

Institute of Physics, CAS

无催化剂条件下长达毫米级的超宽Ga₂03单晶纳米带制备及特性

祁祺 陈海峰 洪梓凡 刘英英 过立新 李立珺 陆芹 贾一凡

Preparation and characteristics of ultra-wide Ga2O3 nanoribbons up to millimeter-long level without catalyst

Qi Qi Chen Hai-Feng Hong Zi-fan Liu Ying-Ying Guo Li-Xin Li Li-Jun Lu Qin Jia Yi-Fan

引用信息 Citation: Acta Physica Sinica, 69, 168101 (2020) DOI: 10.7498/aps.69.20200481

在线阅读 View online: https://doi.org/10.7498/aps.69.20200481

当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

β-Ga₂O₃纳米材料的尺寸调控与光致发光特性

Size Regulation and Photoluminescence Properties of β –Ga₂O₃ Nanomaterials

物理学报. 2020, 69(10): 108102 https://doi.org/10.7498/aps.69.20200158

超宽禁带半导体β-Ga2O3及深紫外透明电极、日盲探测器的研究进展

Ultra-wide bandgap semiconductor of β -Ga₂O₃ and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector

物理学报. 2019, 68(7): 078501 https://doi.org/10.7498/aps.68.20181845

外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究

Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method 物理学报. 2018, 67(21): 218101 https://doi.org/10.7498/aps.67.20180805

基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件的温度特性

Temperature dependent characteristics of Ni/Au vertical Schottky diode based on mechanically exfoliated beta-Ga2O3 single crystal

物理学报. 2020, 69(13): 138501 https://doi.org/10.7498/aps.69.20200424

Al₂O₃衬底无催化剂生长GaN纳米线及其光学性能

Preparing GaN nanowires on Al₂O₃ substrate without catalyst and its optical property

物理学报. 2020, 69(8): 087801 https://doi.org/10.7498/aps.69.20191923

Fe3GeTe2纳米带的结构稳定性、磁电子性质及调控效应

Structure stability, magneto-electronic properties, and modulation effects of $\mathrm{Fe_3GeTe_2}$ nanoribbons

物理学报. 2019, 68(20): 208502 https://doi.org/10.7498/aps.68.20191103

无催化剂条件下长达毫米级的超宽 Ga_2O_3 单晶纳米带制备及特性^{*}

祁祺 陈海峰† 洪梓凡 刘英英 过立新 李立珺 陆芹 贾一凡

(西安邮电大学电子工程学院,新型半导体器件与材料重点实验室,西安 710121)

(2020年4月1日收到; 2020年5月15日收到修改稿)

氧化镓 (Ga₂O₃) 单晶纳米带由于具有独特的性质在电子器件中具有潜在的应用, 然而目前过小的接触面 积使得基于这种纳米材料的器件制备变得非常复杂且充满挑战.本文利用碳热还原法, 在无催化剂条件下使 氧化镓粉末与碳纳米管在高温下反应, 生长出不同结构的氧化镓纳米材料, 发现了反应温度影响纳米结构的 直径和比例的物理机制, 并制备出了长达毫米级的超宽 β-Ga₂O₃ 单晶纳米带, 其横向尺寸可达 44.3 μm. 利用 透射电子显微镜 (TEM) 可以观察到纳米带呈单晶结构, 进一步拉曼散射光谱 (Raman) 表明这种方法生长的 β-Ga₂O₃ 纳米带的应变较小, 缺陷密度较低, 且室温光致发光谱 (PL) 显示该氧化镓纳米带在激发波长 295 nm 下发出 425 nm 的稳定且高亮度的蓝光. 这种生长方法可为未来器件级氧化镓纳米带制备提供有益的参考.

