物理学报Acta Physica Sinica

Institute of Physics, CAS

高性能太赫兹发射:从拓扑绝缘体到拓扑自旋电子

王航天 赵海慧 温良恭 吴晓君 聂天晓 赵巍胜

High-performance THz emission: From topological insulator to topological spintronics Wang Hang-Tian Zhao Hai-Hui Wen Liang-Gong Wu Xiao-Jun Nie Tian-Xiao Zhao Wei-Sheng 引用信息 Citation: Acta Physica Sinica, 69, 200704 (2020) DOI: 10.7498/aps.69.20200680 在线阅读 View online: https://doi.org/10.7498/aps.69.20200680 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

拓扑绝缘体中的超快电荷自旋动力学

Ultrafast charge and spin dynamics on topological insulators 物理学报. 2019, 68(22): 227202 https://doi.org/10.7498/aps.68.20191433

强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展

Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators

物理学报. 2019, 68(22): 227901 https://doi.org/10.7498/aps.68.20191450

基于蜂窝晶格声子晶体的双频带声拓扑绝缘体

Dual-band acoustic topological insulator based on honeycomb lattice sonic crystal 物理学报. 2019, 68(22): 224301 https://doi.org/10.7498/aps.68.20190951

三维拓扑绝缘体antidot阵列结构中的磁致输运研究

Magnetotransport in antidot arrays of three-dimensional topological insulators 物理学报. 2018, 67(4): 047301 https://doi.org/10.7498/aps.67.20172346

拓扑材料中的超导

Superconductivity in topological materials 物理学报. 2020, 69(2): 020301 https://doi.org/10.7498/aps.69.20191627

二维有机拓扑绝缘体的研究进展

Research progress of two-dimensional organic topological insulators 物理学报. 2018, 67(23): 238101 https://doi.org/10.7498/aps.67.20181711

^{专题:太赫兹自旋光电子} 高性能太赫兹发射:从拓扑绝缘体 到拓扑自旋电子^{*}

王航天1)2) 赵海慧1) 温良恭1)2) 吴晓君3) 聂天晓1)2)† 赵巍胜1)2)

(北京航空航天大学微电子学院,费尔北京研究院,北京 100191)
 2)(北京航空航天大学青岛研究院,青岛 266000)
 3)(北京航空航天大学电子信息工程学院,北京 100191)
 (2020 年 5 月 8 日收到; 2020 年 6 月 4 日收到修改稿)

利用飞秒激光脉冲激发铁磁/非磁异质结构有望实现高效太赫兹辐射,从而打破制约太赫兹技术快速发展的瓶颈.拓扑绝缘体是一种新型二维材料,其自旋霍尔角远大于重金属材料,可以与铁磁层结合构成自旋 太赫兹发射器.为了研究拓扑绝缘体/非磁异质结中的太赫兹产生和调控机理,本综述从飞秒激光激发的超 快光电流响应入手,结合拓扑绝缘体的晶体结构与电子结构,分析了拓扑绝缘体薄膜中的太赫兹发射机理, 揭示了不同非线性效应产生的超快光电流随外界条件的依赖关系,证实了使用多种手段调控拓扑绝缘体出 射非线性太赫兹辐射的可能性;以铁磁/重金属异质结为例,探究了自旋太赫兹发射器的优势与调控方法.结 合这两种发射机理,通过非线性太赫兹与自旋太赫兹的合成作用,可以实现在拓扑绝缘体/铁磁异质结中偏 振可调谐的太赫兹发射.

关键词:太赫兹源,拓扑绝缘体,超快光电流,自旋太赫兹 PACS: 07.57.Hm, 85.75.-d, 64.70.Nd, 73.50.Pz

DOI: 10.7498/aps.69.20200680

1 引 言

太赫兹波指的是频率介于 0.1—10.0 THz 之 间的电磁波,其频段在电磁波谱中位于微波和远红 外之间,在无损检测、保密通讯、凝聚态物理等领 域都有广泛的应用前景^[1-5],而缺乏低功耗、高效 的辐射源是目前制约太赫兹技术发展的主要因素. 当前,实验室中主要通过基于铌酸锂晶体倾斜波前 技术的光整流技术来获得强场太赫兹辐射^[6,7]. 然 而,这种技术不仅对相位匹配的精确度要求高,光 路搭建复杂,而且铌酸锂晶体对太赫兹辐射不能得到 有效的利用.其他光子学方法,如基于有机晶体的 光学整流方法^[8,9]、基于非线性晶体的差频效应^[10]、 基于表面等离子体增强的大孔径光导天线等^[11,12], 都有各自的缺陷.基于非线性晶体的差频效应得到 的太赫兹频率过高,很难推广到 15 THz 以下,阻 碍了光差频太赫兹辐射源在凝聚态领域的应用;基 于有机晶体的光学整流和光电导天线太赫兹辐射 源受制于系统的复杂度,无法获得稳定可靠的强场 太赫兹输出.因此,寻找新的材料体系与物理结构 设计的辐射源是太赫兹领域重要的研究方向.

最近,一系列利用飞秒激光脉冲诱导磁性材料 产生太赫兹辐射的实验引起了广泛关注^[13-15].在 飞秒激光的激发下,磁有序材料的超快退磁过程可

* 国家重点研发计划 (批准号: 2018YFB0407602)、国家自然科学基金 (批准号: 61774013, 11644004) 和国家科技重大专项 (批准 号: 2017ZX01032101) 资助的课题.

© 2020 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

[†] 通信作者. E-mail: nietianxiao@buaa.edu.cn

产生太赫兹辐射^[16-18]. 进一步, 2013年, Kamprath 等[19] 首次利用飞秒激光脉冲激发铁磁/非磁金属 异质结 Fe/Au,应用逆自旋霍尔效应 (inverse spin-Hall effect, ISHE) 得到了太赫兹辐射, 开创了一种 结合超快动力学与自旋电子学的新型自旋太赫兹 发射器.该发射方法具有制备简单、破坏阈值高、 频带覆盖范围宽等优点. 然而, Au 的自旋霍尔系 数较小,降低了 ISHE 中自旋-电荷转换效率,限制 了辐射太赫兹的强度,其太赫兹发射强度只有非线 性晶体 ZnTe 的 1%. 近年来, 随着对异质结材料与 结构的不断优化探索,目前已能够在 W/CoFeB/ Pt 的三层异质结中实现强度相当于 ZnTe 晶体的 太赫兹发射^[20]. 然而, 自旋太赫兹发射器在单一脉 冲的激发下仅能实现线偏振太赫兹辐射,虽然可以 通过双抽运[21] 或级联激光器[22] 激发任意偏振的 太赫兹波,但是这些系统设计较为复杂,难以集成 与小型化,亟待突破性的进展.

三维拓扑绝缘体材料,如 Bi₂Se₃, Bi₂Te₃, Sb₂-Te₃及其合金 (Bi_rSb_{1-r})₂Se₃, (Bi_rSb_{1-r})₂Te₃等最 初仅作为热电材料而被广泛研究. 2008年, 斯坦福 大学张首晟研究组[23] 在理论层面预言了二维拓扑 绝缘体的存在,由于其特殊的拓扑非平庸特性,拓 扑绝缘体再次引起人们的关注并迅速成为凝聚态 物理方向的热门研究领域. 拓扑绝缘体还可以进一 步地推广到三维体系[24-26],在三维拓扑绝缘体的 体能带隙中存在无能隙的二维拓扑表面态. Fu 和 Kane^[27] 通过理论计算提出了甄别三维拓扑绝缘体 的简便方法,并且得益于角分辨光电子能谱 (angular resolution photoelectron spectroscopy, ARPES) 的发展,在实验上也已经证实了可以通过观测某种 材料的表面态在两个时间反演不变点之间穿越费 米能级的次数是否为奇数次来确定其是否具有拓 扑性^[28]. 这种受时间反演对称保护的表面态赋予 拓扑绝缘体很多特殊的性质,如无质量的狄拉克费 米子、自旋-动量锁定[29]和无耗散螺旋性边缘态[30] 等. 通过在三维拓扑绝缘体中引入垂直的铁磁性, 会使上下表面态在狄拉克点打开能隙,进而拥有不 同的拓扑性质,此时薄膜侧面作为两个不同拓扑相 的边界,会呈现手性的边缘态.于是,在三维拓扑 绝缘体可以实现许多新奇的量子效应,如量子反常 霍尔效应[31]、马约拉纳费米子等[32].因此,拓扑绝 缘体被认为是实现未来超低功耗自旋电子器件和 量子计算的重要材料[33]. 更重要的是, 由于拓扑绝 缘体具有强自旋轨道耦合效应,其自旋霍尔角超过 已知重金属1个数量级以上^[34,35],可以实现高效的 自旋电荷转换,所以,将拓扑绝缘体与铁磁性材料 结合构成异质结构有望实现高效可控自旋太赫兹 源;除了自旋太赫兹辐射外,异质结中的拓扑绝缘 体存在非线性瞬态光电流引起的太赫兹辐射^[36,37], 有望通过改变入射光偏振态等手段实现对两种太 赫兹辐射的分别调制,进而实现出射太赫兹波的任 意调谐.

