110)_{pc} 和 (111)_{pc} BiFeO₃薄 膜的最终平带电势分别为-0.006 V, -0.236 V 和 -0.286 V. 另外, 如图 4(b)所示, (001)_{pc}和 (110)_{pc} BiFeO₃薄膜光学带隙为 2.67 eV, (111)_{pc} BiFeO₃ 薄膜的光学带隙为 2.57 eV. 如图 4(c)所示,考虑 到在 n 型半导体的情况下,平带电势位于导带 (CB)的正下方,则可以根据测得的平带电势来获 得不同晶向 BiFeO₃的近似带边位置电位.此外, 如图 4(d) 所示,厚度为 50 nm 的外延 BiFeO₃ 薄 膜光阳极的电化学阻抗谱显示,(111)_{pc} BiFeO₃ 薄 膜光阳极由于具有最高的铁电自发极化并且具有 较小的阻抗值,这与最佳的电荷转移效率相匹配.

图 5(a) 是 BiFeO3 外延薄膜作为光阳极分解 水时的能带图. 当 BiFeO3 薄膜的铁电极化指向底 电极,在BiFeO3/电解液界面具有负束缚电荷,能 带向上弯曲,在底电极/BiFeO3界面具有正束缚电 荷,能带向下弯曲.因此,电子能够传输到底电极 并最终在 Pt 对电极附近电解液中通过光催化产 生 H₂, 空穴可以传输到电解液并通过光催化产生 O2. 当 BiFeO3 外延薄膜的铁电极化指向电解液 时,电子难以传输到底电极,空穴难以传输到电解 液. 图 5(b) 的 BiFeO3 电极的光电流-电势 (vs. Ag/ AgCl) 曲线证实了能带图的理论模型, 在工作电极 的电势为正的情况下,当铁电极化指向底电极时, (111)_{pc} BiFeO₃ 薄膜的光电催化效率表现的最为 突出,光电流密度可达到 0.08 mA/cm⁻², 当铁电极 化指向电解液时,光电流很小.图 5(c)对比了电势 为 0 情况下, (001)pc 和 (111)pc 薄膜的光电催化效

图 5 光催化反应过程中 BiFeO₃ 薄膜作为光阳极的能带图 (a) 不同极化状态下, BiFeO₃ 薄膜能带结构的改变; (b) (111)_{pc} BiFeO₃ 薄膜作为光阳极的光电流密度-电势曲线; (c) 在电势为 0 V 情况下 (001)_{pc} 和 (111)_{pc} BiFeO₃ 薄膜光阳极的光电流密度-时间曲线^[1]

Fig. 5. Energy band diagrams for BiFeO₃ photoanodes in PEC water splitting cells: (a) Changes in the band structure of BiFeO₃ thin films under different polarization states; (b) linear sweep voltammetry of 50-nm-thick $(111)_{pc}$ BiFeO₃ thin-film photoanodes in different polarization states; (c) photocurrent density versus time curves for $(001)_{pc}$ and $(111)_{pc}$ BiFeO₃ thin-film photoanodes with different polarization states under zero bias (0 V vs. Ag/AgCl)^[61].

果,可知铁电极化指向底电极 (-P)时 (111) Bi FeO₃薄膜具有最大的光电流密度.-P使 (111)_{pc} BiFeO₃薄膜的光电流密度增大约 5.3 倍,铁电极 化翻转使光电流密度变化 8000%,光催化起始电位 变化 0.33 V. 此外,当 (111)_{pc} BiFeO₃薄膜的厚度 从 20 nm增加到 50 nm时,外延 BiFeO₃薄膜的 光电流密度增加,并且当厚度进一步从 50 nm增 加到 100 nm时,BiFeO₃薄膜的光电流密度减小. 光电流的变化可以用电荷转移模型来解释^[87-89]: 随外延 BiFeO₃薄膜厚度从 20 nm增加到 50 nm, 光生载流子总数的增加引起光电流密度的增加;当 厚度从 50 nm增加到 100 nm,由于载流子扩散长 度小于薄膜厚度,大量的光生电子-空穴对在薄膜 内部复合,光电流密度随薄膜厚度的增加而减小.

2019 年 Huang 等^[89]利用 BiFeO₃ 材料涂覆在 掺 Sn 的 TiO₂ 纳米棒 (Sn:TiO₂@BiFeO₃)上,实现 了光催化电流密度的增强,最大达到 1.76 mA/cm². 很多铁电材料具有高介电常数和较低的载流子迁 移率,因此利用铁电薄膜进行能带工程改性时铁电 薄膜需要足够薄,从而尽量避免铁电材料对电荷传 输的影响. 首先利用水热法在 FTO 玻璃衬底上生 长规则的 Sn:TiO₂ 纳米棒, 在 450 ℃ 退火后, 利用 溶胶-凝胶法在 FTO 玻璃/Sn:TiO2 上涂覆一层 BiFeO3薄膜,制备过程及模拟形貌如下图 6(a)所 示. 通过 Sn 掺杂与 BiFeO3 包裹都能够显著提高 TiO₂纳米棒的光催化性能. 如图 6(b) 所示, 工作 电极电势为 1.23 V 时, TiO₂ 纳米棒的光电流密度 为 0.54 mA/cm², Sn 掺杂的 TiO₂ 纳米棒的光电流 密度提高到 0.83 mA/cm², Sn:TiO₂@BiFeO₃ 的光 催化电流密度提升到 1.51 mA/cm². 由于 BiFeO₃ (2.16—2.7 eV)的带隙比 TiO₂ (3.2 eV)小, 通过 复合之后导致 Sn:TiO2@BiFeO3 结构的可见光吸 收范围显著增强.同时,如果对该复合结构施加不 同方向的外加电场, BiFeO3 铁电层的退极化场

图 6 (a) BiFeO₃@Sn:TiO₂生长机制示意图; (b) TiO₂, Sn:TiO₂与Sn:TiO₂@BiFeO₃作为光阳极时的光电流密度; 铁电极化分别 指向 (c) 电解液和 (d) Sn:TiO₂ 时, Sn:TiO₂@BiFeO₃ 的能带示意图^[89]

Fig. 6. (a) Schematic representation for the growth mechanism of $Sn:TiO_2@BiFeO_3$ nano rods; (b) photocatalysis performance of TiO_2 , $Sn:TiO_2$ and $BiFeO_3@Sn:TiO_2$ nano rods. Schematic electronic band diagram of (c) positive poling $BiFeO_3$ and (d) negative poling $BiFeO_3^{[80]}$.

 $E_{\rm P}$ 可以调控 Sn:TiO₂@BiFeO₃的光电催化效率. 如图 6(c) 所示,外电压极化 BiFeO₃薄膜后其铁电极化指向电解液,其退极化场指向 Sn:TiO₂, Sn:TiO₂@BiFeO₃界面处的能带向上弯曲,其耗尽层变宽,内建电场增加了电子-空穴分离效率,光阳极的光催化电流密度由 1.51 mA/cm²增加至 1.76 mA/cm². 如图 6(d) 所示,当外加极化电压指向FTO 基片时,Sn:TiO₂@BiFeO₃界面处的耗尽层变窄,降低了电子-空穴分离效率,光阳极的光催化电流密度由 1.51 mA/cm²降低至 1.02 mA/cm².

作为n型半导体,BiVO₄的带隙约为2.4 eV, 相对较窄的带隙可以吸收大部分可见光^[90],是目 前光催化领域中最有希望获得实际应用的光阳极 催化材料之一^[1,91-96].尽管 BiVO₄的原材料资源 丰富,成本低廉,但是在AM1.5G标准太阳光照和 电势为1.23 V的情况下,BiVO₄的光电流密度远 小于其理论值7.5 mA/cm^{2[97,98]}.这主要归因于材 料的表面缺陷以及表面腐蚀导致的内部较高的 电子-空穴对复合率,以及析氧反应过程中产生的 超电位^[99–101].通过在BiVO₄纳米棒表面包裹 BiFeO₃铁电层,Xie等^[102]显著提高了BiVO₄的 光催化效率.BiFeO₃铁电层不仅可以对BiVO₄层 进行保护,防止光腐蚀与化学腐蚀,同时BiFeO₃ 铁电层的退极化场也可以提高异质结中光生电子-空穴对分离效率. 如图 7(a) 所示, 通过化学溶剂沉 积法在 BiVO₄ 纳米棒表面包裹了 10 nm 以内厚度 的 BiFeO3 铁电层 [103]. 由于使用化学方法制备薄 膜,其内部的化学溶剂的蒸发导致薄膜的形貌呈多 孔状,这可以增加材料的吸光性,进而提高材料的 光催化效率. 如图 7(b) 所示, 在 AM1.5G 光照和 电势为 0.6 V条件下, FTO/BiVO₄/BiFeO₃复合 结构光电流密度为 0.63 mA/cm², 比单纯的 Bi VO4 光阳极的光电流密度 (即 0.14 mA/cm²) 提高 约 4.4 倍, 比 BiVO₄/Co-Pi 光阳极的光催化电流 密度 (即 0.50 mA/cm²) 提高了 24%. 这里 Co-Pi 为钝化缓冲层,用于防止溶液腐蚀与光腐蚀.与普 通的 BiVO₄相比, BiVO₄/BiFeO₃的电荷复合率 也从 17 s⁻¹ 大幅度降低到了 0.6 s⁻¹. 如图 7(a) 和 图 7(c) 所示, BiFeO3 的铁电极化方向可以调控 BiVO₄/BiFeO₃的光催化性能,与未通过外电压极 化的 BiFeO3 相比, BiFeO3 铁电极化指向电解液 时 (+P by positive poling), $BiVO_4/BiFeO_3$ 界面 的能带向上弯曲, 增加 BiVO₄ 中耗尽层的宽度, 能 够促进空穴从 BiVO4 进入 BiFeO3 和电解液, BiVO₄/BiFeO₃光阳极的光电流密度提高了 19%. BiFeO3 铁电极化指向底电极时 (-P by negative

图 7 (a) BiVO₄/BiFeO₃ 光阳极的电子能级及结构示意图; (b) BiVO₄/Co-Pi, BiVO₄ 和 BiVO₄/BiFeO₃ 三种结构的光电流密度-电势曲线; (c) 不同铁电极化状态下 BiVO₄/BiFeO₃ 光阳极的光电流密度-电势曲线; (d) 在工作电极的电势为 0.6 V 时, 三种结构 的光电流密度-时间的曲线^[102]

Fig. 7. (a) Electron energy levels of $BiVO_4/BiFeO_3$ photoanode and the structural representation; (b) the photocurrent density curves of three different structures of $BiVO_4/Co-Pi$, $BiVO_4$ and $BiVO_4/BiFeO_3$; (c) photocurrent density versus potential curves at three statuses of ferroelectric polarization; (d) long-term photostability of three photoanodes at 0.6 V (V vs. Ag/AgCl)^[102].

poling), BiVO₄/BiFeO₃光阳极的光电流密度降低 了约 24.4%, 这是由于 BiVO₄ 表面的能带结构向 下弯曲降低了电子-空穴对的分离效率.图 7(d) 是 光电流密度-时间曲线, 在光照 12 h之后, BiVO₄/ BiFeO₃光阳极的光电流密度是初始光电流的 59%, 与单纯的 BiVO₄纳米棒相比, BiVO₄/BiFeO₃的 稳定性大大提高, 甚至比 BiVO₄/Co-Pi 更好.

3.2 Bi₂FeCrO₆的光催化

Bi₂FeCrO₆具有特殊的双钙钛矿结构,由于其 带隙比较小,在可见光驱动的氧化还原反应方面具 有较大的优势.2015年Li等^[15]使用PLD系统生 长了Bi₂FeCrO₆外延薄膜并研究其光电催化效应. Bi₂FeCrO₆铁电薄膜材料属于A₂BB'O₆型,其中 B位Fe/Cr元素的有序度影响到材料的能带结构 和光催化性能,因此调节 Bi₂FeCrO₆ 的 Fe/Cr 阳离 子有序度可增强光电催化效率.LaAlO₃/CaRuO₃/ Bi₂FeCrO₆ (120 nm) 中 Bi₂FeCrO₆ 的有序相和无 序相所对应的带隙值分别为 2.12 eV 和 2.68 eV. (LaAlO₃)_{0.3}(Sr₂AlTaO₆)_{0.7}(LSAT)/CaRuO₃/Bi₂ FeCrO₆ (130 nm) 中 Bi₂FeCrO₆ 的有序相和无序 相对应的带隙值为 2.05 eV 和 2.61 eV. SrTiO₃/ CaRuO₃/Bi₂FeCrO₆ (128 nm) 中 Bi₂FeCrO₆ 的有 序相和无序相对应的带隙值为 1.94 eV 和 2.58 eV. 如图 8(a) 所示,在 AM1.5G 标准太阳光照射下、 pH = 6.8 的 1 mol/L Na₂SO₄ 电解液中,SrTiO₃/ CaRuO₃/Bi₂FeCrO₆ 工作电极在-0.97 V 的电势下 的光电流密度为-1.02 mA/cm².如图 8(b) 所示, 铁电极化指向电解液 (+*P*) 时,工作电极的电势为 -1 V 时,光电流密度为-2.02 mA/cm²,比没有极

图 8 SrTiO₃/CaRuO₃/Bi₂FeCrO₆样品在 Bi₂FeCrO₆的 (a) 初始极化状态、(b) + P (即 P_{up})、(c) - P(即 P_{down}) 时的结构示意图和 在光阴极时 Bi₂FeCrO₆薄膜的光电流-电势 (vs. Ag/AgCl) 曲线图^[15]; (d) 在光阳极时 SrTiO₃/SrRuO₃/Bi₂FeCrO₆/NiO 异质结的光 电催化示意图和 (e) 其光电流-电势曲线^[62]

Fig. 8. Schematic illumination and variations of the photocurrent density with applied voltage (vs. Ag/AgCl) in 1 mol/L Na₂SO₄ at pH 6.8 under chopped simulated sunlight illumination (AM1.5G) of $SrTiO_3/CaRuO_3/Bi_2FeCrO_6$ sample: (a) Before, (b) after negative (P_{up} , -25 V) and (c) and positive poling (P_{down} , 25 V)^[15]; (d) schematic diagram of the experimental setup and (e) photocurent versus potential (vs. RHE) curves of $SrTiO_3/SrRuO_3/Bi_2FeCrO_6/NiO^{[62]}$.

