

Institute of Physics, CAS

石墨烯与复合纳米结构Si0。@Au对染料敏化太阳能电池性能的协同优化

张源 陈晨 李美亚 罗山梦黛

Significant enhancement of the performance of dye-sensitized solar cells with photoelectrode co-doped graphene and hybrid SiO₂@Au nanostructure

Zhang Yuan Chen Chen Li Mei-Ya Luoshan Mengdai

引用信息 Citation: Acta Physica Sinica, 69, 160201 (2020) DOI: 10.7498/aps.69.20191722 在线阅读 View online: https://doi.org/10.7498/aps.69.20191722 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

三维多孔复合碳层对电极的制备及其光伏性能研究

Fabrication and photovoltaic performance of counter electrode of 3D porous carbon composite 物理学报. 2019, 68(1): 017802 https://doi.org/10.7498/aps.68.20181833

石墨烯纳米结构的制备及带隙调控研究

Fabrication of graphene nanostructure and bandgap tuning 物理学报. 2017, 66(21): 217301 https://doi.org/10.7498/aps.66.217301

基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究

Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons 物理学报. 2018, 67(11): 118101 https://doi.org/10.7498/aps.67.20180196

纳米微结构表面与石墨烯薄膜的界面黏附特性研究

Interface adhesion property between graphene film and surface of nanometric microstructure 物理学报. 2018, 67(3): 030201 https://doi.org/10.7498/aps.67.20172153

硅基底石墨烯器件的现状及发展趋势

Research status and development graphene devices using silicon as the subtrate 物理学报. 2017, 66(21): 218102 https://doi.org/10.7498/aps.66.218102

聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟

Molecular dynamics simulation on the glass transition temperature and mechanical properties of polyimide/functional graphene composites

物理学报. 2017, 66(22): 227101 https://doi.org/10.7498/aps.66.227101

石墨烯与复合纳米结构 SiO₂@Au 对染料敏化 太阳能电池性能的协同优化*

张源¹⁾ 陈晨¹⁾ 李美亚^{2)†} 罗山梦黛^{3)‡}

(湖北民族大学信息工程学院,恩施 445000)
 (武汉大学物理科学与技术学院,武汉 430072)
 (湖北工业大学理学院,武汉 430068)
 (2019年11月11日收到;2020年5月9日收到修改稿)

染料敏化太阳能电池 (dye-sensitized solar cells, DSCs) 因其制备工艺简单、成本低廉以及优异的光学性 质在近年来引起了大家的广泛关注.为了获得更优的光电性能,利用球磨法制备了一系列不同含量纳米结构 SiO₂@Au 和固定含量石墨烯协同掺杂的复合光阳极薄膜,并制备了相应的 DSCs.研究了纳米结构 SiO₂@Au 和石墨烯联合掺杂对光阳极及其相应 DSCs 光电转换性能的影响.金纳米颗粒因其局域表面等离 子体共振效应能够有效提高 DSCs 的短路电流密度.而石墨烯作为典型的二维材料,具有较大的比表面积以 及高导电性等优异性质,有利于增加薄膜的比表面积.当纳米结构 SiO₂@Au 和石墨烯协同掺杂至光阳极薄 膜内部,且 SiO₂@Au 掺杂量为 1.5% 时,相应电池的短路电流密度为 15.59 mA·cm⁻²,光电转换效率为 6.68%, 相比基于传统纯 TiO₂ 光阳极电池的性能分别提高了 15.67% 和 8.8%.研究表明,基于不同含量复合纳米结构 SiO₂@Au 和固定量石墨烯共掺的 DSCs 性能的提高,主要归因于复合纳米结构 SiO₂@Au 的掺入,其中分布较 为均匀的金纳米颗粒作为光学天线可以将光局域到颗粒表面,增强表面电磁场强度,有效增强光与物质的相 互作用,优化了染料的光吸收能力,增加薄膜内部光生载流子数量.而石墨烯的引入则改善了光阳极薄膜的 比表面积,增加了薄膜整体对染料的吸附量,且石墨烯良好的导电性能加快了光生载流子的传输,两者协同 作用实现了 DSCs 的光电转换性能的优化.