本综述从拓扑绝缘体的光电流分析入手,首先 介绍拓扑绝缘体中光电流引入的非线性太赫兹发 射机理;接下来,通过分析铁磁/非磁异质结表面 的自旋注入和自旋-电荷转换机制等超快磁学现象, 深入讨论了自旋太赫兹发射的理论机制;进一步, 通过介绍拓扑绝缘体/铁磁异质结中太赫兹发射的 研究进展,讨论了拓扑自旋太赫兹的优势和未来的 发展方向.

2 拓扑绝缘体中的太赫兹发射

2.1 拓扑绝缘体的基本结构

拓扑绝缘体是一种 V-VI 族半导体, 常见的辉 碲铋矿单晶拓扑绝缘体 (Bi₂Se₃族, 例如 Bi₂Te₃, Sb₂Te₃)呈六方晶系, 空间点群为 $D_{3d}^5(R\overline{3}m)$. 图 1 以 Bi₂Se₃ 为例描述了拓扑绝缘体的晶格结构^[38]. 拓扑绝缘体可描述为由五层原子周期性排列而成 的超晶格结构,每五层原子为一个QL(quintuple layer) 层,厚度为 0.955 nm. 相邻两 QL 层之间由弱范德 瓦耳斯力相连,并不存在任何化学键,因此使用机 械剥离^[39]或湿法转移^[40]等方法可以从块材中轻 易剥离出纳米级厚度的薄膜,所以拓扑绝缘体也被 认为是一种经典的二维材料. 除了从块材中剥离之 外,目前常用的制备拓扑绝缘体薄膜的方法是使用 分子束外延技术 (molecular beam epitaxy), 通过 对生长动力学的控制,实现原子级别精度的薄膜生 长,并且可大幅减少材料的缺陷.由于范德瓦耳斯 作用可以一定程度上释放在生长过程中因薄膜-衬 底晶格不匹配产生的应力,所以拓扑绝缘体可以在 失配度较高的衬底材料上生长[41]. 在太赫兹发射 实验中,为了保证样品对飞秒激光的透射率,常常 使用蓝宝石 (Al₂O₃ 0001) 作为生长拓扑绝缘体的 衬底材料[42].

图 1 Bi₂Se₃的晶体结构 (a) 三维晶体结构, *t*_{1,2,3}代表晶胞的基矢, 红色框标注的是 Bi₂Se₃ 的 QL 层; (b) Bi₂Se₃ 的布里渊区; (c) 在 *xy* 平面内, 三角形的晶格结构有 A, B, C 三种可能的结构^[38]

Fig. 1. The crystal structure of Bi_2Se_3 : (a) 3D schematic of the structure, where $t_{1,2,3}$ present the primitive lattice vector; (b) Brillioun zone of Bi_2Se_3 ; (c) the *xy*-plane triangle lattice has three possible positions A, B and C^[38].

在 Bi₂Se₃的每个 QL 层内,相邻原子之间由共价键相连,原子按照 ABCAB 的晶体结构堆垛排列 (图 1(c)).选择六方晶系的 *a*, *b* 和 *c* 作为晶系的 *x*, *y* 和 *z* 轴,由图 1(a)可知,Bi₂Se₃ 沿 *z* 轴呈三重螺旋对称,而沿 *x* 轴呈两重螺旋对称,并且在原点呈空间反演对称.图 1(c)展示的是 Bi₂Se₃ 晶格在 *xy* 平面的投影 (即晶体的 0001 面),显然可以看出,在晶体的表面空间反演对称性被破坏,晶格的空间群也从 *D*³_{3d} 变为*C*_{3v}. 拓扑绝缘体这种中心对称破缺的晶体结构是纯拓扑绝缘体能够激发超快光电流的重要条件.

为了确认拓扑绝缘体的表面电子态,常常使用 ARPES 来观测生长薄膜的表面和体能带结构. 由于拓扑绝缘体表面电子态具有导体的特性,而体态绝缘,所以可以通过 ARPES 观察到清晰的量子 阱态,如图 2 所示,仍以 Bi₂Se₃ 为例^[43].由于 Bi₂Se₃ 主拓扑数为 1,属于强拓扑绝缘体,所以其表面态只包含一个狄拉克锥^[44].在 *E-k*能带图中,自旋轨道耦合导致体能带反转构成拓扑表面态,表面态贯穿体带隙形成狄拉克锥.不同于自旋简并的体能带,这里的两条表面态是高度自旋极化的,不同表面态上的电子自旋垂直于 *E-k* 面且极化方向相反. 由于时间反演对称保护,在电子动量由 k 变为-k 时,其自旋方向也会相应改变.正是强自旋轨道耦 合效应赋予了拓扑绝缘体表面的自旋-动量锁定特 性,同时此效应也使拓扑绝缘体能够通过 ISHE 实 现高效自旋-电荷转换.在实验上通常使用自旋霍 尔角 (spin Hall angle, θ_{SHE})来描述某种材料的电 荷-自旋相互转换能力^[45,46],拓扑绝缘体的自旋霍 尔角比普通重金属大得多,因此可以用于实现高效 自旋流利用,进而实现高效自旋太赫兹发射,这将 在第4节详细讨论.

图 2 ARPES 能谱测量的 Bi₂Se₃ 的表面能带结构^[43] Fig. 2. ARPES measurements of surface electronic band of Bi₂Se₃^[43].

2.2 拓扑绝缘体中的超快光电流

飞秒激光是指时域脉冲宽度在飞秒量级的激 光脉冲,常用的飞秒激光中心波长为800 nm,激光 能量为1.5 eV. 拓扑绝缘体在受到飞秒激光脉冲激发 时,激光能量远大于其体带隙宽度(约为400 meV), 使得低能电子吸收能量向上跃迁^[47,448],激发超快 光电流 J,产生太赫兹辐射,其强度正比于∂J/∂t. Fang等^[49]使用线偏振飞秒激光脉冲激发 Bi₂Te₃, 并使用太赫兹时域光谱系统测量其出射的太赫兹 信号,进而得到拓扑绝缘体的超快光电响应.他们 将线偏振激光激发超快光电流的物理机理分为线 性和非线性效应,其中线性效应包括我流子的漂移 和扩散运动^[50],而非线性效应包括光生伏打效应 (photogalvanic effect, PGE)、光子牵引效应 (photo-drag effect, PDE) 以及光整流效应 (optical rectification, OR)等二阶效应^[51–54].如图 3 所示,

图 3 线偏振激光激发下拓扑绝缘体中的超快光电流效 应 (a) 分离出的非线性效应产生的太赫兹电场随方位角 的变化; (b) 不同效应产生的太赫兹分量在合成太赫兹辐 射中的占比^[49]

Fig. 3. Separation of the photo-currents in topological insulator excited by linear femtosecond laser pulse: (a) The derived terahertz signals due to nonlinear currents as a function of azimuthal angle; (b) the extracted terahertz electric field generated by different effects^[49]. Fang 等通过对出射太赫兹的时域分解, 证明了拓 扑绝缘体的非线性效应在超快光电流响应中占主 导地位. 这种非线性效应引入的太赫兹辐射被称为 非线性太赫兹辐射.

为了研究圆偏振光对拓扑绝缘体的激发作用, Hamh 等^[48] 在飞秒激光器后面添加一个 1/4 波片, 并转动波片的角度产生不同偏振态的激光激发 Bi₂Se₃ 样品,通过对出射太赫兹信号的分析得到光 电流随激光偏振态的变化关系.实验结果显示拓扑 绝缘体中产生的超快光电流与入射光的手性有关 (图 4).随后,Braun 等^[55] 证明了在圆偏振光的激 发下,拓扑绝缘体中存在一个与抽运光手性无关的 转移电流和手性依赖的注入电流,且左旋和右旋圆 极化光激发的注入电流极性相反.这两种电流都来 自于拓扑绝缘体表面的 PGE 效应^[56].