化的样品大两倍,因此+P有利于增强光阴极对水的分解活性.如图 8(c) 所示,相同条件之下,铁电极化指向底电极时 (-P)时,光催化电流密度显著降低至-0.85 mA/cm².这说明 Bi₂FeCrO₆的铁电极化影响了半导体光生载流子的迁移,通过铁电极化来调控能带结构并设计改进的光电极和太阳能转换智能器件是有前途的.

Bi₂FeCrO₆等半导体与含水电解质接触并发 生光电催化时会出现自然腐蚀或钝化的现象,光阳 极/电解质中的电荷复合和有限的电荷转移动力学 导致了较大的能量损失,增加了电子-空穴对的复 合速率,严重影响了半导体材料的光催化效率以及 使用寿命,从而降低了其光催化的性能.因此通常 在使用前需要通过表面处理和改性或通过设置 保护层来使其稳定^[104–107].此外,通过添加有效的 电子传输层来减少光生电子-空穴对的复合,可以 提高 n型本征半导体光阳极的光催化反应性能.对 于光阳极材料而言,此类问题的解决方案在于设计 一种既有保护性能也有空穴传输性能的材料,该材 料应该同时具有化学稳定性、抗氧化性、透明性和 导电性的优点.具有这种特性的最合适的材料是 p型透明导电氧化物,也称为 p 型窗口层. p 型半

导体氧化镍 (NiO) 具有立方晶体结构, 其带隙为 3.6 eV, 超薄的 NiO 薄膜具有很高的光学透明性 (10 nm 时约为 80%, 20 nm 时为 75%), 相对较 低的电阻率 (120 Ω·cm) 和较高导带位置,因此 NiO适合用作保护层与传输层^[108]. 如图 8(d) 所 示, 2019年 Huang 等^[62] 构建了 SrTiO₃/SrRuO₃/ Bi₂FeCrO₆/NiO 异质结. 利用 PLD 系统在透明的 SrTiO₃基片上生长了底电极 SrRuO₃、光阳极层 Bi₂FeCrO₆和空穴传输层 NiO,其中 NiO 层的厚 度为 10 和 20 nm. 在 300 K 时, 10 和 20 nm 厚度 的 NiO 薄膜的电导率分别约为 0.13 和 0.25 S/cm. 通过霍尔效应测量, 10 nm 的 NiO 空穴浓度和迁 移率分别为 1.2 × 10¹⁸ cm⁻³ 与 0.7 cm²·V⁻¹·s⁻¹; 而 20 nm NiO 的空穴浓度和迁移率为 1.5 × 10¹⁸ cm⁻³ 与 1.1 cm²·V⁻¹·s⁻¹. 如图 8(e) 所示, 在这种 n-Bi₂Fe CrO₆/p-NiO 异质结光电二极管中,在1.23 V 电势 下其光电流密度可提高四倍,达到 0.4 mA/cm², 在4h内可以保持稳定性,且在标准太阳光光照下 获得了较高的光电转换效率 (~3.7%). 此外, 具 有+P的 Bi₂FeCrO₆薄膜的光阳极的光电流密度 略小于原始状态下的样品,具有-P的 Bi_2FeCrO_6 膜在相同偏压下光电流密度显著增加,因此可以通 过调整铁电极化状态提高电子-空穴分离与运输效 率并提高光催化效率.

3.3 四方相 BaTiO₃ 铁电体的光催化

含有染料、肥料或表面活性剂分子等有机污染 物的工业废水的排放是当今社会亟待解决的严 重问题^[109], 光催化被认为是降解和去除污染物的 有效方法^[110]. 表 1 对比了 BaTiO₃ 等铁电材料通 过光催化或力催化降解甲基橙染料或 CO2 的性能. BaTiO₃是一种广泛使用的铁电材料,其四方相具 有铁电性,铁电居里温度约为120°C^[111]. 当温度 高于其居里温度时或者室温下纳米粉体的表面能 足够大时, BaTiO₃四方铁电相转变为立方顺电 相^[112-115]. BaTiO₃的带隙为 3.18 eV, 可以在光照 辐射下降解有机染料,例如甲基红和甲基橙[116]. 2013年 Cui 等[43]研究了模拟太阳光照射下四方相 BaTiO₃铁电纳米粉体对典型染料分子罗丹明 B 脱色的影响. 在光催化反应过程中, 极性罗丹明 B阳离子很可能在铁电材料的极性表面上产生紧 密结合的层,从而导致更大程度的染料分子与催化 剂表面结合,与立方顺电相为主的 BaTiO3 纳米粉 体相比,四方相为主的 BaTiO₃ 纳米粉体的脱色率 可以提高3倍.如下图9(a)和图9(b)所示,当纳 米结构的 Ag 以电化学的方式沉积在 BaTiO3 表面 时,催化剂载体表面上的 Ag 纳米颗粒涂层可提高 染料吸附率约1.5倍,光催化反应速率进一步提高, 染料在 45 min 左右完全脱色, 相应的催化分解染 料的动力学速率常数 (Kobs) 为 0.087 min⁻¹. 通过 比较立方顺电相为主的 BaTiO₃、退火后四方铁 电相为主的 BaTiO₃、Ag-BaTiO₃和退火后 Ag-Ba TiO₃的光催化脱色速率,发现退火和 Ag 纳米颗 粒涂层可以优化 BaTiO3 的光催化性能. 退火后的 样品比未退火样品具有更高的催化活性,这说明退 火后四方铁电性相 BaTiO₃ 的比例增加, 从而优化 了其光催化性能.由于铁电半导体退极化场 Ep 的 存在,铁电材料可以有效地分离空穴和电子, Ep 产 生了与典型的 PN 结中相似的空间电荷层,并有效 分离光生电子-空穴对、加速电子和空穴的运输速 率并抑制了电子-空穴对的复合.此外,退火后的催 化剂表现出更高的染料吸附水平,这也可以归因于 四方相 BaTiO₃ 的铁电性质.

2018年 Song 等^[117] 通过原子力显微镜等观察 到了 BaTiO₃ 的铁电极化调制光催化氧化还原反 应的微观过程.当 BaTiO₃ 铁电极化指向电解液, 光催化还原反应在铁电畴表面可以将 Ag+还原为 Ag, 其效率是铁电极化平行于样品表面时效率的 3倍; 铁电极化背向电解液时, 光催化氧化反应可 以在铁电畴表面将 Pb²⁺氧化为 PbO₂, 而铁电极化 平行于样品表面时不能将 Pb²⁺氧化为 PbO₂.

BaTiO₃ 只能吸收紫外光后产生光催化反应. 2018 年 Li 等^[45] 制备了 BaTiO₃ 粉体, 然后在 800 °C 高真空环境通过 Al 粉将 BaTiO₃ 表面还原为非晶 BaTiO_{3-x}, 从而制备了 BaTiO₃@非晶 BaTiO_{3-x} 核 壳结构. BaTiO_{3-x} 薄膜含有大量的氧空位, 显著提 高了可见光的吸收率, 该核壳结构样品再可见光照 射下, 5 h 内可以降解 62.4% 的甲基蓝染料.

2019年 Alex 等^[44] 在玻璃上制备了 500 nm-BaTiO₃/67 nm-MoO₃ 异质结,从而显著增强了其 光催化效率.如图 9(c) 所示,由于 BaTiO₃ 的铁电 极化束缚电荷和 MoO₃ 半导体的自由电荷存在相 互耦合,也由于 BaTiO₃和 MoO₃ 的能带结构差 异,在 BaTiO₃/MoO₃ 界面存在指向 MoO₃ 层的内 电场,它帮助分离光生电子-空穴对,其中电子向 MoO₃ 迁移,空穴向 BaTiO₃ 迁移.如图 9(d) 所示,

图 9 (a) BaTiO₃铁电材料的能带结构及其退极化场 $E_{\rm p}$ 分离光生电子-空穴对的示意图; (b) 太阳光照射下不同催化剂对罗丹 明 B 的光致脱色特性^[43]; (c) Glass/500 nm-BaTiO₃/67 nm-MoO₃ 异质结的能带结构和载流子分离示意图; (d) 该异质结在紫外可 见光和可见光分别照射下分离罗丹明 B 的效果图^[44]; (e) 可见光 ($\lambda > 400$ nm) 照射下 BaTiO₃-CdS 复合材料的光生空穴-电子对 分离、载流子迁移以及光催化产生氢气的示意图; (f) 原始 CdS, 纯 BaTiO₃ 和 BaTiO₃-CdS (wt 20%) 复合材料的光电流-时间曲线 (电极 0.5 cm × 0.5 cm)^[118]

Fig. 9. (a) Schematic of BaTiO₃-Ag composites with the effect of free carrier reorganization on band structure and photoexcited carriers, and (b) photodecolorization profiles of RhB with different catalysts under solar simulator^[43]; (c) schematic representation of the 500 nm-BaTiO₃/67 nm-MoO₃ heterostructure on glass substrate, and (d) its photodecolorization profiles of RhB under UV-visible and visible light (sun light)^[44]; (e) schematic of photoinduced hole and electron migration in BaTiO₃-CdS composites and photoexclude the bar of photoelectrochemical properties of pristine CdS, pure BaTiO₃ and BaTiO₃-CdS (wt 20%) composite^[118].

在紫外可见光照射下,异质结在1h内降解了 86%的罗丹明B,其效率是BaTiO₃薄膜的1.7倍, 是MoO₃薄膜的3.2倍.经过5次光催化降解罗丹 明B的循环,异质结的光催化效率仅仅下降了5%. 该实验进一步说明铁电和半导体结合可以显著提 高其光催化效果. 为了进一步利用 BaTiO₃ 铁电极化提高半导体材料的光催化效率, 2018 年 Huang 等^[118] 制备了铁电/金属硫化物异质结构,从而增强了光生电子-空穴对的分离效率并提高了其光催化性能.如图 9(e)所示,CdS吸附在具有四方铁电相的BaTiO₃ 纳米球上,由于 BaTiO₃ 铁电畴及其退极

图 10 (a) TiO₂@BaTiO₃ (BTO) 纳米线的能带结构示意图; (b) 铁电极化后 TiO₂@BaTiO₃ 纳米线光阳极的光电流密度-电势曲 线^[5]; (c) 在 FTO 玻璃上制备 TiO₂@ BTO/Ag₂O 纳米棒的示意图; (d) 在标准太阳光照射下, TiO₂, TiO₂@BTO, 初始 TiO₂@ BTO/Ag₂O, 铁电极化指向 TiO₂ 的 TiO₂@BTO/Ag₂O 四种纳米棒阵列的光电流-电势曲线^[6]

Fig. 10. (a) Energy band diagram of nanowire photocatalytic reaction of $TiO_2@BaTiO_3$ nanowires; (b) photocurrent density versus potential curve of $TiO_2@BaTiO_3$ nanowires at three polarization statuses^[5]; (c) scheme of the fabrication process of $TiO_2@BaTO_4$ BTO/Ag₂O nanorod array, and (d) photocurrent-potential curves in the dark and under Xe lamp irradiation of the different photoanodes^[66].

化场的影响, CdS 中产生的载流子可以高效地迁移 到表面并参与氧化还原反应.因为 BaTiO₃的带隙 太宽,可见光无法在 BaTiO₃纳米球中高效的激发 电子-空穴对并进行光催化反应,它的产 H₂速率极 低. CdS 是窄带隙半导体,光生电子-空穴对容易快 速复合,纯 CdS 的光催化活性低.从图 9(f)可以看 出,BaTiO₃-CdS (20 wt%)复合材料比单独的 Ba TiO₃或者 CdS 表现出更高的光催化产氢活性,其 速率是 CdS 光催化产氢速率的 9.7倍.在可见光 照射下,复合材料的光催化制氢速率最高可达到 483 μmol·h⁻¹·g⁻¹,在 32 h的循环测试中表现出令 人满意的制氢性能,保持良好的稳定性.

2015 年 Yang 等^[5] 通过利用水热法在单晶 TiO₂ 纳米线表面生长了 5 nm 厚度和具有自发铁 电极化的 BaTiO₃ 层,从而获得了 TiO₂@BaTiO₃ 核壳结构.如图 10(a) 所示,通过铁电极化调控该 核壳结构的能带,大大提高了光电催化性能.由于 BaTiO₃ 退极化场 E_P 的存在,使得 TiO₂内部的电 子-空穴更加容易分离与传输.与原始的 TiO₂纳米 线相比,TiO₂@BaTiO₃的光电流密度提高了 67%. 通过计算 TiO₂@BaTiO₃ 异质结上的电势分布,研 究 TiO₂和 TiO₂@BaTiO₃ 纳米线的光吸收、电荷 注入和分离特性,发现 BaTiO₃的铁电极化显著提 高了光生电子-空穴对的分离效率并大幅度增强了 TiO₂@BaTiO₃ 的光催化性能.如图 10(b)所示,通 过外部电场极化调控铁电极化,铁电极化指向电解 液 (即+P)时 TiO₂-BaTiO₃ 光阳极的光催化电流 密度从 0.74 mA/cm²提高到 0.96 mA/cm²,增加 了 29.7%,相反地,铁电极化指向 TiO₂时 (即–P) TiO₂-BaTiO₃光阳极的光催化电流密度降低至 0.65 mA/cm²,降低了 12.2%.