关键词: 纳米结构 SiO₂@Au, 石墨烯, 染料敏化太阳能电池 **PACS**: 02.60.-x, 61.05.cp, 77.84.-s

DOI: 10.7498/aps.69.20191722

1 引 言

Michael 研究组 1991 年开发出的一种新型的 的基于 TiO₂ 纳米晶材料的染料敏化太阳能电池 (dye-sensitized solar cells, DSCs)^[1-3], 具有较高的 光电转换效率和大面积、低成本的制备工艺等优 势, 有望在较大程度上取代传统硅基太阳能电池, 因而受到全世界范围内科研工作者的广泛关注^[4-5]. DSCs 的基本结构主要可以分为三部分:吸附了单 层染料分子的多孔二氧化钛薄膜(统称光阳极)、电 解质以及对电极^[6-7].其中,光阳极薄膜中吸附的 染料分子能够吸收太阳光并受激产生光生载流子, 再将光生载流子注入到 TiO₂导带中^[8-9].因此染 料捕获太阳光的能力以及受激产生载流子的多少, 直接影响到载流子的注入和最终电池的性能^[10].

© 2020 中国物理学会 Chinese Physical Society

^{*} 湖北省青年人才基金 (批准号: Q20181903) 和湖北省自然科学基金青年项目 (批准号: 2018 CFB286) 资助的课题.

[†] 通信作者. E-mail: 18064087417@163.com

[‡] 通信作者. E-mail: Luosmd@hbut.edu.cn

因而提高染料对光的捕获吸收能力是提高电池光 电转换效率的一个有效方法. 近年来, 贵金属纳米 颗粒的局域表面等离子体共振效应被认为是一种 较好的可以用来改善光伏器件性能的手段[11-14]. 通俗地说,局域表面等离子体共振效应,就是当贵 金属纳米颗粒处在光照的条件下,金属颗粒导带中 自由振荡的电子与入射光波的电磁场在频率一致 的条件下相互作用,进而产生耦合作用,形成集体 相干振荡[15-18]. 在这种自由电子与入射光波的相 干振荡作用下,与金属表面自由电子发生相干振荡 的入射光波的光子能量会局域在金属的表面,以表 面等离子体激元的形式, 增强金属表面的电磁场, 在吸收光谱中则体现为特征共振吸收峰[19-22].正 是由于共振吸收峰的存在,研究者们考虑将这些具 有优良光学性质的金纳米棒^[23]、银纳米线^[24]等贵 金属纳米颗粒引入到电池中,把等离激元作为光学 纳米天线,将入射光局域在金属纳米颗粒表面^[25], 以促进光与周围半导体 TiO2 的相互作用 [26], 实现 等离激元对光阳极薄膜光吸收性能的优化改善[27-28]. 但是由于金纳米颗粒尺寸较小,直接掺杂容易在薄 膜内部团聚带来较大的荧光猝灭效应,因此考虑以 二氧化硅球为模板,将金纳米颗粒负载在硅球表 面,使得金颗粒可以较为均匀地分散在薄膜内部, 构成复合结构 SiO₂@Au, 再引入到光阳极中. 此 外,新型材料石墨烯作为一种二维碳系材料,具有 超高的载流子迁移率 (250000 cm²/(V·s)) 和巨大 的比表面积 (2630 m²/g) 等众多独特优异的性能^[29], 能够实现对载流子的有效传输.基于复合纳米结 构 SiO₂@Au 和石墨烯对 DSC_s 性能的改善源自不 同的效应和角度,因此考虑结合这两种效应,将二 者同时掺入到光阳极中,综合利用二者的性能优 势,更大幅度地改善DSCs的性能.

在前期工作的基础上^[23],本文通过球磨法制备出一系列不同掺杂量纳米结构 SiO₂@Au 和固定量石墨烯掺杂的复合双层光阳极薄膜,且将该光阳极用于组装 DSCs,并探讨了该新型多功能光阳极及其相应 DSCs 的性能和影响机理.