关键词: β-Ga₂O₃, 碳热还原法, 单晶纳米带, 缺陷密度 **PACS**: 81.07.Gf, 61.82.Fk, 81.07.-b, 78.55.-m

DOI: 10.7498/aps.69.20200481

1 引 言

近年来,宽禁带半导体材料由于诸多优异的性能而受到了广泛的研究并获得了飞速的发展^[1-4]. 其中,拥有 4.5—4.9 eV 的超宽带隙的β-Ga₂O₃单 晶不仅击穿电场可达 8.0 MV/cm^[5],同时还具有低 导通电阻、良好的化学稳定性,这些特性使其在高 温气体传感器、紫外线光电检测器、大功率场效应 晶体管 (FET)和光子开关等器件中具备良好的潜 在应用^[6-8].与氧化镓薄膜相比,具有大的表面体 积比和高表面态密度的β-Ga₂O₃纳米结构,诸如纳 米棒、纳米线和纳米带等结构形成的器件性能会随 着表面体积比的增加而得到有效的改善^[9],因此引 起了研究者的极大关注.目前,一维氧化镓纳米材 料已经拥有几种较为成熟的制备工艺,例如电化学 沉积法、金属有机化学气相沉积法、脉冲激光沉积 法、水热法和氧化物辅助法等[10-14],这些方法能够 制备出各种形貌结构的β-Ga₂O₃纳米材料,但也存 在设备及工艺要求高、产量较低等缺点. 与这些方 法相比,高温碳热还原法具有制备工艺简单、生长 效率高、成本低廉等优点,可以高效率地制备高质 量的一维氧化镓纳米材料. 然而, 常规的碳热还原 法是在有催化剂辅助的情形下进行生长的,而催化 剂的引入导致生长过程变得复杂且不易控制,同 时,目前使用该方法报道的氧化镓纳米线、纳米带 等纳米结构通常都被限制在几微米的尺度内,接触 面积很难进一步提升,这给基于纳米带的器件制备 带来挑战,极大地影响到氧化镓纳米带在光电及功 率器件中的应用.由于超长超宽的β-Ga₂O₃纳米材 料拥有更大的表面体积比,更高的表面态密度使得 其更易加工,带来更高的性能^{15]},因此研究无催化

^{*} 国家自然科学基金(批准号: 61306131)和陕西省自然科学基础研究计划(批准号: 2020JM-581)资助的课题.

[†] 通信作者. E-mail: chenhaifeng@xupt.edu.cn

^{© 2020} 中国物理学会 Chinese Physical Society

剂情形下这一类型的氧化镓纳米结构的生长方法 及物理机制便尤为重要.

本文研究无催化条件下的碳热还原法在硅基 底上生长超长超宽氧化镓单晶纳米材料,讨论了通 过调控不同生长温度来控制纳米结构的直径与比 例的物理机制,并通过 X 射线衍射 (XRD)、拉曼 散射光谱 (Raman)、透射电子显微镜 (TEM) 及光 致发光谱 (PL) 方法重点对生长的超长纳米带的类 型、结晶质量及光致发光等特性进行了深入的分析 表征.

2 实验过程

2.1 实验原理及生长机制

目前,一维氧化镓纳米材料的生长已有成熟的 机理来解释^[16],一种是气液固 (VLS) 生长机理,其 特点是在基底上存在催化剂,高温下反应物蒸汽凝 聚在熔融状态的催化剂颗粒上成核生长.在这一过 程中,催化剂起到了非常重要的作用.另一种是气 固 (VS) 生长机理,其特点是反应物蒸汽直接沉积 在基底上逐渐成核生长.因此,催化剂并非纳米结 构生长的决定因素,无催化剂的条件下依然可以进 行纳米结构的生长.

氧化镓生长机理可通过克拉伯龙方程进行分析:

$$\frac{\mathrm{d}P}{\mathrm{d}T} = \frac{L}{T\Delta v}.\tag{1}$$

当温度 T升高后,氧化镓粉末与碳纳米管反应加剧,刚玉舟内部生成大量的 Ga₂O 和 Ga 蒸汽,与残留的 O₂ 不断地生成 Ga₂O₃,大量的蒸汽不能及时排出,在刚玉舟内集聚形成高浓度的 Ga₂O₃ 蒸汽氛围.根据气相生长系统,相变驱动力为

$$\Delta g = -kT\sigma,\tag{2}$$

其中过饱和度 $\sigma = P_1/P_0 - 1$,当扩散炉温度下降时,刚玉舟内的蒸气压也逐步下降,过饱和度转负,相变驱动力为正,过饱和的 Ga₂O₃ 蒸汽开始在衬

底及舟壁上凝聚成固体. 单位时间内形成的晶核数 目 *I* 为:

$$I = Bn \exp(-\Delta G/kT).$$
(3)

I随饱和比 P₁/P₀的增加而增加,即反应温度 越高,降温时舟中饱和比越大,成核的密度也将更 大,纳米线的直径和长度会进一步增大.同时,根 据周期键链 (PBC)理论,氧化镓晶体不同晶向的 成键的键合能不同,致使在不同取向上生长的速度 也不同:沿生长方向的界面能最小,故生长速度最 快;而沿垂直于生长方向上生长的速度较慢,最后 逐步生长为纳米带、纳米片等结构.因此,遵循 VS 机理,即使在无催化剂作用下依然能形成大量 的纳米结构.