2019年, Liu 等^[66]在 FTO 玻璃上制备出了 TiO₂@BaTiO₃核壳结构,并且在几纳米厚度的 BaTiO₃薄膜表面生长了 Ag₂O 纳米粒子, TiO₂@ BaTiO₃/Ag₂O 制备过程如图 10(c) 所示. 垂直生 长的 TiO₂ 纳米棒有很好的导电性, 光生电子能够 方便快捷地传输到 FTO 电极上. TiO₂ 属于 n 型半 导体, BaTiO₃ 是绝缘层, Ag₂O 是 p 型半导体, 形 成 n-i-p 结构, 在 BaTiO3 薄膜内部和界面存在指 向 TiO₂的内电场. 如图 10(d) 所示, 光生电子-空 穴对在内电场作用下分离,电子向 FTO 迁移,空 穴向 Ag₂O 迁移, 因此 TiO₂@BaTiO₃/Ag₂O 结 构有效地增强了光生电子-空穴对的分离和迁移 效率. Ag2O 是窄带隙半导体, 可以吸收波长 300-900 nm 的太阳光并进行光电催化. 在外电压作用 下 BaTiO₃ 的铁电极化指向电解液,其铁电退极化 场 Ep 方向和内电场方向一致,显著增强了光电催化. 在电势为 0.8 V (vs. Ag/AgCl) 时, TiO2@BaTiO3/ Ag₂O 的光电流密度达到 1.8 mA/cm², 这是 TiO₂ 纳米棒光电流密度的 2.6 倍. 该结构中, BaTiO3 铁 电薄膜同时用于调整 n 型半导体 TiO₂和 p 型半 导体 Ag₂O 的光电催化性能, Ag₂O 增加了光吸收 光谱范围, n-i-p结构内电场和铁电极化退极化 场增加了电子-空穴对的分离和迁移效率,因此, TiO₂@BaTiO₃/Ag₂O具有优异的光电催化性能. 这进一步说明,铁电极化及其能带工程在改善半导 体材料的光电催化性能方面具有广阔的前景.

2019年, Yang等^[119]制备了同时具有(100) 和(111)晶面的Cu₂O纳米颗粒,发现这两个晶面 具有的表面电势差为23mV,可产生2.3kV/cm 的内电场.在Cu₂O颗粒的晶面上进一步生长了 BaTiO₃纳米小球,形成Cu₂O@BaTiO₃复合结构, 然后将其与超级吸水的水凝胶复合在一起.在 10mW/cm²的可见光照射下,在全封闭的环境中 150mg的Cu₂O@BaTiO₃和水凝胶复合体可吸收 和分解26.5mg的水汽.在该过程中,水凝胶吸收 空气中的水汽并提供给Cu₂O@BaTiO₃,BaTiO₃ 纳米粒子主要帮助分离光生电子-空穴对,Cu₂O将 分离后的电子和空穴分别迁移到(111)和(100)晶 面并产生还原反应和氧化反应.该工作为光电催化 分解水找到了新的应用场景.

3.4 四方相 PbTiO₃和 SrTiO₃铁电体的光 催化

四方相 PbTiO₃ 是著名的铁电材料,带隙大于 2.75 eV,通常条件下是良好的绝缘体,在紫外光照射下具有一定的光催化效应^[120].通过 Cu,

Fe 等离子掺杂, 可以增强该材料的光吸收并改善 其光催化效应[121,122].同时,也可以在 PbTiO3 表面 黏附 Ag, Pt 纳米离子^[63], 或者制备 TiO₂@PbTiO₃ 核壳结构[123],从而比较显著地提高了该结构的光 催化效率. 2020 年兰州大学 Liu 等^[124] 制备了铁电 极化垂直于 (001) 表面的单晶单畴 PbTiO3 纳米 片,证实了该样品中分离光生电子-空穴对最主要 的驱动力量是铁电退极化场 Ep. 如图 11(a) 所示, 由于纳米片上下表面分别聚焦了正负束缚电荷,纳 米片内部存在铁电退极化场 Ep 并导致其能带弯曲; 当屏蔽电荷比较少时,增加纳米片厚度即可增加纳 米片上下表面的电势差 ΔV . 如图 11(b) 所示, 光 照条件下纳米片上下表面之间电势随着纳米片厚 度的增加而增加,进一步增强了其光生电子-空穴 对的分离效率和纳米片通过光催化制氢的效率. 此外,在PbTiO3纳米片上下表面之间生长SiO2 介电层可以有效抑制纳米片表面自由电荷屏蔽铁 电退极化场.该研究阐明了铁电退极化场及其屏蔽 电荷对光催化过程中电子-空穴对分离的影响[124]. 2018年Li等^[46]制备了(001)晶面的PbTiO3单晶 纳米片,并在其表面继续生长了 TiO2 单晶薄膜. 当 PbTiO₃的铁电极化背向TiO₂薄膜时,该(PbTiO₃/ TiO₂)-纳米片在氙灯的可见光照射下,其分解甲基 蓝的 K_{obs} 为 0.053 min⁻¹ (图 11(c)); 当铁电极化指 向 TiO₂薄膜时,该 (PbTiO₃/TiO₂)+分解水产生 氢气的速率为 132.6 µmol·h⁻¹·g⁻¹ (图 11(d)).

SrTiO₃块体材料是立方顺电相,其在应力作 用或者离子掺杂条件下容易发生晶格畸变并转变 为四方铁电相. 2004 年 Haeni 等^[125] 在 Natrue 上 发表的文章表明,约1%的双轴拉伸应变可以使 SrTiO₃在室温下转变为四方铁电相,在DyScO₃ 单晶基片上生长的 50 nm 厚度的 (100) SrTiO₃ 外 延单晶薄膜在室温下具有清晰的铁电畴结构. 当 然,与其他典型的铁电材料相变相比,四方相 SrTiO₃纳米片的铁电性很弱,其饱和铁电极化、铁 电畴等的研究工作尚不完善. 尽管如此, SrTiO3是 著名的光催化材料,其室温下的电子迁移率为 5-8 cm²·V⁻¹·s⁻¹, 远远大于 TiO₂ 的电子迁移率 0.1—4 cm²·V⁻¹·s^{-1[4]}, 其铁电极化增强光催化效应 的工作值得我们进一步研究. 2017年 Wu 等 [67] 在 FTO 玻璃基片上制备了单晶 TiO₂ 纳米线,并 进一步包裹了一层 10 nm 厚度的具有四方铁电相 的 SrTiO₃ 薄膜, 获得了 TiO₂@SrTiO₃ 核壳结构.

图 11 (a) 铁电极化垂直于表面时, (001) PbTiO₃ 单晶单畴纳米片在 200—350 nm 不同厚度时的能带图; (b) 通过开尔文探针 力显微镜测量的表面光伏电压 SPV^[124]; (c) (001) PbTiO₃ 单晶纳米片、TiO₂ 粉体、铁电极化指向或背向 TiO₂ 层或没有特定指向 情况下的 PbTiO₃/TiO₂ 纳米片的光催化分解甲基蓝的速率常数 K_{obs} (即 K_{MB}); (d) 光催化产氢速率^[46]

Fig. 11. (a) Schematic of energy band in thinner (001) PbTiO₃ (PTO) with smaller built-in voltages (ΔV) and thicker nanosheet with larger ΔV ; (b) correlation between surface photovoltaic value measured by Kelvin probe force microscopy and nanosheet thickness^[124]; (c) the reaction rate of blank control and photodegradation of MB under visible light ($\lambda \ge 420$ nm) irradiation with (001) PTO, TiO₂ and heterostructured TiO₂/PTO composites; (d) H₂ evolution rate of water splitting under visible light ($\lambda \ge 420$ nm) irradiation[⁴⁶].

在 TiO₂@SrTiO₃ 结构中, SrTiO₃ 同时具有高电子 迁移率和四方铁电相两大优势.与 TiO₂@BaTiO₃ 核壳结构类似, SrTiO₃ 的铁电退极化场优化了 TiO₂/SrTiO₃ 界面的能带结构,有利于电子-空穴 对的分离, SrTiO₃ 的高电子迁移率有利于载流子 迁移到 FTO 电极,其光生电子-空穴对的分离效 率 (η_{separation})提高到 87.7%.在 AM1.5G 的模拟太 阳光照射和 1.23 V (vs. RHE) 电势下,在 1 mol/L 的 NaOH 电解液中, TiO₂@SrTiO₃ 光阳极的光电 流密度达到 1.43 mA/cm², 比同等条件下 TiO₂ 纳 米线的光电流密度提高了 83%.此外,热处理、 SrTiO₃ 薄膜的厚度和铁电极化方向都可以显著调 控其光电催化性能.

3.5 XNbO₃ (X = Na, K, Li) 和 Bi₃TiNbO₉ 的光催化

 $XNbO_3$ (X = Na, K, Li) 也是铁电材料光催 化的研究热点之一. NaNbO₃ 是一种 n 型铁电氧化 物半导体, 具有良好的载流子迁移率和有利的水分 解能带结构. 2017 年 Singh 和 Khare^[64] 通过水热 法制备了 NaNbO₃ 纳米颗粒, 涂覆在 FTO 导电玻 璃上,研究了纳米铁电薄膜的电化学性能,纳米铁 电薄膜的铁电极化可使纳米铁电薄膜的光催化效 率提高 7%-23%. 如图 12(a) 所示, NaNbO3 纳米 薄膜在外加电场铁电极化后,半导体/电解质界面 的能带弯曲,界面电荷的转移效率提高,进而增强 了材料的光催化效率.如下图 12(b) 所示,与传统 的光阳极相比,在电势为1V时,铁电极化指向 FTO 玻璃基片 (-P) 的 NaNbO₃ 纳米膜光阳极的 光电流从 0.31 mA/cm² 提高到 0.51 mA/cm², 而 铁电极化指向电解液 (+P) 时相应的光电流降低 到 0.09 mA/cm². Singh 和 Khare^[126] 在 PVDF 柔 性衬底上成功制备了柔性 PVDF/Cu/NaNbO₃/ PVDF 光阳极, 如图 12(c) 所示. 为了研究电场引 起的铁电极化对 NaNbO3 薄膜的光阳极行为的影 响, 通过施加 5 V 直流电压使 NaNbO₃ 薄膜产生 宏观铁电极化. 如图 12(d) 所示, 在 100 mW/cm² 卤钨灯照射下和工作电极电势为1V时,铁电极化

图 12 (a) 铁电极化指向底电极时 FTO/NaNbO₃ 光阳极的能带结构示意图; (b) 在 0.5 mol/L Na₂SO₄ 电解质中以 100 mW/cm² 的紫外-可见光线照射下,不同极化条件下光阳极的电流-电位曲线^[64]; (c) 铁电极化指向底电极时 PVDF/Cu/NaNbO₃/PVDF 的 能带结构示意图; (d) 不同极化条件下 NaNbO₃/PVDF 薄膜的光电流密度-时间曲线^[126]

Fig. 12. (a) Band bending of FTO/NaNbO_3 for negative polarized; (b) current-potential curves of photoanodes with different polarization conditions^[64]; (c) band bending of $\text{PVDF/Cu/PVDF-NaNbO}_3$ for negative polarized; (d) current density versus time curves of $\text{NaNbO}_3/\text{PVDF}$ films with different polarization conditions^[126].

指向 PVDF 基片 (-P) 时光阳极的光催化性能大 幅度提高,其光阳极的光电流高达 1 mA/cm²,而 铁电极化指向电解液 (+P) 时光阳极的光电流密 度仅为 0.35 mA/cm².由于 PVDF/Cu/NaNbO₃/ PVDF 光阳极的柔韧性和压电性能,利用压电效应 可进一步提高~26% 的光电流.

在各种类型的纳米材料中, 半导体纳米线的垂 直排列阵列特别受关注, 因为它们具有较大的半导 体/电解质界面接触面积, 可以增强光的散射以及 俘获更多光能量的功能, 沿着纳米丝可以进行有效 的电荷传输^[127,128]. 铌酸钾 (KNbO₃) 是一种经典 的钙钛矿氧化物, 具有优秀的铁电性能, 其具有合 适的带隙, 出色的化学稳定性以及绿色环保的特 性, 已成功用于各种光催化工艺中, 包括氢气生 产^[129–132], 有机污染物的降解^[133,134] 和二氧化碳转 化^[135]. 特别是, Park 等^[136] 报道: 与中性样品相比, 具有宏观铁电极化的 K_{0.5}Na_{0.5}NbO₃ 粉末可以增 强其光催化效率 7 倍. 2017 年 Li 等^[137] 在掺铌的 SrTiO₃ 衬底上外延生长了 KNbO₃ 纳米线. 通过控 制纳米线的宏观铁电极化状态,可以有效地调整工作电极的电荷转移特性,从而优化其光催化性能. 分别用+15 V与-15 V电压极化纳米线后,在 0 V电势下 KNbO₃ 的光电流密度从 0.7 μA/cm⁻² 增加到 11.5 μA/cm⁻². 此外, 2018 年 Fu 等^[6] 通过 调节自发极化来改变 LiNbO₃ 的光催化电解水的 氧化还原活性,他们发现 LiNbO₃ 在经过不同方向 的极化之后,表现出不同的光催化能力.

2018年, Yin 等^[48] 通过调控温度等生长条件 可以分别制备出 {001}晶面族或 {110}晶面族为表 面的 Bi₃TiNbO₉ 纳米片. Bi₃TiNbO₉ 具有 [Bi₂O₂] $[A_{m-1}B_mO_{3m+1}]$ 层状钙钛矿结构、带隙为 3.3 eV 的 纳米片,其铁电极化可以分离光生电子-空穴对,它 们的光催化产氢效率分别为 342.6 μ mol·h⁻¹·g⁻¹ 和 275.2 μ mol·h⁻¹·g⁻¹.