2 实验部分

2.1 试剂与仪器

试剂: 钛酸四丁酯 (C₁₆H₃₆O₄Ti), 异丙醇钛 (TTIP), 乙醇 (C₂H₆O), 丙酮 (CH₃COCH₃), 硝酸

钠 (NaNO₃), 硫酸 (H₂SO₄), 高锰酸钾 (KMnO₄), 3-氨丙基三甲氧基硅氧烷 (APTMS), 碘化锂 (LiI), 碘 单 质 (I₂), 1, 3-二 丙 基 咪 唑 碘 (PMII), 乙 腈 (C₂H₃N), 碳 酸 丙 烯 酯 (C₄H₆O₃), 异 硫 氰 酸 胍 (C₂H₆N₄S), 4-叔 丁 基 吡 啶 (C₉H₁₃N), N719 染 料 (C₅₈H₈₆N₈O₈RuS₂), 均购自国药试剂有限公司.

仪器:扫描电子显微镜 (SEM, 6700 F型, JEOL公司, Japan); X射线 衍射仪 (XRD, D8 ADVANC型, Bruker AXS 公司, Germany); 紫外-可见光谱仪 (Cary 5000型, Varian公司, China);太阳能模拟器 (91192型, Newport公司, American);电化学工作站 (CHI 660C型,上海辰 华公司, China)

2.2 制备方法

2.2.1 石墨烯的制备

采用 Hummers 方法将石墨粉末氧化成氧化石 墨^[30]. 往烧杯中加入 0.25 g 硝酸钠 (≥ 99.0%)、 1.5 g 高锰酸钾 (≥ 99.5%) 以及 0.5 g 石墨粉搅 拌均匀,再往烧杯中缓慢加入 11.5 ml 浓硫酸 (95%—98%),在一定的温度下用磁力搅拌器不断 搅拌,直至氧化成氧化石墨后,连续用热水清洗过 滤,再将其分散在去离子水中,超声1h后离心, 得到棕色的透明水溶液,即为 GO 水溶胶. GO 的 浓度约为5 mg/ml.

2.2.2 石墨烯掺杂 TiO₂ 光阳极薄膜的制备

将 10 ml 的 异 丙 醇 钛 与 2.1 g冰 醋 酸 在 50 ml 的去离子水中缓慢水解, 在水解过程中加入 15 ml 上述制备的 GO 溶液, 水解 3 h 后得到白色 透明的溶液, 将此白色溶液定容到约 60 ml, 装入 100 ml 的反应釜, 在 220 ℃ 下处理 2 h, 即得石墨 烯掺杂的二氧化钛浆料.

2.2.3 复合结构 SiO₂@Au 的制备

先制备 SiO₂ 微球. 将 12 ml 浓氨水、10 ml 去 离子水以及 150 ml 无水乙醇混合均匀, 再在混合 溶液中加入一定量的正硅酸四乙酯, 快速搅拌 1 h 以后离心, 用去离子水和无水乙醇反复离心清 洗, 清洗完毕后 70 ℃ 烘干, 所得白色粉末即为 SiO₂ 球. 取 0.03 g SiO₂ 粉末溶于 120 ml 无水乙醇 中, 加入 1 ml 3-氨丙基三甲氧基硅氧烷 (APTMS) 后升温至 50 ℃ 保持 3 h, 再离心清洗后溶于 10 ml 去离子水中,与已经制备好的金纳米颗粒溶液相混合,搅拌3h,使Au纳米颗粒粘附于微球表面.搅拌后离心烘干所得紫色粉末即为SiO₂@Au复合多功能纳米结构.

2.3 SiO₂@Au 复合光阳极的制备

为了对比研究基于复合结构 SiO₂@Au 和石墨 烯共同掺杂光阳极的 DSCs 与基于纯 TiO₂ 光阳极 的 DSCs 的性能,将制备好的 SiO₂@Au 粉末与掺 杂有石墨烯的 TiO₂ 浆料按照质量比 0%, 0.5%, 1.0%, 1.5%, 2.0% 分别混合搅拌,搅拌 24 h 后即 可得到掺杂有复合多功能结构材料的浆料.先通 过 doctor-blading 法在 FTO 玻璃上涂覆两层上述 制备的浆料,待其室温烘干后,再按设定程序在 500 ℃条件下退火,即得 SiO₂@Au 复合结构与石 墨烯共掺杂的光阳极薄膜.