2.2 实验方法及参数

在水平管式高温扩散炉中使用碳热还原法在 硅衬底上生长 β-Ga₂O₃ 纳米材料. 在生长之前, 使 用无水乙醇溶液在超声中清洗实验工具和衬底,置 于烘箱中烘干. 使用纯度为 99.999% 的 β-Ga₂O₃ 粉末与碳纳米管 (CNTs-010-0) 作为初始反应原 料,按质量比1:1.5 混合研磨 30 min 后放入刚玉 舟中,将基底覆盖在刚玉舟上与初始反应原料间距 约1 cm,将刚玉舟置于扩散炉中心. 通入2 sccm (1 sccm = 1 ml/min)工业氮气作为保护气体,高 温下 Ga₂O₃会被碳纳米管还原生成气态的 Ga₂O和 Ga 蒸汽, 随后会与残余在石英管和氮气 中的微量氧气发生反应,通过 VS 生长机理在衬底 上形成"绒毛状"Ga₂O₃纳米结构. 生长时间控制 在 90 min, 依次将四种不同生长温度下氧化镓纳 米结构样品分别标定为样品 A, B, C与 D, 具体生 长条件如表1所列.

实验中,使用蔡司 EVO-10 扫描电镜观察获得 样品形貌,日本岛津公司的 XRD -7000 对获得的 样品进行物相分析,日本 JEOL-200 kV 场发射透 射电子显微镜拍摄样品的 TEM 图,高分辨透射

表 1 样品 A—D 在不同温度下的生长参数

Table 1. The growth parameters of samples A D at uncent temperature.					
Samples	${\rm Ga_2O_3/g}$	CNTs/g	Growth temperature/ ${}^{\circ}\!$	Times/min	$\rm N_2$ carrier gas /sccm
А	1	1.5	800	90	2
В	1	1.5	850	90	2
\mathbf{C}	1	1.5	900	90	2
D	1	1.5	950	90	2

电子显微图 (HRTEM) 及衍射图 (SAED). 使用 XperRams S 共聚焦显微拉曼成像系统分析其晶 体结构. 在室温下用 FLS980 测量 PL 谱来获得其 蓝光性能, 激发波长为 295 nm.

3 结果与讨论

SEM 广泛应用于观察各种物质表面的微观形 貌, 通过 SEM 可直接观察到温度对氧化镓纳米结 构的影响. 图 1 给出了样品 A—D 的表面形态 SEM 分析结果, 图 1(a) 为 800 ℃ 下生长的样品 A, 基底表面生长出一层致密的氧化镓纳米棒, 形 貌较为统一,纳米棒直径集中在 500 nm 左右,此 时可能温度过低,舟内氧化镓氛围稀薄,纳米棒无 法进一步生长^[17]. 温度增加至 850 ℃, 如图 1(b) 所示,在 SEM 下可以观察到大多数生长结构为细 长的纳米线,纳米线表面光滑平整,长度可以达到 数百微米, 且较为密集, 在高放大倍率下, 观察到 其横向尺寸集中在 400—600 nm, 与纳米棒直径接 近,这是因为舟内充足的氧化镓气氛使得纳米棒进 一步生长为较长的纳米线^[18].图 1(c)显示,随着生 长温度增加到 900 ℃, 表面特征从细长的纳米线转 变为横向尺寸较宽的纳米带,宽度已达数十微米, 并且长度达到了毫米级,纳米带的形成可以归因于 在较高温度的气相中形成了更加充足的氧化镓气 氛,使得生长的纳米结构尺寸进一步增大¹⁹.当生 长温度达到 950 ℃ 时, 从图 1(d) 中看出形貌结构 仍然以纳米带为主,纳米带的尺寸并未发生明显的 变化, 与 900 ℃下的氧化镓纳米带相差无几. 然 而,过于充足的氧化镓氛围并没有带来表面尺寸的 进一步提高,反而在部分氧化镓纳米带上发生了形 貌恶化的现象,纳米带表面变得粗糙不平,覆盖有 大量块状颗粒,同时伴有大量不规则的纳米片、纳 米旗生成,这显示出生长方向变得不再稳定,甚至 部分纳米带上还观察到生长纳米线的现象. 这一现 象归因于过量的氧化镓供应导致成核事件变得不 再稳定,成核已经不再局限于衬底上^[20].以上结果 表明,在温度不足时基底表面仅能形成一层致密氧 化镓纳米棒,温度上升后纳米棒会继续生长为细长 的纳米线,继续提高温度,其横向生长速度也将提 高,纳米线大量转变为纳米带,表面尺寸大幅增加. 通过 SEM 的观察, 可以发现调控温度能够改变 氧化镓纳米材料的形貌结构,从而验证了实验原 理中的氧化镓的生长机制.同时对比上述各样品的表征结果,纳米带相比于纳米棒和纳米线,拥有更大的表面体积比,展现出了良好的器件级应用 潜质.