3.6 钙钛矿铁电材料中光-力-热协同催化

压电性是指某些介质的单晶体在受到定向压 力或张力作用时,在垂直于应力的晶体两侧表面上

分别出现相反的等量电荷的性质,当外应力方向反 转时,晶体两侧表面的电荷也随之反转[138,139].热 释电效应是温度变化引起晶体的极化强度改变和 电荷释放现象, 宏观上是温度变化使晶体两端出现 电压或产生电流. 如图 1(c) 所示, 铁电材料同时具 有铁电、热释电和压电性能,因此铁电材料都也可 以同时具备铁电光催化、热释电冷热催化和压电振 动催化的功能. 如图 13(a) 所示, 光照在铁电体内 部产生光生电子-空穴对,在铁电材料的退极化场 Ep的作用下电子-空穴对分离和迁移,引起光催化 效应;具有宏观极化的铁电材料可以在外力或者温 度变化的时候在其表面产生动态变化的电荷,从而 进行力催化或者热催化,将机械能或热能转换为电 能、化学能或者分解有机物[4,140]. 压电催化作为新 兴的催化反应过程之一,由于其将机械能转化为化 学能的能力而迅速发展^[141,142]. ZnO 等很多压电材 料能够在黑暗中的超声波振动或低频振动下降解 有机污染物[143-147],具有高压电性能的钛酸钡基无 铅压电材料已被广泛研究用于压电催化.

机械振动可以在材料中通过压电效应产生交 变的内电场并增强光生电子-空穴对的分离,光-力 可以协同增强压电材料的催化效应.在应力或应变 作用下压电材料的一端产生正极化电荷,而在另一 端产生负极化电荷;在压电极化电场的驱动下,光 诱导的电子和空穴可以被有效地分离并向相反的 方向迁移,有利于大量电荷向表面活性位的迁移, 从而参与各种光催化反应^[142].压电材料在光催化 中的应用引起了越来越多的关注,Xue等^[57]报道 了一种通过将 ZnO 纳米线垂直编织到碳纤维上而 制成的压电光催化系统.在紫外线照射下由 ZnO 纳米线产生电子-空穴对,电子和空穴迅速迁移到 相反的表面并产生周期性的压电极化电场,有效地 降解了甲基橙.通过增加外力的频率,可以获得更 大的压电极化电场,从而提高了甲基橙分解性能.

部分两相复合的压电材料具有更好的压电性 能, 远远超过了其相应的单相材料^[148-150], 这表明 双相压电材料可能具有更好的压电催化性能. 2019 年 Lin 等^[150] 发现由正交顺电相 Ba_{0.07}Ca_{0.93}TiO₃ 和四方铁电相组成的 Ba_{0.07}Ca_{0.93}TiO₃ 固溶体中, 由于顺电正交相的离子极化与铁电相非 180°铁电 畴之间产生相互耦合, 在两相固溶体的溶解度极限 附近 (x = 0.23 时) 获得了更大的电致伸缩性和压 电性. 使用 H₂Ti₃O₇ 纳米线模板通过两步水热法合 成了一系列 Ba_{1-x}Ca_xTiO₃ 纳米线. 对比 Ba_{0.8}Ca_{0.2} TiO₃ (BCT-0.2) 和 BaTiO₃ (BCT-0) 两份样品, 甲 基橙染料分别在 40 和 100 min 内完全降解, 这说 明同时进行紫光照射和超声振动可以显著地提高 甲基橙染料的降解效率. 由于热激发和光诱导的自 由电荷载流子浓度的增加和压电极化电场分离电 子-空穴对, Ba_{0.8}Ca_{0.2}TiO₃ 纳米线表现出最好的压 电催化和光催化性能. 如图 13(b) 所示, 在超声和 光的同时作用下, BCT-0.2 系统催化降解过程的 K_{obs} 值是 83.4 × 10⁻³ min⁻¹, 比压电催化和光催化 降解过程的简单总和 K_{obs} 值大 71%, 此结果表明 在压电催化降解和光催化降解之间存在耦合作用, 两者的耦合作用带来了更高的光催化降解速率.

2013年 Zhang 等^[131]以 KNbO₃ 纳米结构为 代表材料研究了压电催化和光催化的联合作用, 发现 KNbO₃ 纳米片表现出良好的光催化性能. 2019年 Yu 等^[50] 制备了 KNbO₃ 纳米管和纳米片, 发现超声振动激发的压电效应能够显著增强它们 的光催化效应,并阐明了该压电光催化效应的铁 电-光-电-化学过程. 如图 13(c) 所示, 在可见光和 超声振动的激励下,纳米管降解甲基橙染料的 *K*_{obs}达到 0.016 min⁻¹; 纳米片具有更大的比表面 积,相同测量条件下其压电光催化效果更好, K_{obs}达到 0.022 min⁻¹, 在 2 h 内降解 92.6% 的甲 基橙染料. 铁电极化可以调控 ITO 玻璃基片上生 长的 KNbO₃ 纳米片的光电催化性能,在 AM1.5 的模拟太阳光照射和 0 V 电势下 (vs. Ag/AgCl) 条件下,铁电极化指向和背向基片的 KNbO3 纳米 片时的光电流密度分别为 0.82 和 0.53 μC/cm².

ZnSnO₃ 是一种钙钛矿结构压电材料, 它具有 与 LiNbO₃ 铁电材料一致的 *R*3*c* 空间群, 其铁电极 化 *P*_s 约为 0.2 μC/cm^{2[52]}. 其机械弯曲产生的应变 会产生压电势、极大地增加局部电导并有效地降低 势垒高度. 2015 年 Lo 等^[51] 在 FTO 玻璃上制备了 垂直排列的 ZnSnO₃ 纳米线, 在应力作用下产生压 电极化电场和能带畸变, 载流子的迁移率增加, 光 生电子和空穴的复合减少, 甲基橙的降解表现出更 高的光催化活性. 超声振动产生了周期性变化的 压电极化电场和相应的能带弯曲, 在超声振动和紫 外光照射下 Zn_{1-*x*}SnO₃ 的降解染料的速率达到 0.015 min⁻¹, 这是单纯紫外光催化降解染料速率的 四倍^[53]. 2019 年清华大学 Wang 和 Wu^[52] 制备了 具 ZnSnO_{3-*x*} 纳米线, 通过在氢氮气体环境中对

图 13 (a) 铁电、热电和压电材料中自由载流子重组和光激发载流子分离的示意图^[140]; (b) 在紫外光照射、超声振动分别和同时存在时, BCT-0和 BCT-0.2 降解甲基橙染料的 K_{obs}对比^[150]; (c) 在氙灯可见光、超时振动分别和同时存在时, KNbO₃纳米管 (NC) 和纳米片 (NS) 的降解甲基橙染料的 K_{obs}(即 k) 对比^[50]; (d) ZnSnO_{3-x}纳米线在超声振动和氙灯光照情况下降解罗丹明 B 染料和 (e) 分解水产氢的对比图^[52]

Fig. 13. (a) Schematic understanding of free carrier reorganization and photo-excited carrier separation in ferroelectric, pyroelectric and piezoelectric materials under the influence of ferroelectric, pyroelectric and piezoelectric effects respectively^[140]; (b) degradation reaction kinetic rate constants (K_{obs}) of methyl orange over BCT-0 and BCT-0.2 under UV light, ultrasonic vibration and the simultaneous assistance of ultrasonic vibration and UV light^[150]; (c) K_{obs} (i.e. k) of the RhB solution over the KNbO₃ nanosheet (NS) and nanotube (NC) under different conditions^[50]; (d) the RhB dye solution degradation activity and (e) the amount of hydrogen evolution of ZnSnO_{3-x} nanowires as a function of time under applying light and ultrasonic vibration simultaneously^[52].

ZnSO₃ 纳米线进行 300 ℃ 热处理 3 h, 制备了氧空 位含量适中的 ZnSnO_{3-x}纳米线, 其载流子浓度约 5 × 10¹⁴ /cm³, 载流子迁移率约 300 cm²·V⁻¹·s⁻¹, 少数载流子寿命约 8.3 ns. 如图 13(d) 所示, 在 40 kHz 超声振动和氙灯光照同时进行时, ZnSnO_{3-x} 纳米线 60 min 内降解了 92% 的罗丹明 B 染料, 比 单纯氙灯光照或者超声振动的效果好 1.5 和 2.3 倍; 如图 13(e) 所示, 超声振动、氙灯光照、超声振动和 氙灯光照三种情况下的产氢速率分别达到 3562,

3453, 3882 μmol·h⁻¹·g⁻¹. 这说明压电和光协同催化 在进行污水净化和制氢方面具有很大的潜力.

此外,2017年 Simrjit 和 Khare^[42]在机械应变 下利用 NaNbO₃产生的压电电势将甲基橙染料的 光降解提高了约 115%. Huang 等^[55]利用非中心对 称的压电和光敏性 BiOIO₃ 半导体在超声振动和 光辐照下有效降解罗丹明 B(RhB) 染料.2018年 Mushtaq 等^[151]采用单晶 BiFeO₃ 纳米片和纳米线 做催化剂,通过可见光和机械振动降解有机污染 物.在可见光下,两种 BiFeO₃纳米结构均显示出 相对较慢的反应速率.然而,在压电催化下,与光 催化降解相比,纳米片和纳米线均显示出更高的反 应速率.当同时使用太阳光和机械振动时,反应速 度甚至进一步提高,BiFeO₃纳米线在1h内降解 了 97%的 RhB 染料.BiFeO₃纳米线在降解四种 不同的有机污染物方面也表现出良好的可重用性 和多功能性.

一些光催化材料可以帮助合成有机物^[152-155], 然而铁电半导体光催化材料用于有机物合成的工 作还很少. 2019年,日本北海道大学 Kubota 等^[156] 通过球磨振动让 BaTiO₃ 粉体产生正压电效应和 机械催化效应,其激发的自由电子还原芳基重氮盐 并帮助合成多种有机小分子材料.该研究说明通过 光-振动-热协同催化有望用于合成新材料.

3.7 光催化还原 CO₂ 生产燃料

 CO_2 分子是热力学最稳定的碳化合物之一. 将 CO_2 光催化还原为烃类燃料需要输入能量才能 打破 C=O 键并形成 C-H键,这涉及多个电子和 相应数量的质子的参与^[157]. CO_2 中 C 原子的化学 状态最高 (C⁴⁺),它只能在还原剂的支持下发生还 原反应.与 H₂, S²⁻, SO₃²⁻和胺类相比, H₂O 由于其 丰富以及无毒无污染的特点,是还原剂的首选.用 H₂O 将 CO₂ 光催化还原为烃类燃料 (例如 CH₄ 和 CH₃OH) 是一种吸能反应,其吉布斯自由能增加 (ΔG),如下式所示:

$$CO_2 + 2H_2O \rightarrow CH_3OH + 1.5O_2$$
$$(\Delta G = 702.2 \text{ kJ/mol}), \qquad (9)$$

$$CO_2 + 2H_2O \rightarrow CH_4 + 2O_2$$
$$(\Delta G = 818.3 \text{ kJ/mol}). \tag{10}$$

光催化反应过程中光能提供了生产燃料所需的能 量.图 14(a)显示了光催化还原 CO₂的基本机理 的示意图.在光催化过程中,当半导体吸收光子时, 电子从价带激发到导带,并且同时在价带中产生相 等数量的空穴.光生电子-空穴对彼此分开,并移动 到半导体表面发生氧化还原反应. 在含 H₂O 的半 导体催化剂表面, 电子还原 CO₂产生碳氢化合物 燃料,如 CO, CH₃OH 和 CH₄, 而空穴可以氧化 H₂O 并产生 O₂^[155]. 通过该光催化反应, 太阳能可 以有效地转化为化学能源.对化学性质稳定的 CO2 进行活化可以减少 CO2 的多步反应, 通过将 光生电子从光催化剂转移到 CO₂ 的最低空分子轨 道来产生 CO2 • 离子 [158-160]. CO2 是线性结构, 而 CO₂•离子转变为弯曲结构,这是由于后者的氧原 子上两个孤电子对之间的排斥作用和C原子上不 成对的电子的影响.在固体表面生成的非线性 CO2•-比线性 CO2分子更不稳定, 经过活化的 CO2•-是 CO2的光化学反应中的重要组成部分[160]. 一个电子向 CO₂的转移在热力学上是不稳定的 $(CO_2 + e^- \rightarrow CO_2^{\bullet-})$,因此多个电子和相应数量的 质子必须同时参与化学反应,这也印证了在自然 光合作用系统中观察到的多组分反应步骤[161,162]. 光催化还原 CO2 反应的产物可以不同, 这取决于 参与化学反应的电子和质子的数量. 通过与两个质 子和两个电子反应形成 CO, 而形成 CH₄ 需要八个 电子和八个质子. 如何选择产物是光催化还原 CO2

图 14 (a) 半导体催化剂中光照产生电子-空穴对,电子空穴对分离,空穴氧化 H₂O 并产生氧气,电子还原 CO₂ 和 H₂O 并产生燃料; (b) 几种半导体光催化剂的导带、价带电势和带隙,参与 CO₂ 还原的化合物在 pH=7 时的氧化还原电势^[158]

Fig. 14. (a) Schematic illustration of photoinduced generation of an electron-hole pair in semiconductor that transfers to the surface for CO_2 photoredox; (b) conduction band, valence band potentials, and band gap energies of various semiconductor photocatalysts relative to the redox potentials at pH 7 of compounds involved in CO_2 reduction^[158].

过程中的重要问题, 其影响因素包括光催化剂、 反应条件和热力学还原电势等. 图 14(b) 显示了 不同材料的氧化还原电势和相应的半导体光催化 剂. 有两种形成 CH₄ 的途径: CO₂ \rightarrow HCOOH \rightarrow HCHO \rightarrow CH₃OH \rightarrow CH₄, CO₂ \rightarrow CO \rightarrow C[•] \rightarrow CH₂ \rightarrow CH₄^[162,163]. 然而, 由于复杂的多电子转移 过程, 仍然需要加深对 CO₂ 的光催化机理和选择 性反应的理解.