2.4 材料表征及电池性能测试

在本研究中,通过 TEM (EM-2010FEF(UHR)) 来观测二氧化硅球与金纳米颗粒的相貌. 将一系列 不同光阳极浸泡在 N719 染料 (Ruthenium 535, Solarnix, Swiss) 中进行一整夜敏化, 使染料单层

3 结果与讨论

3.1 形貌及晶相表征

由图 1(a) 中 TEM 图可以清晰地看出,该产物是由大量大小高度均一、分散均匀的二氧化硅球组成,直径大小约为 350 nm,这些二氧化硅球边缘清晰,表面非常光滑.图 1(b)展示出了制备的SiO₂@Au 复合结构的形貌,在生长均匀的二氧化

Fig. 1. (a) TEM image of the SiO₂ where; (b) TEM image of the SiO₂@Au; (c) EDS image of the Au nanoparticles; (d) absorption spectra of pure Au nanoparticles.

硅球外生长了一层大小约为 10 nm 的金颗粒,从 TEM 图可以看出,金颗粒的大小比较均一,并均 匀地负载在二氧化硅球表面.图 1(b)中稍大一点 的金颗粒团簇可能为多个金颗粒聚集形成的.图 1(c) 所示对金纳米颗粒溶液所做的 EDS 测试,体现出 了较强的金元素特征峰,说明这个纳米颗粒正是贵 金属元素金.图 1(d) 是制备的金纳米颗粒溶液的 紫外可见光吸收光谱,可以清晰地看到吸收光谱中 位于 535 nm 处呈现出的特征共振吸收峰,与金纳 米颗粒的特性相符.

3.2 紫外-可见光谱测试

为了优化薄膜对入射光的吸收响应效果,改善薄膜对染料分子的吸附量,进一步探究石墨烯与复合结构 SiO₂@Au 的局域表面等离子体共振效应对复合光阳极薄膜光谱响应效果的影响,本研究组设计制备了复合光阳极结构,采用传统刮涂法按照一定的梯度制备了石墨烯与不同比例复合结构SiO₂@Au 掺杂后的光阳极,并且测试了光阳极薄膜在敏化后的紫外可见光谱.

图 2(a) 为复合结构以不同比例掺杂后的光阳 极在敏化后的紫外可见光吸收光谱,从图 2(a)中 可以清晰地看到,当把掺杂量为15μl的石墨烯和 复合结构 SiO2@Au 协同引入到光阳极薄膜内部以 后,掺杂后的薄膜与未经任何处理的纯 TiO,薄膜 相比,随着掺杂量的增加,展现出对入射光更好的 吸收性能. 当掺杂量达到 1.5% 时吸收量最佳. 正 是由于贵金属金纳米颗粒自身具备的局域表面等 离子体共振效应优化了薄膜对光波的吸收利用,而 特定含量掺杂的石墨烯则优化了染料分子的吸附 量,从而增加了薄膜整体对入射光的吸收利用作 用. 由图 2(b) 和图 2(c) 可以看出, 复合光阳极薄 膜在掺入石墨烯与复合结构 SiO₂@Au 以后, 对入 射光的透射量有一定的减少,对光的漫反射作用有 一定程度的增强,这种光响应改善应该与贵金属纳 米颗粒的局域表面等离子体共振效应有关.为证实 这点,对不同复合结构 SiO2@Au 掺入量的薄膜敏 化后的染料吸附量进行了测试.图 2(d) 为不同复 合结构 SiO2@Au 掺入量的 TiO2 多孔膜经过一定 浓度 NaOH 溶液浸泡后脱吸附得到的染料的紫外

图 2 SiO₂@Au 不同掺杂含量 TiO₂ 薄膜的紫外-可见光谱测试曲线 (a) 吸收光谱; (b) 漫反射光谱; (c) 透射光谱; (d) 染料脱吸 附光谱

Fig. 2. (a) UV-vis absorption spectra; (b) diffuse reflectance spectra; (c) transmittance spectra; (d) spectra of the dyes desorbed from the TiO_2 films containing different amounts of $SiO_2@Au$.