图 1 样品 A—D 在不同生长温度下的 SEM 图像 (a) 样品 A (800 ℃); (b) 样品 B (850 ℃); (c) 样品 C (900 ℃); (d) 样品 D (950 ℃)

Fig. 1. SEM images of samples a-d at different growth temperatures: (a) Sample A (800 °C); (b) sample B (850 °C);
(c) sample C (900 °C); (d) sample D (950 °C).

图 2 进一步给出氧化镓纳米带更加精细的表 面形貌结构.图 2(a)为样品 C 在中低倍镜下的特 征,可以观察到合成的氧化镓纳米带的长度达到 2—3 mm.图 2(b)中,在高倍镜下可以清楚观察到 样品 C 的横向尺寸已经超过 44.3 µm,整体呈膜状 结构.同时,图 2(c)显示样品 C 的纳米带相互缠结 并弯曲,证明其有良好的可塑性,可以承受较大的 变形.图 2(d)为样品 D,高倍镜下可以观察到在 950 ℃ 下纳米带尺寸未有明显提高,但表面凝结大 量块状结构,样品形貌受温度影响强烈,此时形貌 已经开始恶化,已不再适宜于生长.基于上述结果, 氧化镓纳米带最佳生长温度应为 900 ℃,在此温度 下可以产生大量表面形貌均匀且稳定的超长氧化 镓纳米带.

XRD 广泛应用于晶态物质的物相分析,可以获得超长超宽氧化镓纳米带的相结构和结晶度^[21]. 图 3(a) 给出样品 C 的 XRD 图谱,图中所示所 有的β-Ga₂O₃强衍射峰都能够与 X 射线衍射标 准图谱 (JCPDS, No.76-0573) 对应,其中 (111) 晶

图 2 (a) 低倍镜下样品 C 超长的氧化镓纳米带; (b) 样品 C 高倍率下单个氧化镓纳米带; (c) 互相缠绕弯曲的纳米带; (d) 高倍 镜下样品 D 纳米带表面结块恶化

Fig. 2. (a) The ultra-long gallium oxide nanoribbons of sample C under low magnification; (b) single gallium oxide nanoribbon at high magnification of sample C; (c) intertwined curved nanoribbons; (d) under high power, the agglomeration of the surface of the sample D nanoribbons deteriorates.

面的峰值最强,晶体结构常数为 a = 1.223 nm, b = 0.304 nm, c = 0.580 nm, $\beta = 103.7$ °^[22]. 在上 述 XRD 的测试结果中并未观察到氧化镓的其他 晶相,这表明实验生长的是高纯度的单相β-Ga2O3. Ga₂O₃中的Ga离子具有四面体(GaO₄)和八面 体 (Ga2O6) 两种配位方式, 存在 30 个声子振动模 式,其中有15个声子振动模式拥有拉曼活性23. 拉曼光谱可以表征晶格结构、各向异性、缺陷等信 息,因此为了获得超长氧化镓纳米带的结构特性, 对样品 C 进行拉曼光谱测试, 共获得图 3(b) 中所 示的 11个峰. 该结果显示: 在低频模式 (低于 200 cm⁻¹) 下,存在 110.3, 141.9, 166.6, 197.9 cm⁻¹ 四个峰位,这是由四面体-八面体链的释放和平移 而产生的;中频模式 (300-500 cm⁻¹)中,存在 319.9, 346.2, 413.8, 474.4 cm⁻¹四个峰位, 这是由 于 Ga₂O₆八面体形变产生; 在高频模式 (500-800 cm⁻¹) 中,存在 627.8,655.2,765.8 cm⁻¹ 三个 峰位,这是由 GaO4 四面体的拉伸和弯曲导致的^[24]. 文献 [25] 认为, 声子振动模式中的蓝移是由纳米带 内部的应变引起的,而红移是由于纳米带中存在缺 陷造成的,本研究中获得的β-Ga₂O₃纳米带的拉曼 峰位与文献 [25] 中报道的 β-Ga₂O₃ 拉曼光谱相符 合,这表明超长β-Ga₂O₃纳米带的应变较小,缺陷 密度较低.同时,拉曼峰越强, β -Ga₂O₃纳米带的结 晶度越好. 根据上述结果, 样品 C 是结晶质量较好 的 β-Ga₂O₃ 纳米带.