太阳光驱动的 CO₂转化为可再生燃料的潜力 巨大,但是由于 CO₂分子在环境大气中的惰性以 及光催化剂反应的效率较低,该方向的研究仍然具 有很高的挑战性. 2019 年 Tu 等^[164]利用铁电材料 SrBi₄Ti₄O₁₅ 的 *E*_P 增强了光催化分解 CO₂并产生 燃料的效率. SrBi₄Ti₄O₁₅ 属于层状铋基铁电半导 体材料,具有 (Bi₂O₂)²⁺和交错的带负电的离子/多 面体层组成的层状结构,形成了静电场以促进电 子-空穴对的分离,从而受到研究人员的重视. 通过 水热法制备 SrBi₄Ti₄O₁₅ 纳米片,再将 SrBi₄Ti₄O₁₅ 纳米片旋涂至 ITO 玻璃上 (SBTO-1). 为了增强铁 电性并排除附着在催化剂表面的有机杂质的影响, 将制备好的 SrBi₄Ti₄O₁₅ 纳米片在 350 °C (SBTO) 和 650 °C (SBTO-2) 下退火,其中 SBTO 展示出

了最强的铁电性能. 如图 15(a) 和图 15(b) 所示, 受光照激发产生的电子-空穴对分离,电子进入导 带进行还原反应生产 CH4 与 CO, 空穴进入价带并 参与氧化反应产生氧气. SrBi₄Ti₄O₁₅在 365 nm 光 照下的外量子效率为 1.33%. Bi₄Ti₃O₁₂ 和 BiOBr 纳米片,被用作参比样品.由于这是气固反应,并 且催化剂直接与 CO2 反应, 因此只有气态产物, 而 没有液态产物. 如图 15(c) 所示, SrBi₄Ti₄O₁₅催化 剂具有还原 CO2 的超强能力,产生 CH4 和 CO 的 远胜于其他三种催化剂. SrBi₄Ti₄O₁₅催化剂生产 CH₄的概率高达 93%, 速率为 19.8 μmol·h⁻¹·g⁻¹, 是 Bi₄Ti₃O₁₂ 和 BiOBr 的 283 倍. 重复进行 3 次循 环测试,连续4h进行光催化CO,还原,确认了 SrBi₄Ti₄O₁₅的耐久性和可重复性. 如图 15(d) 所 示,光催化测试表明,通过 350°C 退火可以改变 SrBi₄Ti₄O₁₅的铁电性能并提高 SrBi₄Ti₄O₁₅纳米 片的还原 CO2 的活性. 三种 SrBi4Ti4O15 光催化样 品还原 CO₂并生产 CH₄和 CO 的活性顺序依次 为 SBTO > SBTO-2 > SBTO-1, 与铁电性能的强 弱相一致. SrBi₄Ti₄O₁₅ 纳米片的 CO₂ 还原活性超 过了先前报道的基于铋的光催化剂和大多数其他 光催化剂.

图 15 (a) SrBi₄Ti₄O₁₅的铁电极化增强光生电子-空穴对分离效率的示意图; (b) SrBi₄Ti₄O₁₅的能级图; (c) SrBi₄Ti₄O₁₅, Bi₄Ti₃O₁₂, P25和 BiOBr 通过光催化产生 CH₄和 CO 的速率; (d) 不同退火温度的 SrBi₄Ti₄O₁₅ 通过光催化生产 CH₄的数量-时间 曲线^[164]

Fig. 15. (a) Schematic diagram of polarization-field enhanced separation of photogenerated charge carriers; (b) diagram for the band energy levels of $SrBi_4Ti_4O_{15}$; (c) the corresponding rates over $SrBi_4Ti_4O_{15}$, $Bi_4Ti_3O_{12}$, P25 and BiOBr; (d) CH₄ yield curves of $SrBi_4Ti_4O_{15}$ with different annealing temperatures^[164].

4 卤素钙钛矿 CH₃NH₃PbI₃ 的光催化

CH₃NH₃PbI₃具有 ABX₃型钙钛矿结构, A 位 为有机阳离子 CH₃NH₃+, B 位为 Pb+离子, X 位为 卤素阴离子 Ⅰ·. CH₃NH₃PbI₃是一种双极性材料, 既是电子传输材料也是空穴传输材料,可以同时传 输电子空穴^[165].因此, CH₃NH₃PbI₃, CsPbBr₃等 铅卤钙钛矿凭借着"双极性材料"的特点,在太阳能 电池、发光二极管以及光催化等方面得到了广泛的 关注. 如表 2 所列, 目前一些常见的铁电材料, 例 如 BiFeO₃, BaTiO₃, NaNbO₃等材料, 由于带隙较 高、载流子寿命较短等问题,导致电子空穴对的 分离效率较低、光伏和光电催化器件的 PCE 较 低[166-168]. 而铅卤钙钛矿材料由于其电子-空穴对 分离效率高、载流子寿命长、载流子平均自由程 长、光吸收系数较高等特点,有着较好的能源转换 效应 PCE^[169].因此, 越来越多的研究者进行铅卤 钙钛矿材料光催化方面的研究.

尽管 CH₃NH₃PbI₃ 在光电领域的研究已经取 得了很大的进展,但是 CH₃NH₃PbI₃ 是否真正的 属于铁电材料还存在一定争议,理论研究说明 CH₃NH₃PbI₃的铁电性有助于帮助载流子获得更 长的平均扩散长度和有利于电子-空穴对的分离和 迁移. 有趣的是, CH₃NH₃PbI₃ 材料会随着温度、压 力以及电场的改变而发生相变,在立方相(α)、四 方相(β)与正交相之间经历可逆转变[170].第一性 原理计算发现,四方相(β) CH₃NH₃PbI₃ 材料存在 铁电性. 如果 CH₃NH₃PbI₃ 是铁电材料, 应该满足 一些铁电材料特有的特征,例如:非中心对称、电 场可控的极性以及自发极化.目前大部分研究更倾 向于将 CH₃NH₃PbI₃ 铁电极化的起源归咎于材料 中 CH₃NH₃+的旋转.同时,一些研究者也在 CH₃ NH₃PbI₃材料中观察到了铁电畴, 2014年 Kutes 等^[171]通过压电力显微镜在四方相的 CH₃NH₃ PbI₃材料中发现了铁电畴,并且铁电极化可以在 外电场下发生翻转.同时,四方相 CH₃NH₃PbI₃也 存在电滞回线,但是在室温下,其铁电极化保持性 比较差^[172]. Kim 等^[173] 在没有外电场的情况下, 观 察到了 CH₃NH₃PbI₃ 材料的自发铁电极化, 且铁 电极化保持时间可以长达 60 min,保持时间的延 长是因于材料内部铁电畴尺寸的增加,这与钙钛矿 晶体的大小有关. 2017年 Rakita 等[174]研究介电

响应,间接测量了四方相 CH₃NH₃PbI₃ 材料的 *P-E* 回线,这是证明铁电材料的直接证据.图 16(a) 显示了 *MA*PbI₃ 晶体的介电响应^[174],在铁电半导体中,介电响应主要由虚部决定,通过积分介电常数在外电场下的介电常数虚部 ε_{im} ,可得到图 16(b) 所示的 *P-E*电滞回线.以上实验证实了四方相的 CH₃NH₃PbI₃ 材料是铁电材料,但是目前还没有在 CH₃NH₃PbI₃ 材料中观察到可靠的铁电剩余极化.尽管最近取得了许多进展,但是还需要更多的 工作来阐明 CH₃NH₃PbI₃半导体材料的铁电性.

图 16 (a) $CH_3NH_3PbI_3$ 晶体在 204 K 时的介电常数实部 ε_{re} 和虛部 ε_{im} 与外电压的曲线; (b) 通过对 ε_{im} 进行积分得 到的 *P*-*E*电滞回线^[174]

Fig. 16. (a) Dielectric response at 204 K of a CH₃NH₃PbI₃ crystal, showing that $\varepsilon_{\rm re}$ dominates the dielectric response; (b) *P-E* hysteresis loop obtained from integration of $\varepsilon_{\rm im}$ over applied electric field^[174].

CH₃NH₃PbI₃作为光催化材料具有很光明的 前景,但是铅卤钙钛矿材料可以在多种溶液中分 解,本身并不稳定性,因此其在光电催化领域的实 际应用面临很大的难题^[175]. 影响光催化器件稳定性的因素包括温度、湿度、光强以及 pH 值等,目前研究者主要通过不同的封装技术来解决这些问题^[176,177]. 接下来将一一介绍目前铅卤钙钛矿材料光催化器件方面的重要进展.

2014年 Luo 等^[71]采用 CH₃NH₃PbI₃ 制备了 高效的太阳能光伏电池,并将其与光催化电池串 联,从而显著提高了系统的光电催化和能量转换 效率.他们用旋涂法制备了 CH₃NH₃PbI₃ 薄膜,测 试其带隙为 1.5 eV,吸收的光谱范围可以达到 800 nm,在 AM1.5G 的模拟太阳光下,其太阳能电 池的光电流密度达到了 21.3 mA/cm⁻²,开路电压 为 1.06 V.相比于传统光催化材料的光电流密度 以及可见光的吸收范围,这是一次很大的提升.与 此同时,串联的 CH₃NH₃PbI₃ 薄膜光伏电池给光 催化电极提供电子和空穴,从而进行光催化析氢与 产氧.为了用高性价比的普通电极取代昂贵的贵金 属电极 Pt, IrO₂ 或 RuO₂,研究人员已经进行了大 量的研究: MoS₂, NiMo 可用于光催化电极材料并 在酸性电解液中加快 H2 析出反应^[178-180], 金属氧 化物和氢氧化物可以在碱性电解液中用于光催化 电极材料并加快 O2 析出反应^[179-181], 但是大多数 催化剂不可以同时在酸性或者碱性中保持稳定的 析氢与产氧的能力.如图 17(a) 所示,通过将铁 (Fe) 掺 Ni(OH)₂, 在 Ni 泡沫上制备了 NiFe 层状 双氢氧化物 (即 NiFe-LDH) 电极. 光伏电池和光 催化装置串联后分别向碱性电解液中的两个 NiFe-LDH电极传输电子、空穴进行并进行还原反应产 氢、氧化反应产氧,其能量及载流子传输路径如 图 17(b) 所示. 利用 NiFe-LDH/Ni 泡沫电极层制 备的功能性析氢产氧器件可以稳定在碱性或者酸 性条件下析氢产氧,在实验误差范围内,通过气相 色谱法证实了氢氧比例为 2:1. 在黑暗和模拟光照 下 (AM1.5G; 100 mW/cm²), 串联光催化器件表 现出如图 17(c) 所示的光电流密度-电压曲线, 并产 生 2.00 V 的开路电压, 同时保持 15.7% 的光电能 量转换效率.在该光伏电池-串联催化结构中,在光 电流为 10 mA/cm² 时,相应的太阳能-氢能的能量

图 17 (a) CH₃NH₃PbI₃ 薄膜光伏电池和串联催化装置的宏观结构示意图; (b) 材料能带-电荷输运示意图; (c) 钙钛矿串联电池 两个 NiFe-LDH 电极之间的光电流密度-电压曲线; (d) 光伏电池串联催化分解水装置的光电流密度-时间曲线^[71]

Fig. 17. (a) Schematic diagram of the water-splitting device based on $CH_3NH_3PbI_3$ film; (b) generalized energy schematic of the perovskite tandem cell for water splitting; (c) *J-V* curves of the perovskite tandem cell, and the NiFe/Ni foam electrodes in a two-electrode configuration; (d) current density-time curve of the integrated water-splitting device^[71]. 转换效应达到 12.3%. 同时,该串联光催化装置表现出了良好的稳定性,可以稳定工作两个小时以上.图 17(d)为该装置在开与关的模拟光 AM1.5G,100 mW/cm²照明下,无外电压条件下稳定工作8 min 的电流-时间曲线.此实验为开创高活性、低成本的铅卤钙钛矿材料光催化器件提供了良好的基础与思路.

普通的铅卤钙钛矿材料和器件结构极易受到 水的影响,因此怎样封装铅卤钙钛矿器件是提高其 稳定性的重要因素.水通过顶层空穴传输层的"针 孔"进入 CH₃NH₃PbI₃ 是其分解的重要原因,同时 CH₃NH₃PbI₃ 对外电压、光照和 pH 值极其敏感^[182]. 如图 18(a) 所示,为了进一步提高了 CH₃NH₃PbI₃ 光催化器件的稳定性,2016 年 Hoang 等^[68]构建 FTO/m-TiO₂/CH₃NH₃PbI₃/Spiro-MeOTAD/ Au/Ni 的结构,利用介孔 TiO₂ (m-TiO₂) 为电子 传输层,无孔 Spiro-MeOTAD 作为空穴传输层,Au 薄膜做电极和防水保护层,Ni 薄膜做光阳极催化 剂,有效地增加了器件的产氧能力,将 CH₃NH₃ PbI₃器件的光催化分解水的稳定时间提升至数十 分钟. 如图 18(b) 所示, 在 1.23 V (vs. SHE) 电势 下, FTO/m-TiO₂/CH₃NH₃PbI₃/Spiro-MeOTAD/ Au 光阳极的光电流密度为 9.2 mA/cm², Au 表面 增加 Ni 催化剂之后该光阳极的光电流密度可以 达到 17.4 mA/cm². 2015 年 Da Peimei 等^[183] 也同 样利用 Ni 层与电极层增大了 CH₃NH₃PbI₃ 光催 化器件的光电流密度,开路电压为 0.95 V,最大光 电流密度可以达到 19.0 mA/cm². 2016 年 Crespo-Quesada 等^[69] 将铅卤钙钛矿光催化器件与金属 保护层复合,在连续照明下,光催化器件显示出 很好的稳定性.如图 18(c) 所示,可以利用一种简单 的易溶合金 In_{0.51}Bi_{0.325}Sn_{0.165} (FM)对 CH₃NH₃ PbI₃器件进行封装,构建了 FTO/PEDOT:PSS/ CH₃NH₃PbI₃/PCBM/PEIE/Ag/FM结构,其中 PEDOT:PSS (聚苯乙烯磺酸盐 (3, 4-乙撑二氧噻 吩)) 是空穴传输层, PCBM ([6, 6]-苯基-C61-丁酸

图 18 (a) FTO/m-TiO₂/CH₃NH₃PbI₃/Spiro-MeOTAD/Au/Catalyst 光催化结构的集成光电解装置示意图; (b) 在模拟光照下 Au 表面含 Ni 催化剂 (红色曲线) 和不含 Ni 催化剂 (蓝色曲线) 时钙钛矿光阳极的光电流-外电势曲线^[68]; (c) FTO/PEDOT:PSS/ CH₃NH₃PbI₃/PCBM/PEIE/Ag 的材料能带和功函数匹配图; (d) 光催化器件在开关光循环条件下的 *I-V*图^[69]

Fig. 18. (a) Schematic diagram of FTO/m-TiO₂/CH₃NH₃PbI₃/Spiro-MeOTAD/Au/Catalyst integrated photoelectrolysis device with perovskite photoelectrode; (b) photocurrent verus potential comparison diagram of perovskite photoanode with Ni catalyst and Ni catalyst under simulated light^[68]; (c) energy and work function matching of FTO/PEDOT:PSS/CH₃NH₃PbI₃/PCBM/PEIE/Ag; (d) photocurrent verus potential diagram of photocatalytic device switching^[69].