可见光吸收光谱. 掺入了石墨烯与复合结构 SiO2@Au 的样品脱吸附的染料吸收峰强度均比纯 TiO, 样品 脱吸附染料的吸收峰强度更强,说明石墨烯巨大的 比表面积有利于染料分子的吸附,而随着复合结 构 SiO₂@Au 掺杂量的增加, 吸收峰强度略微下降, 表明过量复合结构 SiO2@Au 的掺入, 多孔膜表面 染料分子的吸附量略微减少,这可能是复合结构 SiO₂@Au 掺杂比例的增加占据了多孔膜一定的空 间,减少了薄膜的比表面积,影响了薄膜对染料分 子的吸附. 这种吸附较少染料的样品具有较大光谱 吸收特性的性质也正好表明,掺杂复合结构 SiO₂@Au的样品显著改善的光谱吸收特性不是由 于吸附了更多的染料分子,而是由于复合结构 SiO₂@Au的存在,其局域表面等离子体共振效应 确实使吸附的染料分子对入射光的捕获能力得到 一定程度的改善. 这种局域表面等离子体共振效应 正是由于入射光的照射引起了金纳米颗粒的自由 电子集体振荡而形成,同时在金纳米颗粒周围产生 增强的电磁场加强了薄膜对入射光的耦合. 金纳米 颗粒周围增强的电磁场与染料分子之间的相互作 用增强,从而激发染料吸收更多的入射光从而产生 更多的光生载流子.

3.3 复合光阳极 DSCs 的光电性能

为了具体研究石墨烯与复合结构 SiO₂@Au 的 掺杂对电池光电转换性能的影响,探索复合结构 SiO₂@Au 最优的掺杂量,组装了相应的 DSCs,在 同样的条件下 (设定参数 AM1.5,模拟光强度约为 100 mW/cm²),针对电池中光照面积为 0.25 cm² 的有效区域进行 *J-V*性能的测试,对电池的光电转 换性能进行表征.

表1已经给出电池的具体性能参数 (*J-V*曲 线,图 3(a)),不难发现,由于石墨烯具有优良的导 电性能以及巨大的比表面积,掺杂有15 μl 石墨烯 的电池都呈现出较优的短路电流密度,而金纳米颗 粒特有的局域表面等离子体共振效应使得染料对 入射光的吸收得以增强,吸光范围也得到了拓展, 增强了多孔骨架层薄膜对光的耦合、吸收以及散射 作用,从而使得更多的入射太阳光可以用来激发基 态的染料分子,完成受激跃迁,实现光能到电能的 有效转换.随着多功能结构掺杂量的提高,电池的 短路电流密度逐渐增大.但当掺杂量达到 2.0% 时, 短路电流反而减小,这是由于金颗粒的过量带来了 荧光猝灭效应,减弱了整体的局域表面等离子体共振效应,最终适得其反.

表 1 不同光阳极的 DSCs 光电性能参数

Table 1.Photoelectric performance parameters of theDSCs with different photoanodes.

DSCs	$J m sc/mA{\cdot}cm^{-2}$	$V_{\rm oc}/{\rm mV}$	FF	η
Pure	13.478	680	0.67	6.14
0.5%	15.436	678	0.58	6.07
1.0%	15.442	679	0.61	6.40
1.5%	15.59	680	0.63	6.68
2.0%	14.79	682	0.62	6.25

图 3 复合结构 SiO₂@Au 不同掺杂含量相应的 DSCs (a) *J-V*性能曲线; (b) 电化学阻抗谱 Fig. 3. (a) *J-V* curves; (b) the Nyquist plots of EIS of the

DSCs varying with the concentration of SiO_2 @Au.

为了对电池的细节进行更进一步的分析和了 解,揭示内部电路在不同界面处电子的分离传输效 率对电池电化学特性存在的影响,在开路的条件 下,调节测试频率范围为 100 kHz 到 0.01 Hz,采 用型号为 CHI 660C 的电化学工作站对论文中所 有的样品进行了电化学阻抗的表征测试.值得重点 关注的是具有显著变化的反映 TiO₂/dye/electrolyte 的界面电荷传输阻抗 Z及其电阻 R(Z的实数部 分)的一系列半圆^[30-31]. 从图 3(b)可以清晰地看 到,随着复合结构 SiO₂@Au 掺入量的逐渐增加, Z半圆的直径持续减小,即 TiO₂/dye/electrolyte 的界面电荷传输电阻 R 减小,光生电子与电解质 中的 I₃ 以及在 TiO₂/dye 界面处与处于氧化态的 染料分子的复合减弱,因此暗电流就减小,短路电 流增大. 从图 3(b)中可以看出,随着复合结构 SiO₂@Au 掺杂量的增多,骨架层薄膜与电解质对 电极的串联传输阻抗逐渐减小,说明电池内部界面 间电子的传输更加顺畅,对应于更多电子的收集, 体现在电池上就是更大的短路电流密度,与上述 的 J-V曲线相符合.

