物理学报Acta Physica Sinica

Institute of Physics, CAS

具有双峰特性的双层超网络模型

卢文 赵海兴 孟磊 胡枫

Double-layer hypernetwork model with bimodal peak characteristics Lu Wen Zhao Hai-Xing Meng Lei Hu Feng 引用信息 Citation: Acta Physica Sinica, 70, 018901 (2021) DOI: 10.7498/aps.70.20201065 在线阅读 View online: https://doi.org/10.7498/aps.70.20201065 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

基于耦合强度的双层网络数据传输能力

Data traffic capability of double-layer network based on coupling strength 物理学报. 2020, 69(18): 188901 https://doi.org/10.7498/aps.69.20200181

双层螺旋环超表面复合吸波体等效电路模型及微波损耗机制

Equivalent circuit model and microwave reflection loss mechanism of double–layer spiral–ring metasurface embedded composite microwave absorber

物理学报. 2019, 68(9): 095201 https://doi.org/10.7498/aps.68.20181960

基于双层阿基米德螺线的表面等离激元涡旋产生方法

Generation of surface plasmon vortices based on double-layer Archimedes spirals 物理学报. 2019, 68(23): 234201 https://doi.org/10.7498/aps.68.20190747

知识图谱复杂网络特性的实证研究与分析

Empirical study of knowledge network based on complex network theory 物理学报. 2019, 68(12): 128902 https://doi.org/10.7498/aps.68.20190106

在具有排斥耦合的神经元网络中有序斑图的熵测量

Entropy measurement of ordered patterns in neuronal network with repulsive coupling 物理学报. 2019, 68(11): 110503 https://doi.org/10.7498/aps.68.20190231

基于人工神经网络在线学习方法优化磁屏蔽特性参数

Online learning method based on artificial neural network to optimize magnetic shielding characteristic parameters 物理学报. 2019, 68(13): 130701 https://doi.org/10.7498/aps.68.20190234

具有双峰特性的双层超网络模型*

卢文1)2)3)4) 赵海兴3)4)† 孟磊2)3)4) 胡枫2)3)4)‡

(陕西师范大学计算机科学学院,西安 710119)
 2)(青海师范大学计算机学院,西宁 810008)
 3)(青海省藏文信息处理与机器翻译重点实验室,西宁 810008)
 4)(藏文信息处理教育部重点实验室,西宁 810008)

(2020年7月4日收到; 2020年8月31日收到修改稿)

随着社会经济的快速发展,社会成员及群体之间的关系呈现出了更复杂、更多元化的特点.超网络作为一种描述复杂多元关系的网络,已在不同领域中得到了广泛的应用.服从泊松度分布的随机网络是研究复杂 网络的开创性模型之一,而在现有的超网络研究中,基于 ER 随机图的超网络模型尚属空白.本文首先在基于 超图的超网络结构中引入 ER 随机图理论,提出了一种 ER 随机超网络模型,对超网络中的节点超度分布进 行了理论分析,并通过计算机仿真了在不同超边连接概率条件下的节点超度分布情况,结果表明节点超度分 布服从泊松分布,符合随机网络特征并且与理论推导相一致.进一步,为更准确有效地描述现实生活中的多 层、异质关系,本文构建了节点超度分布具有双峰特性,层间采用随机方式连接,层内分别为 ER-ER, BA-BA 和 BA-ER 三种不同类型的双层超网络模型,理论分析得到了三种双层超网络节点超度分布的解析表达式, 三种双层超网络在仿真实验中的节点超度分布均具有双峰特性.

关键词: 超图, ER 随机超网络, 双峰特性, 双层超网络 **PACS**: 89.75.Fb, 02.10.Ox, 87.23.Ge, 05.65.+b

DOI: 10.7498/aps.70.20201065

1 引 言

复杂网络作为描述和分析现实生活中真实网络的网络系统,在不同领域中得到了广泛的应用并取得了丰硕的成果^[1-8].随着社会经济的快速发展,现实生活中的网络呈现出了关系更复杂、节点属性更多元化的特点,而一般的复杂网络难以全面、准确地刻画现实网络的特征.鉴于超网络具有大数据、复杂性、多维性和多层次等特点,使得描述和分析关系更复杂、节点属性更多元化的网络具有一定的实际应用价值^[9-12].例如,在航空超网络和铁路超网络之间根据乘客换乘行为依次连接机场和

铁路站点,形成"航空-铁路"双层超网络模型并在 此网络模型的结构基础之上,利用超图理论优化交 通规划和乘客换乘行为.如图 1 所示,第一层超网 络为航空超网络,其中超边 A₁表示航班,包含的节 点a₁, a₂和a₃表示该航班经过的三个机场;第二层超 网络为铁路超网络,其中超边 R₁为铁路运营线路, 包含的节点b₁, b₂, b₃, b₄, b₅, b₆和b₇表示该趟列车 途经的站点.两层超网络之间的超边 C₁表示乘客 乘坐动车在b₄站下车后可以选择 a₂或 a₃机场换乘 飞机,超边 C₂表示若乘客乘坐动车在b₂₀或b₂₁站下 车,如果打算继续换乘飞机那么就只能选择 a₆机场.