甲酯) 是电子传输层, PEIE (乙氧基化聚乙烯亚 胺)可以调节功函数并提高电子从 PCBM 到 Ag 的效率, FM 不仅阻止电解液渗透而且利于电 子迁移到电解液中参与还原反应.如图 18(d) 所 示,在 AM1.5G 的模拟太阳光从 FTO 玻璃一侧照 射条件下,钙钛矿太阳能电池的短路电流为 (15.0 ± 1.4) mA/cm², 开路电压为 (1.0 ± 0.09) V, 光电 转换效率分别为 7.7% ± 1.5%. 最为突出的是,器 件的光电流密度可以在 1.8 h内维持最大值的 80% 以上.

2018年 Zhang 等^[70] 构建了特殊 CH₃NH₃PbI₃ 光催化器件结构,在不影响铅卤钙钛矿材料本身光 催化效率的前提下,有效提高了光催化器件的使用 寿命. 他们构建了 Glass/ITO/NiO/CH₃NH₃PbI₃/ PCBM/Ag/Ti/Pt结构, NiO 层作为空穴传输层, PCBM 作为电子传输层. 为了对器件进行保护, 他 们在最顶层涂刷一层银浆,并覆盖一层钛箔,但是 钛箔层的存在会影响器件产氢的效率,因此,他们 在钛层上通过磁控溅射的方法生长一层 Pt 颗粒, 有效的避免了钛层对光催化分解水效率的影响.这 种结构在保证铅卤钙钛矿材料本身催化效率的同 时,有效地解决了其在水中易分解和催化效率不稳 定的问题. 经过测试, 在 AM1.5G 的模拟太阳光, 0.5 mol/L H₂SO₄溶液中,此结构器件的开路电压 为 0.95 V, 光电流密度可以达到 18 mA/cm², 并且 可以在溶液中稳定工作 12 h.

2016年 Fu 等^[184]将 CH₃NH₃PbI₃ 与经典光 催化材料 TiO₂ 复合来增强光催化效率. 众所周知, TiO₂材料 3.2 eV 的带隙导致其只能吸收紫外光, 但是紫外光只占太阳光的4%,大大限制了TiO, 在光催化方面的应用,如果可以将光催化器件的吸 收光谱扩展到可见光范围内,那么光催化器件的转 换效率将得到巨大的提升^[185,186]. 带隙 1.5 eV 的 CH₃NH₃PbI₃可以高效地吸收可见光并产生电子-空穴对,可以满足以上条件.因此,在碳纤维上利 用"水热法"生长棒状 TiO2, 再通过"两步旋涂法" 将 CH₃NH₃PbI₃ 镶嵌到 TiO₂ 中, 最后利用金属氧 化物 Cu₂O 材料进行封装. 可见光在 CH₃NH₃PbI₃ 中激发大量的电子-空穴对, 电子通过 TiO2 空穴传 输层到达 Pt 电极参与还原反应并生产氢气, 而空 穴通过 Cu₂O 空穴传输层到达电解液 (1 mol/L Na₂SO₄)参与氧化反应并产生氧气.同时,Cu₂O 可以有效地隔离钙钛矿材料与水溶液的接触,保证

了该复合器件在光催化过程中的稳定性.

5 结论与展望

本文简要介绍了有关铁电材料、半导体及光催 化的基本概念与原理, 通过对 BiFeO₃, Bi₂FeCrO₆, BaTiO₃和 MAPbI₃等钙钛矿铁电材料光催化性能 的介绍,将近几年内钙钛矿铁电材料在光催化领域 的进展进行了总结. 用于太阳能到化学能转换应用 的光催化和光电化学系统,都将钙钛矿材料用作其 核心的功能组件,已经采用了一些策略来提高其性 能,包括粒度、结晶度、尺寸(0D,1D,2D和3D)、 晶面和异质结构,已经表征和分析了光催化结构的 基本物理化学过程,包括光吸收、电荷分离和迁 移、氧化还原反应、钝化和保护工作电极等等.无 机钙钛矿材料不仅仅可以作为光电极进行催化反 应,同时铁电材料可以与TiO₂,BiVO₄等光催化材 料构成异质结,通过其退极化场 Ep 增加的异质结 中电子-空穴对的分离与载流子的运输效率,进而 增加这些材料的光催化效率. 部分钙钛矿铁电材料 还可以通过光催化将 CO2转化为可再生燃料, 在 新能源材料方面具有巨大潜力. 最近, 铅卤钙钛矿 中的 MAPbI3 由于其巨大的光电转换效率和能量 转换效率,在光催化领域也得到了大量的研究.由 于 MAPbI3 等卤素钙钛矿光催化材料在潮湿条件、 热应力和光照下的不稳定性,极易受光腐蚀与溶 液腐蚀,阻碍了该类材料的进一步发展.通过有效 的封装层以及特殊的结构,一定程度上解决了 MAPbI3等卤素钙钛矿光催化材料不稳定的问题, MAPbI3 材料在光催化方面的研究已经取得显著 进展. 钙钛矿铁电材料光电极的最新进展证明了其 在光催化分解水和有机合成中的应用前景,我们期 望开发和研究更多具有高性能的钙钛矿铁电材料 光电极,用于分解水、分解污染物、合成清洁能源 和新材料.

TiO₂载流子迁移率较高,可见光吸收系数比 较高,稳定性好,无毒无害,是当前光催化和光电 催化材料中的杰出代表,FTO/H:TiO₂在AM1.5G 模拟太阳光照射下的光电流密度为 1.97 mA/cm². 随着铁电材料研究的不断发展,铁电材料在光催化 领域将会得到足够的重视.根据目前的研究表明, 对于铁电材料用于光电极,通过极化,光电流密度 大部分可以提升 50% 左右.目前更为流行的研究

是将经典的氧化物光催化材料与钙钛矿铁电材料 复合,例如: TiO₂与 BaTiO₃, BiVO₄与 BiFeO₃ 等,这样的异质结构结合了二者的优点,同时铁电 层对氧化物起到保护作用,延长了 TiO₂等材料的 使用寿命. 对于将铁电材料与传统氧化物材料复合 作为光电极,退极化场 Ep 可以将大部分材料的光 电流提升 40% 左右. 此外, CH₃NH₃PbI₃ 材料具有 合适的带隙 (1.5 eV), 可见光吸收系数很高, 少数 载流子不容易被缺陷俘获,其少数载流子寿命 $\tau_{\rm m}$ 长、扩散长度 $L_{\rm m}$ 可以达到毫米量级,因此其能 源转换效应很高. 比如 ITO/NiO/CH₃NH₃PbI₃/ PCBM/Ag/Ti/Pt 样品在 AM1.5G 模拟太阳光照 射下的光电流密度为 18 mA/cm², 这远大于氧化 物铁电材料的光电流密度.但是,CH₃NH₃PbI₃ 的 Pb 元素有毒, 它在光照、潮湿环境以及加热等 条件下很不稳定, 难以得到大规模的实际应用.

当前, 对氧化物钙钛矿铁电材料以及卤素钙钛 矿材料在光催化方面的研究不断深入, 更多的问题 也有待解决, 将光催化材料进行商业化应用, 还有 较远的路程. 钙钛矿铁电材料在光催化领域的应用 存在若干挑战, 包括: 提高光催化材料的电荷分离 效率、能量转换效率、结构和性能稳定性, 确保光 催化材料对环境友好无毒无害, 提高光催化材料的 性价比以便能够被市场接受等. 为了实现预期的光 催化水分解和能源合成, 在未来钙钛矿铁电材料光 电极的研究中可以优先考虑以下四方面.

1)铁电光催化材料的设计和制备.BiFeO₃, PbTiO₃等铁电材料虽然具有外电场容易调控的较 大铁电极化,但是其带隙较大,载流子迁移率较低, 不适合做光催化材料吸光层;SrTiO₃的带隙较大; Bi₂FeCrO₆也存在载流子迁移率较低的问题;*MA* PbI₃具有优异的半导体性能,然而其在光照和液 体环境中稳定性仍然面临巨大挑战.因此,需要设 计和制备具有较大铁电极化和优异半导体性能的 新型铁电半导体材料.其次,需要制备比表面积较 大的铁电材料纳米片或者其他纳米结构,并让铁电 极化背向或者面向其表面或界面,从而确保退极化 场 *E*_P能够高效地分离光生电子-空穴对.

2) 光电化学过程的系统研究. 应综合考虑包含铁电材料的光催化系统的光收集、电荷分离和表面反应的特性,实现更有效的水分解、能源合成和分解污染物. 应仔细研究特定钙钛矿铁电材料光电极的性能决定因素, 阐明铁电、压电和热释电效应

对分离电子-空穴对的贡献,以便进一步提高光生 电子-空穴对的分离和迁移效率.另外,钙钛矿铁电 材料光电极上的光催化能源合成比光催化水分解 具有更复杂的动力学机理,为了确定相关的科学问 题,有必要密切关注有机物的电化学合成研究.

3) 催化性能稳定性研究. 对于实际的光催化 水分解、能源合成和分解污染物, 对钙钛矿铁电材 料光电极的要求不仅包括优异的初始光催化性能, 而且还具有可接受的稳定性. 在设计光催化结构 时, 应谨慎地避免光电极与氧化还原产物之间可能 发生的物理和化学相互作用. 迄今为止, 大多数研 究都集中在提高三元金属氧化物光电极的光催化 水分解方面, 但对其光催化水分解稳定性的研究较 少. 更详细地研究钙钛矿铁电材料光电极/电解质 的界面非常重要, 这将增加我们对三元金属氧化物 光电极的光催化水分解稳定性的认识. 特别是, 应 分析光催化水分解和有机合成的动力学过程对三 元金属氧化物光电极稳定性的影响.

4) 高效筛选和数据库.为了能够快速地、准确 地从大量钙钛矿铁电材料中找到有效的钙钛矿铁 电材料光电电极,高识别的筛选方法特别是实验研 究和计算预测相结合的方法具有重要意义.有必要 建立一个基于鉴定和筛选结果的标准数据库,从而 提供钙钛矿铁电材料的带隙、能带位置和光电性 能,这将促进钙钛矿铁电材料光电极的发现和进一 步研究.

总而言之,尽管本文对钙钛矿铁电半导体材料 光催化和光电催化的讨论并不详尽,我们希望它能 够为研究钙钛矿铁电光催化材料降解染料、分解水 制氢和其他能源材料提供有价值的信息和启发.

