物理学报Acta Physica Sinica

Institute of Physics, CAS

二维黑磷对太赫兹波调控特性的理论研究

宋克超 霍帅楠 涂冬明 侯新富 吴晓静 王明伟

Theoretical study on the modulation characteristics of THz wave by two-dimensional black phosphorus Song Ke-Chao Huo Shuai-Nan Tu Dong-Ming Hou Xin-Fu Wu Xiao-Jing Wang Ming-Wei 引用信息 Citation: Acta Physica Sinica, 69, 174205 (2020) DOI: 10.7498/aps.69.20200105 在线阅读 View online: https://doi.org/10.7498/aps.69.20200105 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

黑磷纳米通道内压力驱动流体流动特性

Pressure-driven fluid flow characteristics in black phosphorus nanochannels 物理学报. 2019, 68(17): 170202 https://doi.org/10.7498/aps.68.20190531

黑磷的多声子共振拉曼散射

Resonant Multi-phonon Raman scattering of black phosphorus 物理学报. 2020, 69(16): 167803 https://doi.org/10.7498/aps.69.20200696

低维半导体偏振光探测器研究进展

Recent progress in polarization-sensitive photodetectors based on low-dimensional semiconductors 物理学报. 2019, 68(16): 163201 https://doi.org/10.7498/aps.68.20191002

基于谐振环的太赫兹宽带偏振转换器件研究

A broadband polarization converter based on resonant ring in terahertz region 物理学报. 2017, 66(18): 180701 https://doi.org/10.7498/aps.66.180701

基于领结型多孔光纤的双芯太赫兹偏振分束器

Dual-core terahertz polarization splitter based on porous fibers with near-tie units 物理学报. 2017, 66(2): 024209 https://doi.org/10.7498/aps.66.024209

非对称光束干涉制备二维微纳光子结构研究

Fabrication of two-dimensional micro-nano photonic structures by symmetry-lost beams interference 物理学报. 2017, 66(21): 217801 https://doi.org/10.7498/aps.66.217801

二维黑磷对太赫兹波调控特性的理论研究*

宋克超1) 霍帅楠1) 涂冬明1) 侯新富1) 吴晓静2) 王明伟1)†

1) (南开大学电子信息与光学工程学院, 天津 300350)

2) (南开大学附属人民医院, 生物医学与纳米光子学实验室, 天津 300121)

(2020年1月15日收到; 2020年5月5日收到修改稿)

根据 Drude 模型在理论上计算了太赫兹 (THz) 波段二维黑磷 (2D BP) 在扶手椅方向 (X) 和锯齿方向 (Y) 上电导率随频率的色散及吸收. 发现 2D BP 在 X和 Y两个方向上电导率不同, 从而导致了其介电常数 的不同, 进而可以对不同偏振方向的 THz 波起到不同的调制作用. 利用 2D BP 对 THz 波具有偏振依赖的特性, 设计了 2D BP-SiO₂ 三明治周期结构, 通过三维电磁场仿真软件 CST Microwave Studio 计算了这种结构 对 THz 波的调控特性, 研究发现, 这种结构对不同偏振方向入射的 THz 波有不同的吸收; 改变结构中底层 SiO₂ 层的厚度, 结构的吸收率也发生了相应的变化. 基于此, 研究提出了这种结构对偏振平行于 2D BP 扶手 椅方向和锯齿方向的 THz 脉冲有最大吸收率差时的底层 SiO₂ 层厚度. 结果表明这种结构可以用于设计新型 结构紧凑的 THz 吸收器和偏振器.

关键词:黑磷,偏振,太赫兹 PACS: 42.50.Wk, 42.25.Ja, 42.15.-i

DOI: 10.7498/aps.69.20200105

1 引 言

黑磷 (black phosphorus, BP) 是具有正交结 构且反应活性最低的磷同素异形体,其晶格是一个 相互链接的六元环^[1], 图 1 所示为单层 BP 的结构 示意图, X方向被称为扶手椅方向, Y方向被称为 锯齿方向^[2]. 块状黑磷于 1914 年被首次成功合成^[3], 在随后的几十年中, BP 研究取得了一定进展,研 究内容包括结构^[4,5]、输运、光学^[6–10]、声子、电学 性能^[11,12]、超导性能、以及在电池电极中的应用^[13] 等. 然而,由于 BP 亲水性很强,易被空气中的水 分腐蚀,而且在可见光和水汽条件下会发生光化反 应,多层 BP 的反应速率随层数减少而递增^[14],这 使得一百余年来, BP 并没有获得半导体工业界的 青睐,也没有引起光电领域的普遍关注^[15]. 随着石墨烯等二维材料制备技术的发展, BP 因具有二维层状薄膜结构与生俱来的材料特性 被人们所认识,并引起了物理、化学、半导体、材料 甚至光电领域科学家的广泛关注^[6]. 与石墨烯和过