图 3 (a) 样品 C 的 X 射线衍射图; (b) 样品 C 的拉曼光谱 Fig. 3. (a) X-ray diffraction pattern of the sample C; (b) raman of the sample C.

通过 TEM, HRTEM 和 SAED 可以进一步观 察 β-Ga₂O₃ 纳米带的形貌和内部结构特征, 图 4(a) 为样品 C 的 TEM 图像. 从图中可以观察到纳米带 边缘笔直, 宽度均一, 样品表面的衍射条纹是由于 纳米带的弯曲折叠导致入射到样品表面的电子散 射相干^[26], 插图是单个纳米线的 SAED 模式, 衍射 点表明 β-Ga₂O₃ 纳米带是单晶结构. 图 4(b) 为纳 米带的 HRTEM 图像, 晶面间距分别为 0.187 和 0.267 nm, 分别对应单斜氧化镓的 (510) 面和 (-111) 面, SAED 的结果与 XRD 的结果一致, 没有看到 明显的晶格缺陷和非晶层, 说明晶体的质量较高.

图 4 (a) 样品 C 的 TEM 图像, 插图显示了 SAED 模式; (b) 样品 C 的 HR-TEM 图像

Fig. 4. (a) TEM image of the sample C. Inset shows the SAED pattern; (b) HR-TEM image of the sample C.

图 5 为样品 C 氧化镓纳米带的 PL 谱, 在室温 下使用激发波长为 295 nm 时, 在中心位 425 nm 处得到一个较强的蓝光发光峰.在过去的报道中, 氧化镓晶体或纳米线存在明显的紫外发射峰,但 图 5 中并未观察到明显的紫外峰.这是由于蓝光发 射峰是由位于氧空位形成的施主位置的电子和位 于镓空位形成的受主位置的空穴复合所导致的^[27], 因此这种现象归因于是在高温氮气环境下生长的, 氮气环境下氧空位缺陷不能及时修复,因此极易形 成氧空位或镓-氧空位对, 使氧化镓纳米结构呈较 强的蓝光发光性^[28].同时, Harwig 和 Kellendonk^[29] 提出一个观点,发光强度还与某些特定杂质和温度 有关,样品生长或掺杂 Zr⁴⁺或 Si⁴⁺会产生蓝色发射 峰,而某些如 Be, Ge 和 Sn 等杂质的存在下会产生 明显的绿色发射峰.此外,氧化镓在温度升高时, 蓝光发射峰会有少量增强的情况,但未发生明显的 移动,而绿光发射峰会出现明显的增强.这一蓝光 发光强度相对较弱的现象归因于在禁带中绿光波 段杂质能级比蓝光波段掺杂更深,使得绿光波段对 应的载流子跃迁数量少于蓝光对应的载流子跃迁 数^[30,31].本实验是在高温环境下采用硅基衬底生 长,实验中未掺入其他杂质,结果显示也未有绿色 发射峰,这一观点也验证了制备的超长纳米带具有 较高的纯度,而硅基衬底的使用也不排除会有 Si⁴⁺产生,实验结果与文献的一些观点一致.