参考文献

- [1] Fujishima A, Honda K 1972 Nature 238 37
- [2] Morrison S R, Freund T 1967 J. Chem. Phys. 47 1543
- [3] Ctibor P, Ageorges H, Stengl V, Murafa N, Pis L, Zahoranova T, Nehasil V, Pala Z 2011 Ceram. Int. 37 2561
- [4] Yu Y H, Wang X D 2018 Adv. Mater. 30 1800154
- [5] Yang W G, Yu Y H, Starr M B, Yin X, Li Z D, Kvit A, Wang S F, Zhao P, Wang X D 2015 *Nano Lett.* 15 7574
- [6] He H C, Liao A Z, Guo W L, Luo W J, Zhou Y, Zou Z G 2019 Nano Today 28 100763
- [7] Ren P R, Fan H Q, Wang X 2012 Catal. Commun. 25 32
- [8] Liu S, Liu X P, Chen Y S, Jiang R Y 2010 J Alloy. Compd. 506 877
- [9] Singh A P, Kumari S, Shrivastav R, Dass S, Satsangi V R 2008 Int. J Hydrogen. Energ. 33 5363
- [10] De Wolf S, Holovsky J, Moon S J, Loper P, Niesen B,

Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035

- [11] Zhang G, Liu G, Wang L Z, Irvine J T S 2016 Chem. Soc. Rev. 45 5951
- [12] Miyauchi M, Takashio M, Tobimatsu H 2004 Langmuir 20 232
- [13] Liu Q, Zhou Y, You L, Wang J L, Shen M R, Fang L 2016 *Appl. Phys. Lett.* **108** 022902
- [14] Cho C M, Noh J H, Cho I S, An J S, Hong K S, Kim J Y 2008 J. Am. Ceram. Soc. 91 3753
- [15] Li S, AlOtaibi B, Huang W, Mi Z, Serpone N, Nechach R, Rosei F 2015 Small 11 4018
- [16] Yuan Y B, Reece T J, Sharma P, Poddar S, Ducharme S, Gruverman A, Yang Y, Huang J H 2011 Nat. Mater. 10 296
- [17] Hoffman J, Pan X, Reiner J W, Walker F J, Han J P, Ahn C H, Ma T P 2010 Adv. Mater. 22 2957
- [18] Li H D, Sang Y H, Chang S J, Huang X, Zhang Y, Yang R S, Jiang H D, Liu H, Wang Z L 2015 Nano Lett. 15 2372
- [19] Shi J, Zhao P, Wang X D 2013 Adv. Mater. 25 916
- [20] Hu W J, Wang Z H, Yu W L, Wu T 2016 Nat. Commun. 7 10808

 [21] Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301 (in Chinese) [王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301]

- [22] Liu X P, Xing J C, Wang W D, Shan Z C, Xu F F, Huang F Q 2007 J. Phys. Chem. C 111-112 18288
- [23] Chen S F, Lei J, Tang W M, Fu X L 2013 Dalton Trans. 42 10759
- [24] Li S, Lin Y H, Zhang B P, Li J F, Nan C W 2009 J. Appl. Phys. 105 054310
- [25] Gao H, Yang Y X, Wang Y J, Chen L, Wang J L, Yuan G L, Liu J M 2019 ACS Appl. Mater. Interfaces 11 35169
- [26] Gao W X, Zhu Y, Wang Y J, Yuan G L, Liu J M 2020 J. Materiomics 6 1
- [27] Pang H Z, Zhang F Y, Zeng M, Gao X S, Qin M H, Lu X B, Gao J W, Dai J Y, Li Q L 2016 npj Quantum Mater. 1 16015
- [28] Espinosa H D, Bernal R A, Jolandan M M 2012 Adv. Mater. 34 4656
- [29] Haertling G H 2004 J Am. Ceram. Soc. 82 2366
- [30] Scott J F 2000 J. Appl. Phys. 88 6092
- [31] Wang M Y, Wang B, Huang F, Lin Z Q 2019 Angew. Chem. Int. Ed. 58 7526
- [32] Gao P, Grätzel M, Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448
- [33] Wang W, Tadé M O, Shao Z P 2015 Chem. Soc. Rev. 44 5371
- [34] Fang L, You L, Liu J M 2018 Ferroelectrics in Photocatalysis (Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA) pp2—12
- [35] Zhao H L, Pan F P, Li Y 2017 J. Materiomics 3 17
- [36] Shen S H, Kronawitter C, Kiriakidis G 2017 J. Materiomics 3 1
- [37] Zhang Z J, Zhao A D, Wang F M, Ren J S, Qu X G 2016 *Chem. Commun.* 52 5550
- [38] Maeda K, Domen K 2007 J. Phys. Chem. C 111 7851
- [39] Nakata K, Fujishima A 2012 J. Photoch Photobio C 13 169
- [40] Litter M I, Navio J A 1996 J. Photoch. Photobio. A 98 171
- [41] Choi W Y, Termin A, Hoffmann M R 1994 J. Phys. Chem. 98 13669
- [42] Singh S, Khare N 2017 Nano Energy 38 335
- [43] Cui Y F, Briscoe J, Dunn S 2013 Chem. Mater. 25 4215
- [44] Alex K V, Prabhakaran A, Jayakrishnan A R, Kamakshi K, Silva J P B, Sekhar K C 2019 ACS Appl. Mater. Interfaces

11 40114

- [45] Li J, Zhang G H, Han S F, Cao J W, Duan L H, Zeng T 2018 Chem. Commun. 54 723
- [46] Li W, Wang F, Li M, Chen X, Ren Z H, Tian H, Li X, Lu Y H 2018 Nano Energy 45 304
- [47] Yu J X, Chen Z Q, Wang Y, Ma Y Y, Feng Z, Lin H J, Wu Y, Zhao L H, He Y M 2018 J. Mater. Sci. 53 7453
- [48] Yin X F, Li X N, Liu H, Gu W, Zou W, Zhu L Y, Fu Z P, Lu Y L 2018 Nano Energy 49 489
- [49] Fu Q, Wang X J, Li C Y, Sui Y, Han Y P, Lv Z, Song B, Xu P 2016 RSC Adv. 6 108883
- [50] Yu D F, Liu Z H, Zhang J M, Li S, Zhao Z C, Zhu L F, Liu W S, Lin Y H, Liu H, Zhang Z T 2019 Nano Energy 58 695
- [51] Lo M K, Lee S Y, Chang K S 2015 J. Phys. Chem. C 119 5218
- [52] Wang Y C, Wu J M 2019 Adv. Funct. Mater. 30 1907619
- [53] Wang Y T, Chang K S 2016 J. Am. Ceram. Soc. 99 2593
- [54] Feng Y W, Li H, Ling L L, Yan S, Pan D L, Ge H, Li H X, Bian Z F 2018 Environ. Sci. Technol. 52 7842
- [55] Huang H W, Tu S C, Du X, Zhang Y H 2018 J. Colloid Interface Sci. 509 113
- [56] Li H F, Quan X, Chen S, Yu H T 2017 Appl. Catal. B 209 591
- [57] Xue X, Zang W L, Deng P, Wang Q, Xing L L, Zhang Y, Wang Z L 2015 Nano Energy 13 414
- [58] Wang L F, Liu S H, Wang Z, Zhou Y L, Qin Y, Wang Z L 2016 ACS Nano 10 2636
- [59] Chang J H, Lin H N 2014 Mater. Lett. 132 134
- [60] Kim T H, Baek S H, Yang S M, Kim Y S, Jeon B C, Lee D, Chung J S, Eom C B, Yoon J G, Noh T W 2011 Appl. Phys. Lett. 99 012905
- [61] Song J, Kim T L, Lee J, Cho S Y, Cha J, Jeong S Y, An H, Kim W S, Jung Y S, Park J Y, Jung G Y, Kim D Y, Jo J Y, Bu S D, Jang H W, Lee S 2018 Nano Res. 11 642
- [62] Huang W, Harnagea C, Tong X, Benetti D, Sun S H, Chaker M, Rosei F, Nechache R 2019 ACS Appl. Mater. Interfaces 11 13185
- [63] Wang Y S, Dong W, Zheng F G, Fang L, Shen M R 2015 Energy Environ. Focus 4 95
- [64] Singh S, Khare N 2017 Appl. Phys. Lett. 110 152902
- [65] Fu H W, Song Y, Wu Y Q, Huang H T, Fan G Z, Xu J, Li Z S, Zou Z G 2018 Appl. Phys. Lett. 112 073901
- [66] Liu Z R, Wang L W, Yu X, Zhang J, Yang R Q, Zhang X D, Ji Y C, Wu M Q, Deng L, Li L, Wang Z L 2019 Adv. Funct. Mater. 29 1807279
- [67] Wu F, Yu Y H, Yang H, German L N, Li Z, Chen J G, Yang W G, Huang L, Shi W M, Wang L J, Wang X D 2017 Adv. Mater. 29 1701432
- [68] Hoang M T, Pham N D, Han J H, Gardner J M, Oh I 2016 ACS Appl. Mater. Interfaces 8 11904
- [69] Crespo-Quesada M, Pazos-Quton L M, Warnan J, Kuehnel M F, Friend R H, Reisner E 2016 Nat. Commun. 7 12555
- [70] Zhang H F, Yang Z, Yu W, Wang H, Ma W G, Zong X, Li C 2018 Adv. Energy Mater. 8 1800795
- [71] Luo J S, Im J H, Mayer M T, Schreier M, Nazeeruddin M K, Park N G, Tilley S D, Fan H J, Grätzel M 2014 Science 345 1593
- [72] Zhang K, Jin B J, Park C, Cho Y, Song X F, Shi X J, Zhang S L, Kim W, Zeng H B, Park J H 2019 Nat. Commun. 10 2001
- [73] Wang G M, Wang H Y, Ling Y C, Tang Y C, Yang X Y, Fitzmorris R C, Wang C C, Zhang J Z, Li Y 2011 Nano Lett. 11 3026

- [74] Deng X, Song C, Tong Y L, Yuan G L, Gao F, Liu D Q, Zhang S T 2018 Phys. Chem. Chem. Phys. 20 3648
- [75] Ji W, Yao K, Lim Y F, Liang Y C, Suwardi A 2013 Appl. Phys. Lett. 103 062901
- [76] Huang Y L, Chang W S, Van C N, Liu H J, Tsai K A, Chen J W, Kuo H H, Tzeng W Y, Chen Y C, Wu C L, Luo C W, Hsu Y J, Chu Y H 2016 Nanoscale 8 15795
- [77] Cao D W, Wang Z J, Nasori, Wen L Y, Mi Y, Lei Y 2014 Angew. Chem. Int. Ed. 53 11027
- [78] Wu J G, Wang J 2009 J. Appl. Phys. 106 104111
- [79] Béa H, Bibes M, Zhu X H, Fusil1 S, Bouzehouane K, Petit S, Kreisel J, Barthélémy A 2008 Appl. Phys. Lett. 93 072901
- [80] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M, Ramesh R 2003 *Science* 299 1719
- [81] Singh S K, Kim Y K, Funakubo H, Ishiwara H 2006 Appl. Phys. Lett. 88 162904
- [82] Chen Z H, He L, Zhang F, Jiang J, Meng J W, Zhao B Y, Jiang A Q 2013 J. Appl. Phys. 113 184106
- [83] Zhu J, Luo W B, Li Y R 2008 Appl. Surf. Sci. 255 3466
- [84] Sone K, Naganuma H, Miyazaki T, Nakajima T, Okamura S 2010 Jpn. J. Appl. Phys. 49 09MB03
- [85] Baek S H, Folkman C M, Park J W, Lee S, Bark C W, Tybell T, Eom C B 2011 Adv. Mater. 23 1621
- [86] Das R R, Kim D M, Baek S H, Eom C B, Zavaliche F, Yang S Y, Ramesh R, Chen Y B, Pan X Q, Ke X, Rzchowski M S 2006 Appl. Phys. Lett. 88 242904
- [87] Wu H, Tan H L, Toe C Y, Scott J, Wang L Z, Amal R, Ng Y H 2019 Adv. Mater. 32 1904717
- [88] Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q X, Santori E A, Lewis N S 2010 Chem. Rev. 110 6446
- [89] Huang J, Wang Y, Liu X Q, Li Y C, Hu X Q, He B, Shu Z, Li Z, Zhao Y L 2019 Nano Energy 59 33
- [90] Ng Y H, Lwase A, Kudo A, Amal R 2010 J. Phys. Chem. Lett. 1 2607
- [91] Sivula K, van de Krol R 2016 Nat. Rev. Mater. 1 15010
- [92] Luo W J, Yang Z S, Li Z S, Zhang J Y, Liu J G, Zhao Z Y, Wang Z Q, Yan S C, Yu T, Zou Z G 2011 Energy Environ. Sci. 4 4046
- [93] Su J Y, Bai Z W, Huang B L, Quan X, Chen G H 2016 *Nano Energy* 24 148
- [94] Shi X, Zhang K, Shin K, Ma M, Kwon J, Choi I T, Kim J K, Kim H K, Wang D H, Park J H 2015 Nano Energy 13 182
- [95] Zhou L, Wang W Z, Liu S W, Zhang L H, Xu H L, Zhu W 2006 J. Mol. Catal. A:Chem. 252 120
- [96] Gratzel M 2001 Nature **414** 338
- [97] Shi X J, Choi I Y, Zhang K, Kwon J, Kim D Y, Lee J K, Oh S H, Kim J K, Park J H 2014 Nat. Commun. 5 4775
- [98] Parmar K P S, Kang H J, Bist A, Dua P, Jang J S, Lee J S 2012 ChemSusChem 5 1926
- [99] Murcia-López S, Fàbrega C, Monllor-Satoca D, Hernández-Alonso M D, Penelas-Pérez G, Morata A, Morante J R, Andreu T 2016 ACS Appl. Mater. Interfaces 8 4076
- [100] Park Y, McDonald K J, Choi K S 2013 Chem. Soc. Rev. 42 2321
- [101] Liu R, ZhengZ, Spurgeon J, Yang X G 2014 Energy Environ. Sci. 7 2504
- [102] Xie J L, Guo C X, Yang P P, Wang X D, Liu D Y, Li C M 2017 *Nano Energy* **31** 28
- [103] Jia Q X, Iwashina K, Kudo A 2012 Proc. Natl. Acad. Sci. U. S. A. 109 11564