图 1 单层 BP 结构示意图

Fig. 1. Schematic diagram of single-layer BP structure.

http://wulixb.iphy.ac.cn

^{*} 国家自然科学基金 (批准号: 11574159)、强场激光物理国家重点实验室开放基金 (中国科学院上海光学精密机械研究所) 和南开 大学中央高校基本科研业务费专项资金 (批准号: 63191108) 资助的课题.

[†] 通信作者. E-mail: wangmingwei@nankai.edu.cn

^{© 2020} 中国物理学会 Chinese Physical Society

渡金属硫化物 (transition metal dichalcogenides, TMDs) 类似, BP 具有层状结构, 但其层状结构为 独特的单层褶皱蜂巢结构^[16]. 虽然石墨烯由于无 质量的狄拉克费米子的诱导具有极高载流子迁移 率,但因为其带隙为零,导致电流通断比很低. TMDs 虽然具有足够的直接带隙 (0.4—2.3 eV) 和 极高的电流通断比,但其载流子迁移率却很低. BP 介于石墨烯和 TMDs 之间, 既具有足够高的载 流子迁移率又有很高的电流通断比, 而且 BP 的直 接电子带隙依赖于其厚度,在 0.3 eV (块状 BP) 到 接近 2 eV (单层 BP)的范围之间变化. 因此有望 在纳米光电子学领域成为不同于石墨烯和 TMDs 的新型二维材料^[13].

近年来,二维材料是科学界的研究热点,特别是 刚刚掀起研究热潮的二维黑磷 (two-dimensional black phosphorus, 2D BP) 材料. 对于 2D BP 的研 究,大部分研究集中在可见光到红外波段. 最近虽 然有一些学者已经开始在太赫兹 (terahertz, THz) 波段研究二维 BP,但是这些研究都是关于 2D BP 作为新型 THz 探测器的尝试,本文在理论上创 新性地研究了 2D BP 作为 THz 功能器件的可能性.

2 太赫兹波段二维黑磷响应特性的 理论模型及数值计算分析

等离子波可以仅沿电介质和金属之间的界面 激发,这与金属和入射电磁波相互作用的响应相 关.在很宽的频率范围内,金属的介电特性可以用 Drude 模型描述,该模型假定金属为自由电子气:

$$\varepsilon\left(\omega\right) = 1 - \frac{\omega_{\rm p}^2}{\omega^2 + \mathrm{i}\omega\gamma},\tag{1}$$

其中 $\omega_{\rm p}$ 代表金属的等离子体频率, ω 代表入射电磁 波的频率, γ 是碰撞频率,典型的等离子体频率 $\omega_{\rm p}$ 与可见光的频率 (10¹⁵—10¹⁶ Hz) 相当.在 Drude 模型中,不考虑电子之间的相互作用.响应施加电 磁场振荡的电子通过碰撞频率 $\gamma = 1/\tau$ 与核碰撞而 衰减, τ 被称为自由电子的平均碰撞时间.在室温 下, τ 的典型值约为 10⁻¹⁴ s,对应于 $r \approx 10^{14}$ Hz.

当频率达到中红外之后,金属中的自由电子与 太赫兹波相互耦合,形成等离子体共振,在金属表 面附近来回振动,形成电导率.2D BP 的电导率可 近似用 Drude 模型描述^[17]:

$$\sigma_{jj}(\omega) = \frac{\mathrm{i}D_{jj}}{\pi(\omega + \mathrm{i}\eta/\hbar)}, \ D_{jj} = \pi e^2 \frac{n}{m_{jj}}, \quad (2)$$

其中 D_{jj} 代表 j方向上 Drude 质量, j = X, Y, 分别对应 2D BP 的扶手椅方向和锯齿方向, 如图 1 所示; $\sigma_{jj(\omega)}$ 为 2D BP 的面内电导率; $i = \sqrt{-1}$; e为电子电量, $e = 1.602 \times 10^{-19}$ C, $\hbar = h/(2\pi)$, h为 Planck常数, m_{jj} 为哈密顿模型中 Γ 点附近的 面内有效电荷质量,其计算公式为^[18]

$$m_X = \frac{\hbar^2}{2\gamma^2/\Delta + \eta_{\rm c}}, \quad m_Y = \frac{\hbar^2}{2\upsilon_{\rm c}}, \tag{3}$$