4 结 论

本文研究了一种制备长达毫米级的β-Ga₂O₃ 纳米材料的方法.使用无催化剂碳热还原法改变生 长温度,可以在硅基衬底上生长出高产量、高密度 的超长β-Ga₂O₃纳米材料,通过不同生长温度对 β-Ga₂O₃表面形貌和晶体结构的影响表明,β-Ga₂O₃纳米带的最佳生长温度为900℃,宽度可以 超过44.3 µm,长度达到毫米级别.此外,还研究了 氧化镓纳米结构生长机理,发现高温蒸气压和成键 键合能是改变β-Ga₂O₃纳米结构的重要因素.通 过 TEM 对纳米带内部进行了观察,未观察到明显 的晶格缺陷和非晶层,拉曼表明制备的β-Ga₂O₃纳 米带的应变较小,缺陷密度较低,可以反映出获得 了较高的结晶质量.最后,通过 PL 测量观察到生 长的纳米带在 425 nm 处呈较强的蓝光发射峰,其 较强的发光性能在一维氧化镓光电纳米器件中具 有潜在的应用.

参考文献

- Feng Q J, Li F, Li T T, Li X Z, Shi B, Li M K, Liang H W 2018 Acta Phys. Sin. 67 218101 (in Chinese) [冯秋菊, 李芳, 李 形形, 李昀铮, 石博, 李梦轲, 梁红伟 2018 物理学报 67 218101]
- [2] Guo D, Guo Q, Chen Z, Wu Z, Li P, Tang W 2019 Mater. Today Phys. 11 100157
- [3] Wang H, Wang Y, Gong S Y, Zhou X Y, Yang Z X, Yang J, Han N, Chen Y F 2019 Cryst. 9 155
- [4] Ma J W, Fan H Q, Zheng X K, Wang H, Zhao N, Zhang M C, Yadav A K, Wang W J, Dong W Q, Wang S R 2020 J. Hazard. Mater. 387 122017
- [5] Zheng S W, Fan G H, He M, Zhao L Z 2014 Acta Phys. Sin.
 63 057102 (in Chinese) [郑树文, 范广涵, 何苗, 赵灵智 2014 物 理学报 63 057102]
- [6] He T, Zhang X D, Ding X Y, Sun C, Zhao Y K, Yu Q, Ning J, Wang R X, Yu G H, Lu S L, Zhang K, Zhang X P, Zhang B S 2019 Adv. Opt. Mater. 7 1801563
- [7] Wu Z Y, Jiang Z X, Song P Y, Tian P F, Hu L G, Liu R, Fang Z L, Kang J Y, Zhang T Y 2019 *Small* 15 1900580
- [8] Afzal A 2019 J. Materiomics 5 542
- [9] Gundiah G, Govindaraj A, Rao C 2002 Chem. Phys. Lett. 351 189
- [10] Cha S Y, Ahn B G, Ka ng, H C, Lee S Y, Noh D Y 2018 *Ceram. Int.* 44 16470
- [11] Tang C C, Fan S S, Chapelle M L, Li P 2001 Chem. Phys. Lett. 333 12
- [12] Feng Q Y, Liu J Y, Yang Y Q, Pan D Z, Xing Y, Shi X C, Xia X C and Liang H 2016 J. Alloys Compd. 687 964