在 1980 年, Belinicher 和 Sturman^[57] 曾经预 言对称破缺晶体中存在 PGE 效应. 由 2.1 节可知,

图 4 (a), (b) 样品方位角 $\phi = 30^{\circ}$, 在左旋和右旋圆极化 光激发下, 时域和频域下 Bi₂Se₃产生的太赫兹信号; (c) 太 赫兹幅值随激光偏振态的变化关系, 其中蓝色曲线代表时 域信号, 黄色曲线代表频域信号^[45]

Fig. 4. (a), (b) THz signals emitted from Bi_2Se_3 in time and frequency domains under illumination of left- and righthanded circularly polarized light where the azimuth $\phi = 30^\circ$; (c) THz-wave amplitudes as a function of the polarity of pump laser in time (blue curves) and frequency domains (yellow curves)^[48]. 拓扑绝缘体在表面具有中心对称破缺的结构,由于 系统的不对称性激发和弛豫过程,飞秒激光的照射 可以使样品中产生由 PGE 效应引入的光电流,并 且根据激光的偏振态会产生两种不同的光电效应: 圆光生伏打效应 (circular photogalvanic effect, CP-GE) 和线光生伏打效应 (linear photogalvanic effect, LPGE).为了讨论不同偏振光对这两种光伏打效 应的作用,使用非线性响应理论来唯象地描述拓扑 绝缘体材料中 PGE 效应引起的电磁辐射响应^[37,58]:

$$j_{\text{PGE}} = \sigma_{\lambda\mu\nu} E_{\mu} \left(\omega \right) E_{\nu}^{*} \left(\omega \right), \qquad (1)$$

这里, j_{PGE} 代表 PGE 效应产生的二阶电流; $\sigma_{\lambda\mu\nu}$ 代表系统的三阶光电导张量; $E(\omega)$ 表示电场振幅 为 E, 频率为 ω . 对于任意系统来说, 描述其物理性 质的张量不随任何对称操作而改变. 然而, 由 (1) 式可知, 空间反演对称会使电流反向, 而 $E_{\mu}(\omega)$ $E_{\nu}^{*}(\omega)$ 保持不变, 则其三阶张量变号, 即 $\sigma_{\lambda\mu\nu} \rightarrow$ $-\sigma_{\lambda\mu\nu}$, 于是可以得到 $j_{PGE} = \sigma_{\lambda\mu\nu}E_{\mu}(\omega) E_{\nu}^{*}(\omega) =$ $-\sigma_{\lambda\mu\nu}E_{\mu}(\omega) E_{\nu}^{*}(\omega) = 0$, 因此 PGE 效应只可能在 非中心对称晶体中发生^[59,60]. 由图 5 可知, 拓扑绝 缘体材料具有中心对称的体和非中心对称的表面, 所以可以推断出, PGE 效应只存在于拓扑绝缘体 的表面. 进一步地可以将(1) 式改写为^[61,62]

$$j_{\text{PGE}} = \gamma_{\lambda\mu} \mathbf{i} (\boldsymbol{E} \times \boldsymbol{E}^*)_{\mu} + \chi_{\lambda\mu\nu} \left(E_{\mu} E_{\nu}^* + E_{\nu} E_{\mu}^* \right), \quad (2)$$

其中. 第一项代表 CPGE 对于超快光电流的贡献, 第二项代表 LPGE 的贡献.由 (2) 式可知,在线偏 振光激发时, $E \times E^* = 0$, 即拓扑绝缘体表面产生 的超快光电流没有 CPGE 的分量; 而在圆偏振光 激发时,其表面产生一个额外的 CPGE 光电流分 量,并且这个分量在左旋和右旋光激发时的极性相 反. 也就是说, 在飞秒激光脉冲激发拓扑绝缘体的 实验中,如果使用1/4波片改变抽运光的极化状 态,由于 CPGE 只对圆偏振光有响应,可以通过计 算筛选出与波片转角呈180°周期的太赫兹信号,即 可以得到 CPGE 的贡献, 这与 Braun 等^[55] 的实验 结果是一致的. 事实上, CPGE 效应与拓扑绝缘体 的表面态有关,其产生的光电流来源于两个跃迁过 程: 体价带电子向表面态的跃迁和表面态电子向体 导带的跃迁.因此,可以通过计算 CPGE 产生的太 赫兹辐射,分析样品的表面态性质,如表面能带结 构、表面载流子迁移率、不对称散射率等[47,63,64].

在拓扑绝缘体的非线性效应中,除了 LPGE 与 CPGE 之外,还存在着 PDE 和二阶非线性 OR,即飞秒激光脉冲激发拓扑绝缘体时的非线性光电流响应可以表示为

 $j_{\lambda} = j_{PGE} + T_{\lambda\delta\mu\nu}q_{\delta}E_{\mu}E_{\nu}^{*} + j_{OR}, \qquad (3)$ 其中, 第二项描述了 PDE 对非线性电流的贡献.

图 5 (a) Seifert 等^[7]使用的 YIG/Pt 异质结构; (b) 在 YIG/Pt 中插入 1.9 nm 的铜, 由于自旋注入被阻隔, 太赫兹信号减弱^[74]; (c) Wu 等^[82]使用的 W/Co 异质结构; (d) W/Co 异质结构的太赫兹发射强度接近于 500 μm 的 ZnTe 晶体^[82]

Fig. 5. (a) The YIG/Pt heterostructure used by Seifert. et al.^[74]; (b) after 1.9 nm Cu insertion, the THz field intensity deteriorates because the spin injection is impaired^[74]; (c) the Co/W heterostructure used by Wu et al.^[82]; (d) the THz waves emitted from Co/W have a peak intensity exceeding that of ZnTe crystals^[82].

当被激光照射时, 拓扑绝缘体中电子吸收光子动量 跃迁, 产生 PDE 电流, 大小正比于光子动量 q, 其 张 量 可 以 表 示 为 $\sigma_{\lambda\mu\nu}(q) = T_{\lambda\delta\mu\nu}q\delta^{[37,65]}$.由于 $T_{\lambda\delta\mu\nu}q\delta$ 为四阶张量, 具有反对称性, 所以 PDE 效 应不只存在于拓扑绝缘体的表面, 体中的 PDE 效 应也会对整体的非线性电流有所贡献.(3) 式中第 三项代表了 OR 的贡献, 当一个超短的激光脉冲入 射到拓扑绝缘体上时, 晶体内部会形成极化场, 进 而向外辐射电磁波.当入射激光脉冲脉宽在亚皮秒 量级时, 辐射的电磁波为太赫兹波.OR 可以使用 三阶非线性张量 $\chi^{(2)}$ 描述, 其非线性极化 P^{OR} 可以 表示为^[56]

$$P^{\rm OR} = \varepsilon_0 \chi^{(2)} |E|^2, \tag{4}$$

其中为ε₀为自由空间的电导率.

2.3 拓扑绝缘体中的太赫兹辐射调控

由(2)式可知, 左旋和右旋的极化光会在拓扑 绝缘体表面激发极性相反的 CPGE 分量,即抽运 光的极化状态会影响拓扑绝缘体中的太赫兹发射. 事实上, 单层拓扑绝缘体中的太赫兹发射还受到很 多因素影响,如样品方位角 (晶体取向) ϕ ,飞秒激 光的入射角 θ 等.由(4)式可知,OR产生的超快光 电流只依赖于晶体取向,即 OR 产生的太赫兹分量 只与样品方位角有关,改变入射角不会导致太赫兹 波的变化. 在 PDE 中, 由于四阶张量 $T_{\lambda\delta\mu\nu}q_{\delta}$ 的存 在, PDE 表现出相同的方位角依赖特性, 然而, 由 于 PDE 依赖于吸收光子的动量, 在改变激光入射 角时,出射的太赫兹极性会发生反转.在 PGE 中, 无论是 CPGE 还是 LPGE 效应的产生,都依赖于 沿拓扑绝缘体表面分布的电场分量[37,66],所以在入 射角翻转时, PGE 效应引起的太赫兹辐射极性也 会随之反向. 特别地, 由于 CPGE 来源于拓扑绝缘 体的表面态,满足狄拉克锥的旋转对称性[65],所以 CPGE 引入的太赫兹分量不随样品方位角变化.表1 展示了不同非线性效应产生的超快光电流随各种 因素的依赖关系⁵⁶,这里使用 1/4 波片的转角 α代 表激光偏振态的变化. 证实了使用多种手段控制拓 扑绝缘体中产生的超快光电流,进而对出射太赫兹 进行调控的可能性.

值得注意的是, Tu 等^[6]认为 LPGE 与方位 角无关, 他们将出射太赫兹波中随方位角变化的分 量归因于 PDE 和 OR 的贡献. 然而, 最近针对外 尔半金属的研究证明 LPGE 来源于不同元素原子 之间电荷分离产生的转移电流,这种转移电流沿原 子间的化学键流动^[67].在 Bi₂Se₃中,由于 Bi—Se 键在 z轴上的对称性 (图 5), LPGE 产生的光电流 一定与样品方位角呈 120°周期性变化.这与 Braun 等^[55]和 Fang 等^[49]的结论是一致的.