其中 Δ 为 2D BP 的带隙宽度, 对于单层 BP, Δ = 2 eV; 两层 BP, Δ = 1.3 eV; 三层 BP, Δ = 1.07 eV; 当层数大于 10 时, Δ 接近块状 BP 的带隙宽度, $\Delta \approx 0.3$ eV; γ 描述了价带和导带之间的有效耦合^[17], 对于单层 BP, $\gamma = 4\pi/a$ V·m, 这里 π/a 是单层 BP 在 X方向的第一布里渊区宽度, $a \approx 0.223$ nm; $\eta_c \eta_v_c$ 与 BP 中导带的有效电子质量有关, $\eta_c = \hbar^2/(1.4m_0)$, m_0 为电子的静止质量, $m_0 = 9.10938 \times 10^{-31}$ kg. 将这些参数代入 (3) 式, 可以得到单层 BP 在 Y方向有效电子质量为 X方向的近 5 倍, 即 $m_X \approx 0.15m_0$, $m_Y \approx 0.7m_0$. 对于二维材料, 其介电函数的表达式为

$$\varepsilon_{jj} = \varepsilon_{\rm rr} + \frac{{\rm i}\sigma_{jj}}{\varepsilon_0 \omega d},\tag{4}$$

其中 ε_{jj} 为 2D 材料在 j方向的介电常数, ε_{rr} 为相 对介电常数, 对于 2D BP, $\varepsilon_{rr} = 5.76^{[17]}$, 是真空介 电常数, $\varepsilon_0 = 8.854 \times 10^{-12}$ F/m , d是 2D BP 的 厚度.

Rodin 等^[19] 的理论表明, 2D BP 具有可调的 直接带隙, 在垂直其层面方向的单向应力作用下可 以从半导体转变为 2D 金属, 进而具备在 THz 波 的激发下产生表面等离激元的条件. Low 等^[17] 的 理论表明, 由于 BP 独特的蜂窝式层状结构, 其表 面等离激元在不同方向上具有高度的各项异性, 在 j = X, Y方向上等离激元色散公式为

$$\omega_{\mathrm{p}ii,jj} = \sqrt{\left(\frac{D_{jj}}{2\pi\varepsilon_0\kappa}\right)q},\tag{5}$$

其中 κ 为两种半无限介质的有效相对介电常数. 2D BP 的等离激元在不同方向色散不同,这是由于有 效电子质量的各向异性造成的,沿 2D BP 的 X 方 向的等离激元共振频率比沿 Y 方向更高^[17].

根据 (2) 式, 在理论上计算 THz 波段 2D

BP 在 X和 Y两个正交方向上电导率随频率的色 散. 为了观察不同电子掺杂浓度下 2D BP 的电导 率在两个方向的变化规律,取3组不同的值,分别 $\mathbb{E} n = 1 \times 10^{13} \text{ cm}^{-2}, n = 5 \times 10^{13} \text{ cm}^{-2}, n = 1 \times 10^{13} \text{ cm}^{-2}$ 10^{14} cm⁻², 假定 2D BP 的厚度 d = 1 nm, 另外选 择参数 $\eta = 10$ meV. 图 2 是理论计算的不同电子 掺杂的 2D BP 在 0.1-6.0 THz 之间的电导率色 散曲线.由 (4) 式可以看出, 2D BP 电导率的虚部 对应介电常数的实部,代表对电磁波的色散;电导 率的实部对应介电常数的虚部,代表对电磁波的衰 减和损耗. 从图 2 可以看到, 实部电导率随频率的 增加逐渐减小, X方向的实部电导率是 Y方向的 1.5 倍以上, 表明了 2D BP 在 X 方向的吸收大于 Y方向的吸收;虚部电导率随频率的增加表现为先 增加再减小,在2 THz 左右达到最大值, X 方向的 虚部电导率大于 Y方向的. 另外, 电子掺杂浓度越 高 2D BP 的电导率越大, 从图 2 可以看到 X 方向 的电导率对电子掺杂浓度表现得更加敏感.

图 2 2D BP 的电导率色散曲线 (a) 电导率的实部; (b) 电导率的虚部

Fig. 2. Conductivity dispersion curve for two-dimensional BP: (a) The real part of the conductivity; (b) the imaginary part of the conductivity.