4 结 论

本文 将石墨烯与复合结构 SiO₂@Au 协同掺 杂到 DSCs 光阳极薄膜当中,制成复合多功能光阳 极薄膜并构建了相应的 DSCs. 通过对实验数据的 对比分析知道,由于固定比例石墨烯的掺杂能够有 效地优化薄膜对染料分子的吸附量,石墨烯优良的 导电性能也有利于光生载流子的传输,并且随着复 合结构 SiO₂@Au 掺杂量的增加,又由于局域表面 等离子体共振效应的存在,入射太阳光在薄膜中的 传播路径得以拉长,反复的散射和吸收作用使得更 多的入射光子被用来激发基态的染料分子.因此, 经过修饰改进后的电池体现出了更好的性能.当掺 杂含量为 1.5 wt% 时,短路电流密度相比于纯的未 经任何处理的电池提高了约 15.67%,测量值为 15.59 mA/cm²,光电转换效率提高了约 8.8%,测 量值为 6.68%.

参考文献

- Kong F T, Dai S Y, Wang K J 2007 Adv. Opto. Electron. 13 75384
- [2] Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H 2010 Chem. Rev. 110 6595
- [3] Jena A, Mohanty S P, Kumar P, Naduvath J, Gondane V,

Lekha P, Das J, Narula H K, Mallick S, Bhargava P 2012 T. Indian Ceram. Soc. 71 1

- [4] Zhang S, Yang X, Numata Y, Han L 2013 Energy Environ. Sci. 61 443
- [5] O'regan B, Grätzel M 1991 Nature 1991 353
- [6] Yin J F, Velayudham M, Bhattacharya D, Lin H C, Lu K L 2012 Coordin. Chem. Rev. 256 23
- [7] Zhang Q, Cao G 2011 Nano Today 6 91
- [8] Chandiran A K, Comte P, Humphry-baker R, Kessler F, Yi C Y, Nazeeruddin M K, Grätzel M 2013 Adv. Funct. Mater. 23 2775
- [9] Liu B, Aydil E S 2009 J. Am. Chem. Soc. 131 3985
- [10] Cozzoli P D, Kornowski A, Weller H 2003 J. Am. Chem. Soc. 125 14539
- [11] Qin X, Wang H C, Li J L, Chen Q 2015 Talanta 139 56
- [12] Gurvinder S, Antonius T J, Sulalit B, Sondre V, Jens-Petter A, Wilheim R G 2014 Appl. Surf. Sci. 311 780
- [13] Zhang L, Niu W X, Xu G B 2012 Nano Today 7 586
- [14] Sun Z H, Yang Z, Zhou J H, Yeung M H, Ni W H, Wu H K, Wang J F 2009 Angew. Chem. 48 2881
- [15] Chen H J, Shao L, Li Q, Wang J F 2013 Chem. Sov. Rev. 42 2679
- [16] Liu X L, Liang S, Nan F, Yang Z J, Yu X F, Zhou L, Hao Z H, Wang Q Q 2013 Nanoscale 5 5368
- [17] Tapan K S, Catherine J M 2004 J. Am. Chem. Soc 126 8648
- [18] Suljo L, Phillip C, David B I 2011 Nat. Mater. 10 1038
- [19] Subramanian V, Wolf E E, Kamat P V 2003 J. Phys. Chem. B 107 7479
- [20] Subramanian V, Wolf E E, Kamat P V 2004 J. Am. Chem. Soc. 126 4943
- [21] Chen S, Ingran R S, Hostetler M J, Pietron J J, Murray R W, Schaaff T G 1998 Science 280 2098
- [22] Pietron J J, Hicks J F, Murray R W 1999 J. Am. Chem. Soc. 121 5565
- [23] Fang X L, Li M Y, Guo K M, Liu X L, Zhu Y D, Sebo B, Zhao X Z 2014 Sol. Energy 101 176
- [24] He Z M, Phan H, Liu J, Nguyen T Q, Tan T Y 2013 Adv. Mater. 5 6900
- [25] Brown M D, Suteewong T, Kumar R S S, D'Innocenzo V, Petrozza A, Lee M M, Wiesner U, Snaith H 2011 Nano lett. 11 438
- [26] Du L C, Furube A, Yamamoto K, Hara K, Katoh R, Tachiya M 2009 J. Phys. Chem. C 113 6454
- [27] Hägglund C, Zäch M, Kasemo B 2008 Appl. Phys. Lett. 92 013113
- [28] Qi J F, Dang X N, Hammond P T, Belcher A M 2011 ACS Nano 5 7108
- [29] Geim A K 2009 Science **324** 1530
- [30] Luoshan M D, Li M Y, Liu X L, Guo K M, Bai L H, Zhu Y D, Sun B L, Zhao X Z 2015 J. Power Sources 287 231
- [31] Luoshan M D, Bai L H, Bu C H, Liu X L, Zhu Y D, Guo K M, Jiang R H, Li M Y, Zhao X Z 2016 J. Power Sources 307 468