表 1 拓扑绝缘体中的超快光电流与晶体取向 ϕ , 入射角 θ , 激光偏振态的依赖关系^[56] Table 1. The details of the dependences of CPGE, LPGE, PDE, and OR on ϕ , θ , and α ^[56].

非线性效应	δ 晶体方向φ	入射角 $(\theta \rightarrow -\theta)$	$1/4$ 波片转角 α
CPGE	来源于表面态	极性反转	2α-周期
	与 ϕ 无关		$\sin(2\alpha)$
LPGE	来源于表面态	极性反转	4α-周期
	ϕ 依赖		$\sin(4\alpha)$
PDE	ϕ 依赖	极性反转	4α -周期
			$\cos 4\alpha$
OR	ϕ 依赖	极性不反转	4α-周期
			$\cos{(4\alpha)}$

3 铁磁/非磁异质结中的自旋太赫兹 发射

第2节主要介绍了拓扑绝缘体单层薄膜中的 超快光电流引起的太赫兹辐射,这种方式发射的太 赫兹波的偏振方向依赖于光电流的方向,即晶体的 方向.然而,最近的研究发现,将拓扑绝缘体与铁 磁材料组成异质结构,由于超快自旋注入,也可以 产生太赫兹辐射^[68].其机理与铁磁/非磁异质结中 的太赫兹发射相同,在飞秒激光的照射下,自旋塞 贝克效应^[69,70]或自旋超扩散现象^[71]等自旋动力学 效应使得自旋流从铁磁层注入到非磁层,再由 ISHE 将自旋流转换成横向电荷电流^[72],进而产生 太赫兹脉冲,其偏振方向垂直于外磁场方向.为了 更好地说明拓扑绝缘体/铁磁异质结作为自旋太赫 兹发射器的优越性,首先介绍铁磁/非磁异质结中 的自旋太赫兹发射机理.

3.1 异质结中的超快自旋注入

对铁磁/非磁异质结施加一个面内的磁场,在 异质结受到飞秒激光照射时,可以在非磁层检测到 一个超快电流,它来源于铁磁层中产生的自旋流. Uchida 等^[73]认为这种自旋流来源于铁磁材料中 的自旋塞贝克效应. Seifert 等^[74] 在 YIG/Pt 异质 结中观察到了自旋塞贝克效应导致的超快自旋注 入. 当飞秒激光照射时, 金属层的电子被激发撞击 磁性层, 使其产生一个随机的转矩, 进而产生净自 旋流 J_s, 其中 J_s的极化矢量 σ平行于铁磁层的磁矩 *M*.由于自旋流的产生与光激发电子的热化与冷 却过程有关, 其频率恰好处在亚皮秒量级, 因此自 旋塞贝克效应引入的自旋流, 其动态频率在太赫兹 频段. 进一步地, 由于非磁层的 ISHE, 自旋流被转 变为横向电荷流, 这将在下一小节详细讨论.

然而,并非所有的自旋注入现象都能单一地用 自旋塞贝克效应解释. 当飞秒激光激发异质结时, 会在铁磁层激发超扩散的瞬态自旋流^[75,76],进而导 致自旋流注入. Kampfrath 等^[19]利用飞秒激光脉 冲激发 Fe/Au 异质结, 观察到了太赫兹辐射, 并将 异质结中的超快自旋注入归因于超扩散自旋传输 (superdiffusive spin transport). 在电子吸收能量 跃迁后,自旋向上的电子表现为 sp 轨道特性,而自 旋向下的电子表现为类 d 轨道特性. 由于上下自旋 电子寿命与迁移率的不同,两种电子的自旋取向也 处于非平衡状态,因此在铁磁层界面形成了自旋流 的积累,实现了自旋流向非磁层注入.这种激光导 致的超扩散自旋流,其动态频率恰好处在亚皮秒量 级,因此也可以实现太赫兹量级的动态自旋注入[77]. 与自旋塞贝克效应一致,这种自旋流的极化方向与 铁磁层磁化方向也是相同的.

除以上两种自旋注入机制之外,磁性材料中超 快退磁现象也会产生自旋流,这种自旋注入机理被 称为自旋抽运效应 (spin pumping effect).由飞秒 激光诱导的超快退磁现象在太赫兹领域已经被广 泛地报道^[18,78],在超快退磁的过程中,铁磁层的自 旋角动量转移到重金属层,进而产生自旋注入.由 于自旋抽运的特征时间与自旋轨道相互作用有关, 其时间尺度为皮秒量级^[79],因此同样可以产生太 赫兹辐射.然而,由于飞秒激光引入的磁性变化很 小,所以自旋抽运效应导致的自旋注入很弱. Kampfrath等^[19]计算了 Fe/Au 异质结中自旋抽 运效应注入的自旋流比超扩散导致的超快自旋流 小两个数量级以上.

值得注意的是,目前尚缺乏统一的理论来描述 异质结中的超快自旋注入过程,特别是对于自旋塞 贝克效应和超扩散效应这两种自旋注入机制,现有 的光学和电学手段无法将两种效应注入的自旋流 区分开来.因此,现在无法确切地指出哪种自旋注 入机制的贡献对异质结中的太赫兹辐射占主导作用.

3.2 异质结中的自旋-电荷转化及太赫兹发射

在自旋流从铁磁层注入相邻非磁层中后,由于 非磁层材料的自旋轨道耦合作用,不同自旋取向的 电子朝不同的方向偏转,转化为电荷的积累,这就 是 ISHE. 在自旋流 J_s注入重金属层中后,由于 ISHE,自旋电子受到横向力矩的作用,在重金属层 的两端造成电荷积累,进而产生横向电流 J_c,其表 达式为

$$\boldsymbol{J}_{c} = D_{ISHE} \boldsymbol{J}_{s} \times \boldsymbol{\sigma}, \qquad (5)$$

其中 D_{ISHE} 为自旋霍尔系数.由于 J_c处在亚皮秒的时间尺度上,其辐射的电磁波频段恰好覆盖太赫兹范围,因此,在异质结中可以实现太赫兹发射,其表达式为^[80,81]

$$\boldsymbol{E}_{\text{THz}}(\omega) = \boldsymbol{J}_{\text{c}}(\omega) \frac{eZ_{0}}{n_{1} + n_{2} + Z_{0} \int_{-\infty}^{d} \mathrm{d}z \rho(\omega, z)}, \quad (6)$$

其中, n_1 和 n_2 为衬底和空气的折射率, e 为电子电 荷, Z_0 为真空阻抗, ρ 为垂直方向的金属电导率. 由公式 (5)和 (6)可知, ISHE 产生的瞬态横向电 流 J_c 方向垂直于自旋流的极化矢量 σ ,即异质结中 的自旋太赫兹辐射偏振方向垂直于磁场方向.这 与 Kampfrath等^[19]的研究结果一致. Seifert等^[74] 也在 YIG/Pt 异质结中实现了自旋太赫兹发射,证 实了飞秒激光引入的自旋塞贝克效应也是实现超 快自旋注入的重要手段. 他们使用动态模型分离出 注入的自旋流密度,证明了自旋塞贝克效应起源于 非磁层的界面.

经过对铁磁/非磁异质结的材料筛选与结构优 化,现在已经能够实现兼顾辐射强度、带宽与功耗 的自旋太赫兹发射源.Wu等^[82]研究了不同厚度 下的铁磁与非磁层对出射太赫兹强度的影响,发 现W(6 nm)/Co(3 nm)双层异质结所辐射的太赫 兹强度接近ZnTe 晶体发射源.并且,这种结构的 自旋太赫兹发射源还具有低功耗的特性,即使激光 能量密度降至0.6 μJ/cm²,仍能在异质结中实现稳 定的太赫兹发射.Seifert等^[20]使用W/CoFeB/Pt 构成三层异质结构代替传统的双层结构,由于 W和Pt具有相反的自旋霍尔角,两层界面中产生的 太赫兹辐射可以相互叠加,进而产生1—30 THz 的相干增强太赫兹脉冲,其能量转换效率甚至优于 商用光电导天线和 GaP(110) 太赫兹发射源.