将电导率的实部和虚部代入 (3) 式, 发现 2D BP 实部介电常数随频率的增加而增加, 表现为正 色散, X方向的色散小于 Y方向的色散 (X, Y方 向如图 1 所示); 虚部介电常数随频率的增加而减 小, X方向的吸收大于 Y方向的吸收. 通过计算, 得出 X方向的实部介电常数在频率小于 132.2 THz 时为负数, Y方向的介电常数在频率小 于 99.95 THz 时为负数. 2D BP 在 X和 Y两个方 向电导率的不同导致了其介电常数的不同, 进而可 以对不同偏振方向的光起到不同的调制作用.

3 模型设计

基于 2D BP 的偏振依赖特性,本文在理论上 设计了一种 2D BP-SiO₂ 三明治周期结构,如图 3 所示,并使用三维电场仿真软件 CST Microwave Studio 模拟该结构对 THz 波的调控.

图 3 2D BP-SiO₂ 三明治周期结构示意图 Fig. 3. Schematic diagram of 2D BP-SiO₂ sandwich structure.

在 CST 中建好结构模型后需要设定结构中各 材料的参数,结构由四层厚度相同的 2D BP,五层 SiO₂和一层镀金镜组成,BP和 SiO₂交替排列, 2D BP 的厚度为 1 nm,周期为 250 nm,宽度和长 度都为 215 nm,扶手椅方向平行于结构的 X方向, 锯齿方向平行于结构的 Y方向,如图 1 所示, $d_1 =$ 20 nm, $d_2 = d_3 = d_4 = 0.5 \ \mu m$.SiO₂在 THz 波段 的介电参数利用 MiraNaftaly^[17]文章中的数据. 为了简化计算模型,取 SiO₂的折射率为 1.96,且忽 略其色散.在计算这种结构对 THz 波的吸收时,通 过改变底层 SiO₂ 的厚度 d_5 调节结构对 THz 波的 吸收,以找出最大吸收时底层 SiO₂ 的厚度. 仿真计 算中, THz 脉冲沿结构的 Z方向正入射, 厚度 d_5 取五组不同参数, 分别为 6.5, 7.5, 8.5, 9.5 和 10.5 µm, 每组厚度参数下, 分别计算入射 THz 脉 冲的偏振方向沿 X和 Y两种情况下的吸收曲线, 如图 4 所示. 很显然, 该结构具有很强的偏振依赖 性, 对偏振方向平行 X 轴的 THz 脉冲有很大的吸 收. 可以发现, 随着底层 SiO₂ 厚度的增加, 这种结 构对两种不同偏振方向的 THz 脉冲表现出不同的 变化趋势吸收率, 当 THz 脉冲的偏振方向平行 X 轴时, 吸收率先增加后减小, 在 $d_5 = 9.5$ µm 时, 吸收率在 3.86 THz 附近达到 93%; 当 THz 脉冲的 偏振方向平行 Y 轴时, 吸收率逐渐增加, 而且吸收 峰有明显的红移. 为了得出这种结构的底层 SiO₂ 在多大厚度下对两种不同偏振方向的 TH 脉冲有 最大的吸收率差, 进一步将不同底层厚度下两个偏

图 4 在不同厚度的底层 SiO₂下, 2D BP-SiO₂三明治周 期结构的吸收率

Fig. 4. Absorptivity of a 2D BP-SiO₂ sandwich periodic structure with different thicknesses of the underlying SiO₂.

图 5 在不同厚度的底层 SiO₂下, 2D BP-SiO₂三明治周 期结构在 X和 Y两个方向的吸收率差随频率的变化

Fig. 5. Absorption rate difference of 2D BP-SiO₂ sandwich periodic structure in two directions of X and Y under different thicknesses of SiO₂.

振方向的吸收率相减,得到如图 5 所示的结果.可 以看到当厚度 d₅ = 7.5 μm 时,这种结构对沿 X和 Y方向偏振的 THz 脉冲有最大的吸收率差, 而且这条吸收率差曲线的峰覆盖了最宽的 THz 频 段.因此,这种结构可以用来设计偏振依赖型 THz 吸收器,也可以设计结构紧凑的新型 THz 偏振器.

4 结 论

本文的设计基于 2D BP-SiO₂ 三明治周期结构,结果发现这种结构对两种不同偏振方向的 THz 脉冲表现出不同的变化趋势吸收率,仿真结 果表明,通过改变结构中底层的 SiO₂ 厚度,可以改 变结构的吸收率,并找到了吸收率最大时的底层厚 度.理论研究结果表明,这种结构可以用来设计偏 振依赖型 THz 吸收器,也可以设计结构紧凑的新 型 THz 偏振器,但是这种结构对 THz 波的偏振调 控特性有限,还有很大的提升空间,因此一方面需 要进一步在理论设计并优化 2D BP 人工特异材 料 THz 调控器件的性能,另一面也需要在实验上 不断尝试.