- [13] Alhalaili B, Bunk R, Vidu R, Islam M S 2019 Nanomaterials 9 1272
- [14] Fang J W, Fan H Q, Tian H L, Dong G Z 2015 Mater. Charact. 108 51
- [15] Kumar M, Kumar V, Singh R 2017 Scr. Mater. 138 75
- [16] Calestani D, Alabib A B, Coppede N, Villani M, Lazzarini L, Fabbri F, Salviati G, Zappettinia A 2017 J. Cryst. Growth 457 255
- [17] Feng Q J, Lia T T, Lia F, Lia Y Z, Shi B, Gao C, Wang D Y, Liang H W 2019 J. Cryst. Growth 509 91
- [18] Korbutowicz R, Stafiniak A, Serafinczuk J 2017 Mater. Sci-Poland 35 412
- [19] Wang S, Li Y W, Xiu X Q, Zhang L Y, Hua X M, Xie Z L, Tao T, Liu B, Chen P, Zhang R, Zheng Y D 2019 Chin. Phys. B 28 028104
- [20] Kumar M, Kumar V, Singh R 2017 Nano Res. Lett. 12 184
- [21] Li J, Fan H Q, Chen X P, Cao Z Y 2009 Colloid. Surf., A 349 202
- [22] Wang S L, Sun H L, Wang Z, Zeng X H, Ungar G, Guo D Y, Shen J Y, Li P G, Liu A P, Li C R, Tang W H 2019 J. Alloys Compd. 787 133
- [23] Gonzalo A, Nogales E, Lorenz K, Víllora E G, Shimamura K, Piqueras J, Méndez B 2017 J. Lumin. 191 56
- [24] Hu D Q, Zhuang S W, Dong X, Du G T, Zhang B L, Zhang Y T, Yin J Z 2018 Mater. Sci. Semicond. Process. 75 31
- [25] Dohy D, Lucazeau G 1982 J. Mol. Struct. 79 419
- [26] Alonso-Orts M, Sanchez A M, Lopez I, Nogales E, Piquerasa J, Mendeza B 2017 Cryst. Eng. Commun. 19 6217
- [27] Cheng J P, Zhang X B, Kong F Z, Ye Y, Tao X Y 2006 Rare Met. Mater. Eng. 35 1629
- [28] Binet L, Gourier D 1998 J. Phys. Chem. Solids 59 1241
- [29] Harwig T, Kellendonk F 1978 J. Solid State Chem. 24 255
- [30] Harwig T, Kellendonk F, Slappendel S 1978 J. Phys. Chem. Solids 39 675
- [31] Li J, Fan H Q, Jia X H, Chen J, Cao Z Y, Chen X P 2009 J. Alloys Compd. 481 735

Preparation and characteristics of ultra-wide Ga_2O_3 nanoribbons up to millimeter-long level without catalyst^{*}

Qi Qi Chen Hai-Feng[†] Hong Zi-fan Liu Ying-Ying

Guo Li-Xin Li Li-Jun Lu Qin Jia Yi-Fan

(Key Laboratory of Advanced Semiconductor Devices and Materials, School of Electronic Engineering, Xi'an University of Posts & Telecommunications, Xi'an 710121, China)

(Received 1 April 2020; revised manuscript received 15 May 2020)

Abstract

Gallium oxide (Ga_2O_3) single crystal nanoribbons have the potential applications in electronic devices due to their unique properties. However, the current small surface area makes the fabrication of device based on this nano-material very complex and challenging, and the introduction of catalyst also makes the growth process of Ga_2O_3 nanomaterial complicated and hard to control. Therefore, it is very important to study the growth method and physical mechanism of Ga_2O_3 nanoribbon with the larger surface area without catalyst.

In this paper, the carbothermal reduction method is used to grow the Ga_2O_3 nanomaterial. In this paper, the gallium oxide powder mixes with the carbon nanotubes at a mass ratio of 1:1.5 without the catalyst, and then they are put into a high temperature diffusion furnace for the growth of Ga_2O_3 nanomaterials with different structures on silicon-based substrates by controlling the reaction temperature. In this paper, it is found that the reaction temperature directly affects the diameter and ratio of gallium oxide nanostructures. The reason is that the bonding energy of gallium oxide crystal is different in different crystal directions which leads to the different growth speed. The interface energy along the growth direction is the smallest and the growth speed is the fastest, while the growth speed along the vertical direction is slow. Finally, the crystal gradually grows into nanoriband, nanometer sheet and other structures.

In addition, the ultra-wide β -Ga₂O₃ single crystal nanobelt up to the millimeter level was prepared in this paper. This nanobelt's lateral dimension is observed to reach 44.3 µm under the scanning electron microscope (SEM), and the transmission electron microscope (TEM) is used to confirm that the nanoribbons have a single crystal structure. Further, Raman spectroscopy (Raman) shows that the β -Ga₂O₃ nanoribbons grown by this method have the smaller strain and the lower defect density. Additionally, the room temperature photoluminescence spectrum (PL) test shows that the gallium oxide nanoribbon emits a stable and highbrightness blue light at 425 nm at the excitation wavelength of 295 nm. This growth method can provide a useful way for the preparation of device-level gallium oxide nanoribbons in the future.

Keywords: β-Ga₂O₃, carbothermal reduction, crystal nanoribbons, defect densityPACS: 81.07.Gf, 61.82.Fk, 81.07.-b, 78.55.-mDOI: 10.7498/aps.69.20200481

* Project supported by the National Natural Science Foundation of China (Grant No. 61306131) and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2020JM-581).

† Corresponding author. E-mail: chenhaifeng@xupt.edu.cn