最近, Zhou 等^[83] 首次利用反铁磁外尔半金 属 Mn₃Sn 与重金属 Pt 构成的异质结实现了太赫 兹发射. 由于 Mn₃Sn 具有反三角的自旋结构, 不同 晶相的 Mn₃Sn 产生的纵向自旋流大小不同, 因而 在制备过程中可以通过选择 Mn₃Sn 层的晶相来控 制异质结出射太赫兹波的强度. 另外, 由于 Mn₃Sn 同时具有较大的自旋霍尔角, 这种外尔半金属也可 以代替重金属层提供 ISHE. Zhou 等的研究不但证 明了太赫兹可以作为研究外尔半金属自旋结构的 一种简便方法,更证明了 Mn₃Sn 具有实现自旋太 赫兹发射与调控的重要潜力.

3.3 铁磁/非磁异质结中的自旋太赫兹调制

由公式 (5) 可知, 异质结中发射的自旋太赫兹 偏振方向垂直于磁化方向, 然而与拓扑绝缘体中发 射的太赫兹不同, 自旋太赫兹不依赖于入射光的偏 振状态.也即, 自旋太赫兹源的抗干扰能力极强, 改变铁磁层磁化方向, 可以任意调控其偏振方向.

图 6 (a) 在异质结上施加手性相反的螺旋外磁场可以改变出射太赫兹波的手性; (b) 图 (a) 的利萨如曲线, 其中σ⁺与σ⁻分别 代表左旋与右旋极化的太赫兹信号^[85]; (c), (d) Chen 等^[22]设计的级联太赫兹发射器, 两级发射器铁磁层的磁化方向与入射光方 向两两正交, 通过控制出射太赫兹的相位差和振幅, 可以在时域获得合成的圆偏振信号; (e), (f) Wang 等^[21]使用的双抽运自旋太 赫兹发射器, 通过改变脉冲时延可以调控出射太赫兹的时域信号

Fig. 6. (a) Manipulation of the terahertz chirality by changing the twisted magnetic field distribution; (b) the Lissajous curves of the THz signals of (a), where σ^+ and σ^- present the signals with left-hand and right-hand polarity^[85]; (c), (d) the cascade spin-tronic terahertz emitter designed by Chen et al.^[22], a circularly polarized terahertz waves could be obtained by controlling the phase difference between two stage terahertz and their amplitude; (e), (f) dual-pulses induced terahertz emitter reported by Wang et al.^[21], the frequency could be manipulated by changing the delay time between two pump laser pulses.

然而,在均匀磁性的异质结中,发射的自旋太 赫兹一定是线偏振的,这大大限制了自旋太赫兹源 的应用途径.为了突破性这一局限, Hibberd 等^[84] 通过改变外磁场的方向,控制铁磁层磁矩分布,实 现了对出射太赫兹偏振态的调控. 他们使用两个极 性相反的永磁铁作为磁场源, NiFe/Pt 异质结作为 太赫兹发射源,在调换永磁体极性时,异质结中出 射的太赫兹极性反转. Kong 等^[85]则从理论上证明 了异质结中不均匀的磁性分布可以产生椭圆偏振 的自旋太赫兹辐射. 特别地, 在不同磁性区域的有 效面积相等且磁矩方向相互垂直时,还可以产生圆 偏振极化的太赫兹辐射. 他们讨论了出射太赫兹椭 圆率与磁场极化状态的依赖关系并用实验加以证 实. 如图 6(a),(b) 所示,将样品置于螺旋的磁场中, 在磁场的手性变化时, 太赫兹波的极化方式由左旋 变为右旋. 然而, 由于很难精准控制单级铁磁薄膜 中的磁性分布,所以通过改变外磁场获得偏振可调 谐的太赫辐射难度很大. Chen 等^[22] 报道了使用级 联发射的方法可以产生可控椭圆偏振太赫兹波.他 们在第一级样品上施加了水平方向的磁场,使其产 生竖直偏振的太赫兹辐射,在第二级上施加了竖直 方向上的磁场产生水平偏振的太赫兹辐射; 通过改 变两级薄膜之间的距离控制出射太赫兹波的相位 差,实现了椭圆偏振太赫兹波的合成(图 6(c)).进 一步,当抽运光经过第一级的发射损耗与第二级铁 磁薄膜本身对第一级辐射的太赫兹波的损耗相等 时,可以实现圆偏振太赫兹波辐射(图 6(d)).

除了实现时域调制之外,自旋太赫兹发射源在 频域调制方面也具有无可比拟的优势.2019年, Wang等^[21]报道了双抽运效应对自旋太赫兹频谱 的调节作用,如图 6(e)—(f)所示,当使用两束飞秒 激光同时抽运铁磁/非磁性金属异质结时,可以通 过操控两束脉冲激光之间的偏振夹角和时延来实 现对出射太赫兹频域信号的调制.

4 铁磁/拓扑绝缘体异质结中的自旋 太赫兹发射

4.1 拓扑绝缘体的自旋霍尔角计算

第3节主要介绍了铁磁/非磁异质结中的自旋 太赫兹发射,公式(5)和(6)表明在异质结中自旋 太赫兹的发射效率取决于非磁层的自旋霍尔系数, 而自旋霍尔系数正比于自旋霍尔角θ_{SH},即异质结 非磁层的 θ_{SH} 越大,发射太赫兹的效率越高,这与 Wu 等^[82]的研究结果是一致的.他们测试了使用 Co 作为铁磁层,不同的重金属材料作为非磁层时, 异质结的太赫兹发射强度,结果显示,当W作为 非磁层时 ($\theta_{SH} = 0.4^{[86]}$),异质结出射的太赫兹峰值 是 Ta($\theta_{SH} = 0.15^{[87]}$)作为非磁层时的 10倍.而拓 扑绝缘体具有特殊的自旋-动量锁定的拓扑表面态, 强自旋轨道耦合作用赋予这种材料极大的自旋-电 荷转换效率,其自旋霍尔角比普通重金属大得多, 因此可以替代重金属材料构成自旋太赫兹发射器 并实现高效太赫兹发射.

自旋-电荷转换效率指的是在自旋注入时,拓 扑绝缘体利用 ISHE 将其转化成电荷流的能力.为 了能够定量地计算拓扑绝缘体的自旋-电荷转换效 率,Wang等^[88]使用自旋力矩铁磁共振 (spin torque ferromagnetic resonance, ST-FMR)的方法测量 了 Bi₂Se₃的自旋霍尔角.如图 7(a)所示,他们在 Bi₂Se₃/Co₄₀Fe₄₀B₂₀(CFB)两端施加一个射频电流, 通过外部整流电路测得输出的电压信号.在射频电 流流经 Bi₂Se₃ 层后,由于自旋霍尔效应在 *y*方向发 生极化,产生纯自旋流并注入到相邻的 CFB中,改 变 CFB 磁矩的阻尼矩引发磁矩进动,并且射频电 流会在系统中产生一个 *y*方向的有效场,也会使 CFB 受到力矩的作用.由于 ST-FMR 电压信号中 对称线形分量来源于自旋流产生的阻尼矩,而反对

图 7 (a) ST-FMR测试示意图,使用信号发生器(SG)给 样品施加一个射频电流,通过测试样品的电压信号计算拓 扑绝缘体的自旋霍尔角;(b)异质结中的磁矩进动过程^[8]

Fig. 7. (a) The schematic diagram of the ST-FMR measurement setup, an RF current from a signal generator (SG) is injected into the devices; (b) magnetization movements in the ST-FMR measurements^[88].

称线型分量来源于射频磁场的贡献^[89,90],因此可以 通过线形与非线形部分的比值来确定自旋流与电 荷流的比值,即自旋霍尔角_{8H}.Wang等通过计算 得出 Bi₂Se₃的自旋霍尔角为1.75,与过去的报道 ($\theta_{SH} = 2.0^{[91]}$)接近.表2展示了拓扑绝缘体与几种 重金属自旋霍尔角的对比^[35],从表2可以看出拓 扑绝缘体的自旋-电荷转换效率是重金属的10倍 以上.因此,除自旋太赫兹发射器之外,拓扑绝缘 体也被视为实现超低功耗磁随机存储器 (magnetic random access memory, MRAM)等新型自旋电 子器件的重要材料^[92].

表 2 拓扑绝缘体与几种重金属材料的自旋霍尔角^[35] Table 2. Spin Hall angles of several topological insulators and common heavy metals^[35].