- [104] Irwin M D, Buchholz D B, Hains A W, Chang R P H, Marks T J 2008 Proc. Natl. Acad. Sci. U. S. A. 105 2783
- [105] Huang W, Nechache R, Li S, Chaker M, Rosei F 2016 J. Am. Ceram. Soc. 99 226
- [106] Park J H, Seo J, Park S, Shin S S, Kim Y C, Jeon N J, Shin H W, Ahn T K, Noh J H, Yoon S C, Hwang C S, Seok S I 2015 Adv. Mater. 27 4013
- [107] Sun K, McDowell M T, Nielander A C, Hu S, Shaner M R, Yang F, Brunschwig B S, Lewis N S 2015 J. Phys. Chem. Lett. 6 592
- [108] Zhai P F, Yi Q H, Jian J, Wang H Y, Song P Y, Dong C, Lu X, Sun Y H, Zhao J, Dai X, Lou Y H, Yang H, Zou G F 2014 Chem. Commun. 50 1854
- [109] Ong S T, Keng P S, Lee W N, Ha S T, Hung Y T 2011 Water 3 157
- [110] Konstantinou I K, Albanis T A 2004 Appl. Catal. B 49 1
- [111] Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y B, Pan X Q, Gopalan V, Chen L Q, Schlom D G, Eom C B 2004 *Science* **306** 1005
- [112] Vijatovic M M, Bobic J D, Stojanovic B A 2008 Sci. Sinter.
 40 155
- [113] Zhou T, Zha J W, Cui R Y, Fan B H, Yuan J K, Dang Z M 2011 ACS Appl. Mater. Interfaces 3 2184
- $[114]\quad {\rm Frey \ M}$ H, Payne D A 1996 Phys. Rev. B 54 3158
- [115] Yuan G L, Chen J P, Xia H, Liu J M, Liu Z G 2013 Appl. Phys. Lett. 103 062903
- [116] Liu J W, Sun Y, Li Z H 2012 CrystEngComm 14 1473
- [117] Song W J, Salvador P A, Rohrer G S 2018 ACS Appl. Mater. Interfaces 10 41450
- [118] Huang X Y, Wang K Q, Wang Y Z, Wang B, Zhang L L, Gao F, Zhao Y, Feng W H, Zhang S Y, Liu P 2018 Appl. Catal. B 227 322
- [119] Yang L, Ravi S K, Nandakumar D K, Alzakia F I, Lu W H, Zhang Y X, Yang J C, Zhang Q, Zhang X P, Tan S C 2019 Adv. Mater. 31 1902963
- [120] Arney D, Watkins T, Maggard P A 2011 J. Am. Ceram. Soc. 94 1483
- [121] Reddy K H, Parida K 2013 ChemCatChem 5 3812
- [122] Hu Y X, Dong W, Zheng F G, Fang L, Shen M R 2014 Appl. Phys. Lett. 105 082903
- [123] Tabari T, Ebadi M, Singh D, Caglar B, Yagci M B 2018 J. Alloys Compd. 750 248
- [124] Liu Y, Ye S, Xie H C, Zhu J, Shi Q, Ta N, Chen R T, Gao Y Y, An H Y, Nie W, Jing H W, Fan F T, Li C 2020 Adv. Mater. 32 1906513
- [125] Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J, Schlom D G 2004 Nature 430 758
- [126] Singh S, Khare N 2017 Nano Energy 42 173
- [127] Li S, Zhang J M, Kibria M G, Mi Z T, Chaker M, Ma D L, Nechache R, Rosei F 2013 Chem. Commun. 49 5856
- [128] Gao L, Cui Y C, Wang J, Cavalli A, Standing A, Vu T T T, Verheijen M A, Haverkort J E M, Bakkers E P A M, Notten P H L 2014 Nano Lett. 14 3715
- [129] Ding Q P, Yuan Y P, Xiong X, Li R P, Huang H B, Li Z S, Yu T, Zou Z G, Yang S G 2008 J. Phys. Chem. C 112 18846
- [130] Choi J, Ryu S Y, Balcerski W, Lee T K, Hoffmann M R 2008 J. Mater. Chem. 18 2371
- [131] Zhang T T, Zhao K, Yu J G, Jin J, Qi Y, Li H Q, Hou X J, Liu G 2013 Nanoscale 5 8375
- [132] Yan L S, Zhang J, Zhou X M, Wu X X, Lan J Y, Wang Y S, Liu G, Yu J G, Zhi L J 2013 Int. J. Hydrogen Energy 38

3554

- [133] Lan J Y, Zhou X M, Liu G, Yu J G, Zhang J C, Zhi L J, Nie G J 2011 Nanoscale 3 5161
- [134] Zhang T T, Lei W Y, Liu P, Rodriguez J A, Yu J G, Qi Y, Liu G, Liu M H 2015 Chem. Sci. 6 4118
- [135] Khraisheh M, Khazndar A, Al-Ghouti M A 2015 Int. J. Energy Res. 39 1142
- [136] Park S, Lee C W, Kang M G, Kim S, Kim H J, Kwon J E, Park S Y, Kang C Y, Hong K S, Nam K T 2014 Phys. Chem. Chem. Phys. 16 10408
- [137] Li S, Zhang J M, Zhang B P, Huang W, Harnagea C, Nechache R, Zhu L F, Zhang S W, Lin Y H, Ni Liang, Sang Y H, Liu H, Rosei F 2017 *Nano Energy* 35 92
- [138] Wang Y J, Luo C T, Wang S H, Chen C, Yuan G L, Luo H S, Viehland D 2020 Adv. Electron. Mater. 6 1900949
- [139] Wu W Z, Wang L, Li Y L, Zhang F, Lin L, Niu S M, Chenet D, Zhang X, Hao Y F, Heinz T F, Hone J, Wang Z L 2014 Nature 514 470
- [140] Liang Z, Yan C F, Rtimi S, Bandara J 2019 Appl. Catal. B-Environ. 241 256
- [141] Li S, Zhao Z C, Zhao J Z, Zhang Z TLi X, Zhang J M 2020 ACS Appl. Nano Mater. 3 1063
- [142] Starr M B, Wang X D 2015 Nano Energy 14 296
- [143] Hong K S, Xu H F, Konishi H, Li X C 2012 J. Phys. Chem. C 116 13045
- [144] Lin H, Wu Z, Jia Y M, Li W J, Zheng R K, Luo H S 2014 Appl. Phys. Lett. 104 162907
- [145] Wu J M, Chang W E, Chang Y T, Chang C K 2016 Adv. Mater. 28 3718
- [146] Qian W Q, Wu Z, Jia Y M, Hong Y T, Xu X L, You H L, Zheng Y Q, Xia Y T 2017 Electrochem. Commun. 81 124
- [147] Wu M H, Lee J T, Chung Y J, Srinivaas M, Wu J M 2017 Nano Energy 40 369
- [148] Fu D S, Itoh M, Koshihara S Y 2008 Appl. Phys. Lett. 93 012904
- [149] Gao F, Cheng L H, Hong R Z, Liu J J, Yao Y H, Tian C S 2008 J. Mater. Sci.-Mater. Electron. 19 1228
- [150] Lin E Z, Wu J, Qin N, Yuan B W, Kang Z H, Bao D H 2019 Catal. Sci. Technol. 9 6863
- [151] Mushtaq F, Chen X Z, Hoop M, Torlakcik H, Pellicer E, Sort J, Gattinoni C, Nelson B J, Pane S 2018 *iScience* 4 236
- [152] Prier C K, Rankic D A, MacMillan D W C 2013 Chem. Rev. 113 5322
- [153] Romero N A, Nicewicz D A 2016 Chem. Rev. 116 10075
- [154] Wang C S, Dixneuf P H, Soulé J F 2018 Chem. Rev. 118 7532
- [155] Skubi K L, Blum T R, Yoon T P 2016 Chem. Rev. 116 10035
- [156] Kubota K, Pang Y D, Miura A, Ito H 2019 Science 366 1500
- [157] Tu W G, Zhou Y, Zou Z G 2014 Adv. Mater. 26 4607
- [158] Dimitrijevic N M, Vijayan B K, Poluektov O G, Rajh T, Gray K A, He H Y, Zapol P 2011 J. Am. Chem. Soc. 133 3964
- [159] Lee J, Sorescu D C, Deng X Y 2011 J. Am. Chem. Soc. 133 10066
- [160] Tan S J, Feng H, Ji Y F, Wang Y, Zhao J, Zhao A D, Wang B, Luo Y, Yang J L, Hou J G 2012 J. Am. Chem. Soc. 134 9978
- [161] Indrakanti V P, Kubicki J D, Schobert H H 2009 Energy Environ. Sci. 2 745
- [162] Indrakanti V P, Schobert H H, Kubicki J D 2009 Energy

Fuels 23 5247

- [163] Gagliardi C J, Westlake B C, Kent C A, Paul J J, Papanikolas J M, Meyer T J 2010 Coord. Chem. Rev. 254 2459
- [164] Tu S C, Zhang Y H, Reshak A H, Auluck S S, Ye L Q, Han X P, Ma T Y, Huang H W 2019 Nano Energy 56 840
- [165] Heo J H, Im S H, Noh J H, Mandal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Grätzel M, Seok S I 2013 Nat. Photonics 7 486
- [166] Gao W X, Brenan R, Hu Y, Wuttig M, Yuan G L, Quandt E, Ren S Q 2018 Mater. Today 21 771
- [167] Chu Y H 2017 npj Quantum Mater. 2 67
- [168] Stranks S D, Eperon G E, Grancini G, Menelaou C, AlcocerM J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341
- [169] Ding R, Zhang X L, Sun X. W 2017 Adv. Funct. Mater. 27 1702207
- [170] Leguy A M A, Frost J M, McMahon A P, Sakai V G, Kockelmann W, Law C, Li X, Foglia F, Walsh A, O'Regan B C, Nelson J, Cabral J T, Barnes P R F 2015 Nat. Commun. 6 7124
- [171] Kutes Y, Ye L H, Zhou Y Y, Pang S P, Huey B D, Padture N P 2014 J. Phys. Chem. Lett. 5 3335
- [172] Coll M, Gomez A, Mas-Marza E, Almora O, Garcia-Belmonte G, Campoy-Quiles M Bisquert J 2015 J. Phys. Chem. Lett. 6 1408
- [173] Kim H S, Kim S K, Kim B J, Shin K S, Gupta M K, Jung H S, S W Kim, Park N G 2015 *J. Phys. Chem. Lett.* **6** 1729
- [174] Rakita Y, Bar-Elli O, Meirzadeh E, Kaslasi H, Peleg Y, Hodes G, Lubomirsky I, Oron D, Ehre D, Cahen D 2017 *Proc.Natl Acad. Sci. U. S. A.* **114** E5504
- [175] Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 *Energy Environ. Sci.* 9 323
- [176] Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E, Ashraful I, Grätzel M, Han L 2015 Science 350 944
- [177] Kaltenbrunner M, Adam G, Głowacki E D, Drack M, Schwödiauer R, Leonat L, Apaydin D H, Groiss H, Scharber M C, White M S, Sariciftci N S, Bauer S 2015 Nat. Mater. 14 1032
- [178] Greeley J, Jaramillo T F, Bonde J, Chorkendorff I B, Nørskov J K 2006 Nat. Mater. 5 909
- [179] Jaramillo T F, Kristina P J, Bonde J, Nielsen J H, Horch S, Chorkendorff I 2007 Science 317 100
- [180] McKone J R, Sadtler B F, Werlang C A, Lexis N S, Gray H B 2013 ACS Catal. 3 166
- [181] Smith R D L, Prevot M S, Fagan R D, Zhang Z P, Sedach P A, Siu M K J, Trudel S, Berlinguette C P 2013 Science 340 60
- [182] Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater 5 1500963
- [183] Da Peimei M, Cha M Y, Sun L, Wu Y Z, Wang Z S, Zheng G F 2015 *Nano Lett.* **15** 3452
- [184] Fu K, Huang J Z, Yao N N, Deng X L, Xu X J, Li L 2016 RSC Adv. 6 57695
- [185] Rehman S, Ullah R, Butt A M, Gohar N D 2009 J. Hazard. Mater. 170 560
- [186] Asahi R, Morikawa T, Okwaki T, Aoki K, Taga Y 2001 Science 293 269

SPECIAL TOPIC—Dielectric materials and physics

Research progress and prospects of photocatalytic devices with perovskite ferroelectric semiconductors^{*}

 $\label{eq:cui} {\rm Cui} \ {\rm Zong-Yang}^{\,1)} \quad {\rm Xie} \ {\rm Zhong-Shuai}^{\,1)} \quad {\rm Wang} \ {\rm Yao-Jin}^{\,1)}$

Yuan Guo-Liang^{1)†} Liu Jun-Ming²⁾

1) (School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

 2) (National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China) (Received 25 February 2020; revised manuscript received 6 April 2020)

Abstract

There are two types of perovskites, i.e. ABO_3 -type oxides and ABX_3 -type (X = F, Cl, Br and I) halides. Both of them exhibit rich physical properties and excellent photoelectric properties, such as ferroelectric and photocatalytic properties. In this paper we introduce the methods of preparing the ferroelectric semiconductors (i.e. $BiFeO_3$ and $MAPbI_3$) and their heterogeneous junctions for photocatalytic applications, and summarizes the research progress and applications of photocatalytic devices. Various researches about oxide photocatalytic devices have been carried out. At first, several methods have been developed to absorb more visible light, such as reducing the band gap of ferroelectric materials, preparing junction composed of ferroelectric layer and light absorption layer with narrow-bandgap semiconductor, and growing nanosheet, nanorods or other nanostructures with large specific surface areas. Second, some electric fields are introduced to effectively separate light activated electron-holes pairs. In addition to the external electric field, an inner electric field can be introduced through the ferroelectric polarization perpendicular to the surface and/or the energy band bending at the ferroelectric/semiconductor interface. Thirdly, the degradation of dyes, the decomposition of water into hydrogen and the conversion of CO₂ into fuel have been realized in many photocatalytic or photoelectrocatalytic devices. Fourthly, the synergies of ferroelectric, pyroelectric and piezoelectric effects can largely increase the photocatalytic efficiency and the energy conversion efficiency. Furthermore, $MAPbI_3$ and other halogen perovskites show excellent semiconductor properties, such as the long carrier diffusion length and long minority carrier lifetime which may originate from ferroelectric dipoles. The $MAPbI_3$ can be applied to photocatalytic devices with a high energy conversion efficiency by optimizing the photocatalytic multi-layer structure and adding a package layer that prevents electrolyte for decomposing the $MAPbI_3$. Finally, we analyze the challenges of the high-efficiency photocatalytic devices and look forward to their application prospects.

Keywords: photocatalytic, ferroelectric polarization, electron-hole pairs, energy conversion efficiencyPACS: 77.84.-s, 77.22.Ch, 81.16.Hc, 81.15.-zDOI: 10.7498/aps.69.20200287

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 51790492, 51431006, 51902159, 61874055) and the National Key R&D Program of China (Grant No. 2016YFA0300101).

[†] Corresponding author. E-mail: yuanguoliang@njust.edu.cn