Significant enhancement of the performance of dye-sensitized solar cells with photoelectrode co-doped graphene and hybrid SiO₂@Au nanostructure^{*}

Zhang Yuan¹⁾ Chen Chen¹⁾ Li Mei-Ya^{2)†} Luoshan Mengdai^{3)‡}

1) (School of Information Engineering, Hubei Minzu University, Enshi 445000, China)

2) (School of Physics and Technology, Wuhan University, Wuhan 430072, China)

3) (School of Science, Hubei University of Technology, Wuhan 430068, China)

(Received 11 November 2019; revised manuscript received 9 May 2020)

Abstract

Attributed to facile fabrication, low production costs and outstanding photoelectric properties, dyesensitized solar cells (DSCs) have attracted widespread attention in recent years. In order to achieve better photoelectric conversion efficiency of the DSCs, a series of TiO₂ nanocomposite photoanodes co-doped with different amounts of hybrid SiO₂@Au nanostructures and certain amount of graphene are prepared by a mechanical ball milling method. The influence of $SiO_2@Au$ nanostructures and graphene on the performance of the photoanodes and their DSCs were investigated. The Au nanoparticles can remarkably enhance the shortcircuit current density (J_{sc}) due to the local surface plasmon resonance effect of the noble metal nanoparticles. As a unique two-dimensional material, graphene has several amazing characteristics, such as high specific surface area and excellent conductivity. Studies showed that by introducing both SiO₂@Au nanostructures and graphene, the light-absorbing, electron mobility and dye loading of the photoanodes were remarkably increased. Experimental results indicated that in comparison with those DSCs based with pure TiO_2 photoanode, the DSCs with photoanodes incorporated with SiO_2 (@Au nanostructures and graphene showed the optimal performance with short-circuit current density $(J_{\rm sc})$ of 15.59 mA/cm² and photoelectric conversion efficiency (PCE) of 6.68%, increasing significantly by 15.67% and 8.8%, respectively. This significant enhancement in J_{sc} and PCE of DSCs are mainly attributed to the increase in light-absorption and dye-loading of the photoanodes due to the hybrid SiO₂@Au nanostructures and graphene.

Keywords: hybrid SiO₂@Au nanostructure, graphene, dye-sensitized solar cells PACS: 02.60.-x, 61.05.cp, 77.84.-s **DOI:** 10.7498/aps.69.20191722

^{*} Project supported by the Youth Talent Foundation of Hubei Province, China (Grant No. Q20181903) and the Youth Program of Natural Science Foundation of Hubei Province, China (Grant No. 2018 CFB286).

[†] Corresponding author. E-mail: 18064087417@163.com

[‡] Corresponding author. E-mail: Luosmd@hbut.edu.cn