Material	$ heta_{ m SH}$
Та	0.15
W	0.40
Pt	0.08
$\mathrm{Bi}_2\mathrm{Se}_3$	2.00 - 3.50
$\mathrm{Bi}_{x}\!\mathrm{Se}_{1-x}$	18.80
$\mathrm{Bi}_{x}\!\mathrm{Sb}_{1-x}$	52.00

4.2 绝缘体/铁磁异质结中的自旋太赫兹 发射

由于拓扑绝缘体极大的自旋-电荷转换率,在 铁磁/拓扑绝缘体异质结中可以实现高效的自旋太 赫兹发射. 2018年, Wang 等^[68]首次利用 Bi₂Se₃/ Co异质结实现了自旋太赫兹发射. 如图 8(a) 所示, 他们使用波长为 800 nm 功率为 60 mW 的飞秒激 光垂直入射异质结, 激光激发使 Co 层产生超快自 旋流并注入相邻的 Bi₂Se₃ 中, 再由 ISHE 将飞秒激 光诱导的自旋流转换成亚皮秒尺度上的横向电荷 流,进而产生太赫兹辐射.为了排除单层拓扑绝缘 体中非线性电流和铁磁层的超快退磁对出射太赫 兹的贡献,分别测量了飞秒激光激发下 Bi₃Se₃和 Co的太赫兹辐射,如图 8(b)所示,显然异质结中 自旋-电荷转换引入的自旋太赫兹发射在总太赫兹 辐射中占据主导地位. 当抽运光从前入射变为后入 射时,太赫兹信号的极性发生180°的反转,改变面 外磁场的方向后,也能观察到同样的极性反转现 象 (图 8(c)). 这是因为入射方向与样品磁化强度的 方向分别对应 ISHE 中的自旋流 J。和自旋极化矢 量 σ 的方向,由公式(5)可知,当激光的入射方向

或样品磁化方向改变时, ISHE 产生的电荷流反向, 即异质结产生的太赫兹辐射反向.

为了验证 Bi₂Se₃/Co 异质结的发射效率, Wang 等^[68]使用与 Bi₂Se₃ 表面相同厚度 (2 nm)的 Pt 作 为对照组, 对比他们产生自旋太赫兹幅度的差异.

图 8 (a) Bi₂Se₃/Co 异质结构示意图; (b) 用飞秒激光分 别激发 Bi₂Se₃/Co, Co, Bi₂Se₃产生的太赫兹信号; (c) 改变 入射方向与面内磁场方向后, 异质结发射的太赫兹极性反 转^[68]

Fig. 8. (a) The schematic diagram of the Bi₂Se₃/Co heterostructure; (b) THz waveforms generated from Bi₂Se₃/Co, Co and Bi₂Se₃; (c) THz waveforms emitted from the heterostructure measured with front and back sample excitation and reversed magnetic field^[68]. 实验结果显示,在相同的有效厚度下,Bi₂Se₃的发 射效率是 Pt的 1.7倍,其中 Bi₂Se₃ (10 nm)/Co (3 nm)的发射效率更是可以与商用的 ZnTe 晶体 相媲美.更重要的是,他们证明了拓扑绝缘体中的 自旋-电荷转换对温度的变化不敏感.这些优点充 分说明了拓扑绝缘体/铁磁异质结对实现高效、稳 定、廉价的太赫兹发射器的重要意义.并且,由于 拓扑绝缘体特殊的拓扑表面态,其本身就可以发射 太赫兹信号,因此对拓扑绝缘体/铁磁异质结的研 究有望实现任意调谐的拓扑自旋太赫兹发射器.

4.3 拓扑自旋太赫兹发射器的前景

拓扑绝缘体在与铁磁层材料组合构成自旋太 赫兹发射器时,可以产生较大强度的自旋太赫兹辐 射,出射的自旋太赫兹波为线偏振且偏振方向只依 赖于铁磁层的磁化方向. 然而, 由前面的讨论可知, 拓扑绝缘体单层薄膜即可辐射太赫兹,其产生机理 为材料内部的非线性效应. 如表1所示, 可以通过 改变抽运光入射角、抽运光的极化状态和样品方位 角对单层拓扑绝缘体出射太赫兹波进行调控.因 此,可以通过控制外磁场方向与样品方位角,调控 单层拓扑绝缘体中非线性太赫兹的偏振方向. 由于 自旋太赫兹发射不依赖于非线性效应,即非线性太 赫兹和自旋太赫兹的偏振方向会有一个夹角,且超 快电流的响应速度远大于自旋注入,即两束太赫兹 波之间一定存在一个相位差.因此在飞秒激光激发 时,异质结中出射的两束太赫兹波可以在空间上合 成椭圆极化的太赫兹波.进一步地,通过控制单层 拓扑绝缘体中的超快光电流响应,可以实现对出射 太赫兹手性的调控.

在 2.2 节中讨论了拓扑绝缘体的各种非线性 光电流效应,可以看出拓扑绝缘体薄膜中的太赫兹 发射与其狄拉克表面态有关,然而,在飞秒激光激 发时,由于体载流子对激光的吸收作用,拓扑绝缘 体产生的超快光电响应可能会被抑制^[93].因此,可 以改变拓扑绝缘体的费米能级,使其落在体能隙 上,降低体载流子密度,进而增强发射的太赫兹强 度.在实验上通常使用施加栅极电压^[94,95]或掺杂 金属元素^[96,97]的方法调控拓扑绝缘体的费米能级. Pan 等^[98]制备了带有顶电极的 (Bi_xSb_{1-x})₂Se₃ 单 层薄膜样品 (图 9(a)),研究了飞秒激光激发下拓扑 绝缘体内部超快光电流与栅极电压的关系.如图 9(b) 所示,当栅极电压为 0 V时,样品的纵向电阻 R_{xx} 最大,此时样品费米能级处在体带隙中,并且光电流的绝对值|C|最大,这与假设是一致的.Luo等^[99]也报道了相同的现象,他们通过不同的方式生长了不同载流子浓度的Bi₂Se₃,分别测量了不同样品出射的太赫兹幅度.如表3所示,在纯拓扑绝缘体中,出射太赫兹波的强度随载流子浓度的减少而增加.特别地,当使用Cu掺杂降低Bi₂Se₃的载流子浓度后,其出射太赫兹峰值强度增加50倍.Pan等和Luo等的实验结果证明了使用光学之外的方法调控非线性太赫兹幅度的可能性.

图 9 (a) Pan 等人制备的顶电极器件,其中 Al₂O₃ 作为介 电层, ITO 作为电极材料; (b) (Bi_xSb_{1-x})₂Se₃ 薄膜的光电流 与纵向电阻随电压的变化情况^[98]

Fig. 9. (a) The Schematic diagram of the top-gate device prepared by Pan et al, where the Al_2O_3 is dielectric layer while the ITO serves as top gate material; (b) the gate-dependent longitudinal resistance and nonlinear current in $(Bi_xSb_{1-x})_2Se_3$ film^[98].

表 3 不同载流子浓度下 Bi₂Se₃ 辐射的太赫兹峰 值强度^[99]

Table 3. Carrier concentration and THz peak amplitude for Bi_2Se_3 films^[99].

编号	材料	载流子浓度/ 10 ¹⁸ cm ⁻³	太赫兹峰值/ mV·cm ⁻¹
1	$\mathrm{Bi}_2\mathrm{Se}_3$	-75.5	1.24
2	$\mathrm{Bi}_{2}\mathrm{Se}_{3}$	-34.6	7.75
3	$\mathrm{Bi}_2\mathrm{Se}_3$	-31	5.27
4	$\mathrm{Bi}_2\mathrm{Se}_3$	-15.6	11.10
5	$\mathrm{Cu}_{0.02}\mathrm{Bi}_{2}\mathrm{Se}_{3}$	-3.66	54.39
6	$\mathrm{Cu}_{0.08}\mathrm{Bi}_{2}\mathrm{Se}_{3}$	-4.23	55.77
7	$\mathrm{Cu}_{0.1}\mathrm{Bi}_2\mathrm{Se}_3$	-1.96	39.37
8	$\mathrm{Cu}_{0.125}\mathrm{Bi}_{2}\mathrm{Se}_{3}$	-1.17	52.32

综上所述, 拓扑绝缘体/铁磁异质结可以发射 手性可调的椭圆太赫兹波, 并且可以通过施加栅极 电压控制出射非线性太赫兹的幅值, 如果能够结合 这两个优势, 即通过改变晶格和磁场方向调控出射 太赫兹的偏振态, 施加栅极电压改变非线性太赫兹 分量的幅值, 就可以通过拓扑绝缘体/铁磁异质结 实现任意调谐的太赫兹波发射.

5 结 论

针对拓扑绝缘体的研究结果,不仅可以应用于 低功耗自旋电子器件和量子计算器件,而且对于研 发低功耗可控太赫兹发射器也具有重要意义.

在这篇综述中,首先,从拓扑绝缘体的基本结构入手,以 Bi₂Se₃为例讨论了拓扑绝缘体的非中 心对称表面,结合 ARPES 分析了其拓扑保护的非 平庸表面态.这种特殊的能带结构是拓扑绝缘体实 现高效自旋太赫兹发射的根本原因.通过对拓扑绝 缘体内部的几种非线性效应的分析,说明了拓扑绝 缘体薄膜出射太赫兹波对晶体方向φ,入射角θ或 入射光偏振态的依赖关系,即可以通过改变这些外 界条件,实现对出射非线性太赫兹辐射的调控.