参考文献

- [1] Asahina H, Shindo K, Morita A 1982 Phys. Soc. Jpn. 51 1193
- [2] Viti L, Hu J, Coquillat D, et al. 2015 Adv. Mater. 27 5567
- [3] Bridgman P 1914 JACS 36 1344
- [4] Li S, Zhang Y, Wen W, et al. 2019 Biosens. Bioelectron. 133 223
- [5] Zhao J, Zhu J, Cao R 2019 Nat. Commun. 10 4062
- [6] Bolognesi M, Brucale M, Lorenzoni A, et al. 2019 Nat. Nanotechnol. 11 17252
- [7] Izquierdo N, Myers Jason C, Seaton Nicholas C A 2019 ACS Nano 13 7091
- [8] Wang J, Jiang Y, Hu Z 2017 Opt. Express 25 22149
- [9] Jimin K, Seung S B, Sung W J 2017 Phys. Rev. Lett. 119 226801
- [10] Liu X, Lee M A, Sungjo P 2019 ACS Appl. Mater. Inter. 11 23558
- [11] Li L, Yang F, Ye G J 2016 Nat. Nanotechnol. 10 593
- [12] Liu X, Wood Joshua D, Chen K 2015 J. Phys. Chem. Lett. 9 773
- [13] Wang H, Zhang X, Xie Y 2018 ACS Nano 12 9648
- [14] Favron A, Gaufrès E, Fossard F, et al. 2015 Nat. Mater. 14 826
- [15] Ling X, Wang H, Huang S, et al. 2015 PNAS 112 4523
- [16] Wang X, Jones A M, Seyler K L 2015 Nat. Nanotechnol. 10 517
- [17] Low T, Roldán R, Wang H, et al. 2014 Phys. Rev. Lett. 113 106802
- [18] Naftaly M, Miles R E 2007 Proc. IEEE 95 1658
- [19] Rodin A, Carvalho A, Neto A C S 2014 Phys. Rev. Lett. 112 176801

Theoretical study on the modulation characteristics of THz wave by two-dimensional black phosphorus^{*}

Song Ke-Chao¹⁾ Huo Shuai-Nan¹⁾ Tu Dong-Ming¹⁾ Hou Xin-Fu¹⁾ Wu Xiao-Jing²⁾ Wang Ming-Wei^{1)†}

1) (College of Electronic Information and Optical Engineering, Nankai University, Tianjing 300350, China)

2) (Nankai University Affiliated Hospital, Laboratory of Biomedicine and Nanophotonics, Tianjin 300121, China)

(Received 15 January 2020; revised manuscript received 5 May 2020)

Abstract

Using the Delude model, we theoretically calculate the dispersion of conductivity with frequency in the orthogonal direction of the two-dimensional black phosphorus (2D BP) x and y direction in the THz band. We find that the conductivity in the x direction is more sensitive to the electron doping concentration. The difference between 2D BP conductivities in both directions leads to the difference in dielectric constant which in turn can modulate light in different polarization directions. Using 2D BP to polarize the THz wave, the 2D BP-SiO₂ periodic sandwich structure is designed. The three-dimensional electromagnetic field simulation software CST Microwave Studio can be used to calculate the regulation characteristics of this structure to THz wave. It is found that this structure has different polarization directions, and the incident THz wave has different absorption. By changing the thickness of the underlying SiO₂ layer in the structure it is found that the absorption rate of this structure also changes accordingly. When the polarization direction of the THz pulse is parallel to the x axis, the absorption rate first increases and then decreases. When $d_5 = 9.5 \,\mu$ m, the absorption rate reaches 93% near 3.86 THz; when the polarization direction of the THz pulse is parallel to the y axis, the absorption peak has a significant red shift.

Keywords: black phosphorus, polarization, THz PACS: 42.50.Wk, 42.25.Ja, 42.15.-i

DOI: 10.7498/aps.69.20200105

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11574159), the Open Fund of the State Key Laboratory of High Field Laser Physics, China (Shanghai Institute of Optics and Fine Mechanics), and the Special Research Foundation for the Central University of Nankai University, China (Grant No. 63191108).

 $[\]dagger$ Corresponding author. E-mail: wangmingwei@nankai.edu.cn