接下来,为了证明拓扑绝缘体/铁磁异质结作 为自旋太赫兹发射器的优越性,首先分析了基于铁 磁/非磁异质结中的自旋太赫兹发射.在飞秒激光 的激发下,由于自旋塞贝克效应等超快动力学效 应,在铁磁层中激发一个纯自旋流并被注入非磁 层.由于 ISHE,注入的自旋流被转换成亚皮秒时 间尺度上的横向电荷流,进而产生太赫兹辐射.自 旋太赫兹具有稳定、廉价、低功耗、易于调控等优 点,比如可以通过级联两组异质结实现圆偏振的太 赫兹发射,或者通过双抽运激发异质结实现对太赫 兹频谱的调控.由于自旋太赫兹的偏振方向只依赖 于铁磁层的磁化方向,因此可以通过改变磁场分布 实现手性可控太赫兹发射.

由于拓扑绝缘体有强自旋轨道耦合特性,可以 实现高效的自旋-电荷转化,因此可以使用拓扑绝 缘体材料代替非磁层构成拓扑自旋发射器.在相同 的有效厚度下,拓扑绝缘体的自旋太赫兹发射效率 是重金属的 1.7 倍,经厚度优化后,其发射效率可 以与商用的 ZnTe 晶体相媲美.拓扑自旋太赫兹发 射器在保留自旋太赫兹优势的前提下,可以通过改 变晶体方向单独调控拓扑绝缘体中非线性效应产 生的太赫兹辐射,其出射的非线性太赫兹波与异质 结中出射的自旋太赫兹波可以在空间中合成椭圆 太赫兹波.并且,可以通过施加栅极电压或掺杂调 控拓扑绝缘体的费米能级,进而改变出射非线性太 赫兹的幅值.将两个优点结合起来,可以实现圆偏 振的太赫兹发射.目前国内外的研究表明,基于拓 扑绝缘体/铁磁异质结构的拓扑自旋太赫兹发射器 可以成为实现偏振任意可调谐太赫兹脉冲辐射的 一种有效方案.

参考文献

- Jin Z, Mics Z, Ma G, Cheng Z, Bonn M, Turchinovich D 2013 *Phys. Rev. B* 87 094422
- [2] Tonouchi M 2007 Nat. Photonics 1 97
- [3] Nagatsuma T, Ducournau G, Renaud C C 2016 Nat. Photonics 10 371
- [4] Sirtori C 2002 Nature **417** 132
- [5] Zhang B, He T, Shen J, Hou Y, Hu Y, Zang M, Chen T, Feng S, Teng F, Qin L 2014 Opt. Lett. 39 6110
- [6] Kawase K, Sato M, Taniuchi T, Ito H 1996 Appl. Phys. Lett. 68 2483
- [7] Winnewisser C, Jepsen P U, Schall M, Schyja V, Helm H 1997 Appl. Phys. Lett. 70 3069
- [8] Han P Y, Tani M, Pan F, Zhang X C 2000 Opt. Lett. 25 675
- Kawase K, Hatanaka T, Takahashi H, Nakamura K, Taniuchi T, Ito H 2000 Opt. Lett. 25 1714
- [10] Nahata A, Weling A S, Heinz T F 1996 Appl. Phys. Lett. 69 2321
- [11] Matsuura S, Tani M, Sakai K 1997 Appl. Phys. Lett. 70 559
- [12] Shi W, Yan Z J 2015 Acta Phys. Sin. 64 228702 (in Chinese) [施卫, 闫志巾 2015 物理学报 64 228702]
- [13] Kumar N, Hendrikx R W A, Adam A J L, Planken P C M 2015 Opt. Express 23 14252
- [14] Gorelov S, Mashkovich E, Tsarev M, Bakunov M 2013 Phys. Rev. B 88 220411
- [15] Mikhaylovskiy R, Hendry E, Kruglyak V, Pisarev R, Rasing T, Kimel A 2014 Phys. Rev. B 90 184405
- [16] Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465
- [17] Hilton D J, Averitt R D, Meserole C A, Fisher G L, Funk D J, Thompson J D, Taylor A J 2004 Opt. Lett. 29 1805
- [18] Shen J, Fan X, Chen Z, DeCamp M F, Zhang H, Xiao J Q 2012 Appl. Phys. Lett. 101 072401
- [19] Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, Münzenberg M 2013 Nat. Nanotechnol. 8 256
- [20] Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483
- [21] Wang B, Shan S, Wu X, Wang C, Pandey C, Nie T, Zhao W, Li Y, Miao J, Wang L 2019 *Appl. Phys. Lett.* **115** 121104
- [22] Chen X, Wu X, Shan S, Guo F, Kong D, Wang C, Nie T, Pandey C, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Appl. Phys. Lett. 115 221104

- [23] Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757
- [24] Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803
- [25] Moore J E, Balents L 2007 Phys. Rev. B 75 121306
- [26] Roy R 2009 Phys. Rev. B 79 195322
- [27] Fu L, Kane C L 2007 Phys. Rev. B 76 045302
- [28] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J 2009 Nat. Phys. 5 398
- [29] Hsieh D, Xia Y, Qian D, Wray L, Dil J H, Meier F, Osterwalder J, Patthey L, Checkelsky J G, Ong N P, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J, Hasan M Z 2009 Nature 460 1101
- [30] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766
- [31] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, Xue Q K 2013 *Science* 340 167
- [32] He Q L, Pan L, Stern A L, Burks E C, Che X, Yin G, Wang J, Lian B, Zhou Q, Choi E S, Murata K, Kou X, Chen Z, Nie T, Shao Q, Fan Y, Zhang S C, Liu K, Xia J, Wang K L 2017 *Science* 357 294
- [33] Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J, Hasan M Z 2008 Nature 452 970
- [34] Li Y, Edmonds K W, Liu X, Zheng H, Wang K 2019 Adv. Quantum Technol. 2 1800052
- [35] Khang N H D, Ueda Y, Hai P N 2018 Nat. Mater. 17 808
- [36] Ganichev S D, Ketterl H, Prettl W, Ivchenko E L, Vorobjev L E 2000 Appl. Phys. Lett. 77 3146
- [37] Ganichev S D, Prettl W 2003 J. Phys.: Condens. Matter 15 R935
- [38] Liu C X, Qi X L, Zhang H, Dai X, Fang Z, Zhang S C 2010 *Phys. Rev. B* 82 045122
- [39] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801
- [40] Che X, Murata K, Pan L, He Q L, Yu G, Shao Q, Yin G, Deng P, Fan Y, Ma B, Liang X, Zhang B, Han X, Bi L, Yang Q H, Zhang H, Wang K L 2018 ACS Nano 12 5042
- [41] He L, Kou X, Wang K L 2013 Phys. Status Solidi RRL 7 50
- [42] Hamh S Y, Park S H, Han J, Jeon J H, Kahng S J, Kim S, Choi S H, Bansal N, Oh S, Park J, Kim J S, Kim J M, Noh D Y, Lee J S 2015 *Nanoscale Res. Lett.* **10** 1
- [43] Pan Z H, Fedorov A, Gardner D, Lee Y S, Chu S, Valla T 2012 Phys. Rev. Lett. 108 187001
- [44] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802
- [45] Wu H, Xu Y, Deng P, Pan Q, Razavi S A, Wong K, Huang L, Dai B, Shao Q, Yu G, Han X, Rojas-Sánchez J C, Mangin S, Wang K L 2019 Adv. Mater **31** 1901681
- [46] Wang Y, Deorani P, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2015 Phys. Rev. Lett. 114 257202
- [47] Zhu L G, Kubera B, Mak K F, Shan J 2015 Sci. Rep. 5 10308
- [48] Hamh S Y, Park S H, Jerng S K, Jeon J H, Chun S H, Lee J S 2016 Phys. Rev. B 94 161405
- [49] Fang Z, Wang H, Wu X, Shan S, Wang C, Zhao H, Xia C, Nie T, Miao J, Zhang C, Zhao W, Wang L 2019 Appl. Phys. Lett. 115 191102
- [50] Liu K, Xu J, Yuan T, Zhang X C 2006 Phys. Rev. B 73 155330
- [51] Seifert P, Vaklinova K, Kern K, Burghard M, Holleitner A 2017 Nano Lett. 17 973
- [52] Duan J, Tang N, He X, Yan Y, Zhang S, Qin X, Wang X, Yang X, Xu F, Chen Y 2014 *Sci. Rep.* 4 4889
- [53] Kastl C, Karnetzky C, Karl H, Holleitner A W 2015 Nat. Commun. 6 6617
- [54] McIver J W, Hsieh D, Steinberg H, Jarillo-Herrero P, Gedik

N 2011 Nat. Nanotechnol. 7 96

- [55] Braun L, Mussler G, Hruban A, Konczykowski M, Schumann T, Wolf M, Münzenberg M, Perfetti L, Kampfrath T 2016 *Nat. Commun.* 7 13259
- [56] Tu C M, Chen Y C, Huang P, Chuang P Y, Lin M Y, Cheng C M, Lin J Y, Juang J Y, Wu K H, Huang J C A, Pong W F, Kobayashi T, Luo C W 2017 *Phys. Rev. B* 96 195407
- [57] Belinicher V I, Sturman B I 1980 *Phys.-Usp.* **23** 199
- [58] Junck A, Refael G, von Oppen F 2013 Phys. Rev. B 88 075144
- [59] Maysonnave J, Huppert S, Wang F, Maero S, Berger C, de Heer W, Norris T B, de Vaulchier L A, Dhillon S, Tignon J, Ferreira R, Mangeney J 2014 Nano Lett. 14 5797
- [60] Obraztsov P A, Kaplas T, Garnov S V, Kuwata-Gonokami M, Obraztsov A N, Svirko Y P 2014 Sci. Rep. 4 4007
- [61] Karch J, Olbrich P, Schmalzbauer M, et al. 2010 Phys. Rev. Lett. 105 227402
- [62] Bahk Y M, Ramakrishnan G, Choi J, Song H, Choi G, Kim Y H, Ahn K J, Kim D S, Planken P C M 2014 ACS Nano 8 9089
- [63] Hamh S Y, Park S H, Han J, Jeon J H, Kahng S J, Kim S, Choi S H, Bansal N, Oh S, Park J 2015 Nanoscale Res. Lett. 10 489
- [64] Tu C M, Yeh T T, Tzeng W Y, Chen Y R, Chen H J, Ku S A, Luo C W, Lin J Y, Wu K H, Juang J Y 2015 Sci. Rep. 5 14128
- [65] Hosur P 2011 Phys. Rev. B 83 035309
- [66] Olbrich P, Golub L, Herrmann T, et al. 2014 Phys. Rev. Lett. 113 096601
- [67] Gao Y, Kaushik S, Philip E, Li Z, Qin Y, Liu Y, Zhang W, Su Y, Chen X, Weng H 2020 Nat. Commun. 11 720
- [68] Wang X, Cheng L, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J X, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater 30 1802356
- [69] Bosu S, Sakuraba Y, Uchida KI, Saito K, Ota T, Saitoh E, Takanashi K 2011 Phys. Rev. B 83 224401
- [70] Jaworski C M, Yang J, Mack S, Awschalom D D, Heremans J P, Myers R C 2010 Nat. Mater. 9 898
- [71] Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404
- [72] Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S 2007 Phys. Rev. Lett. 98 156601
- [73] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778
- [74] Seifert T S, Jaiswal S, Barker J, Weber S T, Razdolski I, Cramer J, Gueckstock O, Maehrlein S F, Nadvornik L, Watanabe S 2018 Nat. Commun. 9 1
- [75] Rudolf D, La-O-Vorakiat C, Battiato M, et al. 2012 Nat. Commun. 3 1037
- [76] Eschenlohr A, Battiato M, Maldonado P, Pontius N, Kachel T, Holldack K, Mitzner R, Föhlisch A, Oppeneer P M, Stamm C 2013 Nat. Mater. 12 332
- [77] Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203
- [78] Bennemann K H 2004 J. Phys.: Condens. Matter 16 R995
- [79] Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731
- [80] Sasaki Y, Suzuki K Z, Mizukami S 2017 Appl. Phys. Lett. 111 102401
- [81] Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311
- [82] Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv.Mater 29 1603031

- [83] Zhou X, Song B, Chen X, You Y, Ruan S, Bai H, Zhang W, Ma G, Yao J, Pan F 2019 Appl. Phys. Lett. 115 182402
- [84] Hibberd M, Lake D, Johansson N, Thomson T, Jamison S, Graham D 2019 Appl. Phys. Lett. 114 031101
- [85] Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Opt. Mater. 7 1900487
- [86] Pai C F, Liu L, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404
- [87] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555
- [88] Wang Y, Zhu D, Wu Y, Yang Y, Yu J, Ramaswamy R, Mishra R, Shi S, Elyasi M, Teo K L 2017 Nat. Commun. 8 1
- [89] Kubota H, Fukushima A, Yakushiji K, Nagahama T, Yuasa S, Ando K, Maehara H, Nagamine Y, Tsunekawa K, Djayaprawira D D 2008 Nat. Phys. 4 37
- [90] Liu L, Moriyama T, Ralph D, Buhrman R 2011 Phys. Rev. Lett. 106 036601
- [91] Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N, Ralph D C 2014 *Nature* 511 449

- [92] Fan Y, Upadhyaya P, Kou X, Lang M, Takei S, Wang Z, Tang J, He L, Chang L T, Montazeri M 2014 Nat. Mater. 13 699
- [93] Kekatpure R D, Brongersma M L 2008 Nano Lett. 8 3787
- [94] Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q, Lu L 2010 *Phys. Rev. Lett.* **105** 176602
- [95] Jauregui L A, Pettes M T, Rokhinson L P, Shi L, Chen Y P 2015 Sci. Rep. 5 8452
- [96] Souma S, Eto K, Nomura M, Nakayama K, Sato T, Takahashi T, Segawa K, Ando Y 2012 Phys. Rev. Lett. 108 116801
- [97] Wang Z, Lin T, Wei P, Liu X, Dumas R, Liu K, Shi J 2010 Appl. Phys. Lett. 97 159903
- [98] Pan Y, Wang Q Z, Yeats A L, Pillsbury T, Flanagan T C, Richardella A, Zhang H, Awschalom D D, Liu C X, Samarth N 2017 Nat. Commun. 8 1037
- [99] Luo C W, Chen H J, Tu C M, Lee C C, Ku S A, Tzeng W Y, Yeh T T, Chiang M C, Wang H J, Chu W C 2013 Adv. Opt. Mater. 1 804

SPECIAL TOPIC—Terahertz spintronic optoelectronics

High-performance THz emission: From topological insulator to topological spintronics^{*}

Wang Hang-Tian $^{(1)2)}$ Zhao Hai-Hui $^{(1)}$ Wen Liang-Gong $^{(1)2)}$

Wu Xiao-Jun³⁾ Nie Tian-Xiao^{1/2} [†] Zhao Wei-Sheng^{1/2}

(Fert Beijing Institute, School of Microelectronics, Beihang University, Beijing 100191, China)
 (Qingdao Research Institute, Beihang University, Qingdao 266000, China)

3) (School of Electronic and Information Engineering, Beihang University, Beijing 100191, China)

(Received 8 May 2020; revised manuscript received 4 June 2020)

Abstract

Ferromagnet/nonmagnet (FM/NM) heterostructure under the excitation of femtosecond laser has proved to be a potential candidate for high-efficiency terahertz (THz) emission. Topological insulator (TI) is a novel two-dimensional (2D) material with a strong spin-orbital coupling, which endows this material with an extremely large spin-Hall angle. Thus, TI appears to be an attractive alternative to achieving higherperformance spintronic THz emitter when integrated with ferromagnetic material. In this paper, we discuss the ultrafast photocurrent response mechanism in TI film on the basis of the analysis of its crystal and band structures. The discussion of the mechanism reveals a relationship between THz radiation and external conditions, such as crystal orientation, polarized direction and chirality of the laser. Furthermore, we review the spintronic THz emission and manipulation in FM/NM heterostructure. The disclosed relationship between THz radiation and magnetization directions enables an effective control of the THz polarization by optimizing the system, such as by applying twisted magnetic field or fabricating cascade emitters. After integration, the FM/TI heterostructure presents a high efficiency and easy operation in THz radiation. This high-performance topological spintronic THz emitter presents a potential for the achievement of arbitrary polarization-shaping terahertz radiation.

Keywords: terahertz source, topological insulator, ultrafast photocurrent, spintronic terahertz PACS: 07.57.Hm, 85.75.-d, 64.70.Nd, 73.50.Pz DOI: 10.7498/aps.69.20200680

^{*} Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0407602), the National Natural Science Foundation of China (Grant Nos. 61774013, 11644004), and the National Key Technology Program of China (Grant No. 2017ZX01032101).

 $[\]dagger$ Corresponding author. E-mail: nietianxiao@buaa.edu.cn