近年来,基于超图的超网络研究主要分为超网络的实际应用和模型构建两个方面. Estrada 等^[13]

© 2021 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金 (批准号: 11661069, 61663041)、青海省科技计划项目 (批准号: 2018-ZJ-777) 和教育部春晖项目 (批准号: Z2016101) 资助的课题.

[†] 通信作者. E-mail: h.x.zhao@163.com

[‡] 通信作者. E-mail: qhhuf@163.com

图 1 "航空-铁路"双层超网络模型 Fig. 1. Airline-Railway double-layer hyper network.

对超网络的子图中心度和聚集系数进行了系统研 究,并采用超网络描述了马来西亚热带雨林中的食 物网络,通过分析得到了食物竞争关系. Ghoshal 等[14] 提出并利用随机三部超图对社会化标签网络 中的资源、用户和标签三类节点的度分布进行了理 论分析,得到了一些重要的结果. Zlatić等[15]在三 部随机超图的基础之上,扩展了超度分布、节点相 似性和节点间最短路径等拓扑指标的定义,为进一 步研究社会化标签网络提供了一个标准工具. Zhang 和 Liu^[16]提出了一种社会化标签网络的三 部超图演化模型,研究了该模型的超度、聚集系数 和平均路径长度等拓扑特性,并与实证数据做了对 比. Wang 等^[17]和胡枫等^[18]构建了基于超图理论 的无标度超网络演化模型,理论分析了该超网络模 型的节点超度分布服从幂律分布,并通过仿真实验 验证了理论分析结果. 郭进利等 [19,20] 将文献 [17] 和文献 [18] 提出的超网络模型进行了统一,分析了 该统一超网络的无标度特性演化机理和拓扑特性. Zhou 等^[21] 构建了一种同时考虑新超边增加和已 存在超边消失的超网络模型. 李甍娜等 [22] 以唐诗 为节点,以韵母为超边构建了唐诗超网络,发现该 超网络服从无标度分布且具有较高的聚集性和异 配性. 胡枫等[23] 构建了蛋白复合物超网络模型, 并 分析得出了识别关键蛋白的方法. 与此同时, 多层超网 络的发展也极为迅速. 方锦清等 [24,25] 从多角度出

发思考和探索了多层超网络,提出了三层超网络演化 模型,定义了两种层次交叉度,并用其描述了层间节 点的合作竞争关系和超网络的鲁棒性.Boccaletti 等^[26]详细描述了多层网络,并从基本结构入手分 析了多层网络的动态变化过程.蒋文君等^[27]就多 层网络级联失效的预防和级联失效后的恢复做了 整体性讨论.杨喜艳等^[28]基于马尔科夫链方法建 立了双层谣言传播网络模型,并提出了一种能够有 效阻止多层社交网络谣言传播的动态控制策略.

网络模型既可以刻画网络的结构特征,也可分 析网络的动力学. ER 随机网络模型是由匈牙利数 学家 Erdös 和 Rényi 在^[29]20世纪 50 年代末提出 的,是复杂网络和现实生活中最为常用的一种随机 网络模型. 近年来, ER 随机网络在不同领域得到 了广泛的研究与应用, Xu^[30] 在 ER 随机网络模型 中研究了经典的量子游走问题,结果表明,量子在 游走过程中的返回概率,即在初始节点找到量子的 概率正比于 ER 随机网络的边连接概率, 且当 ER 随机网络趋于全连通时,其返回概率会出现激 增的现象. Xue^[31] 在 ER 随机网络中利用大数定律 改进了 SIR 传播模型. Lima 等[32] 在有向 ER 随机 网络上研究了多数投票模型,通过蒙特卡罗模拟得 到了"有序-无序"相变的关键参数. Zehmakan^[33] 将社会网络抽象为 ER 随机网络, 发现了社会成员 的观念在网络连通性达到某个阈值时会发生改变. 李炎等^[34]研究了ER随机网络中的Achlioptas爆 炸渗流模型的相变性质,结果表明, ER 随机网络 中的爆炸渗流相变是一种奇异相变,它既不是标准 的不连续相变,又与常规随机渗流表现出的连续相 变处于不同的普适类. 在经济快速发展和"大数据" 时代的社会背景下,超网络已经成为了网络科学的 重要研究方向之一,为更好地应用超网络,超网络 模型的构建是不能忽略的.目前,超网络模型的研 究成果主要集中在无标度超网络模型的构建中,对 基于 ER 随机图理论的 ER 随机超网络模型研究 尚属空白.本文针对此问题,首先提出了一种 ER 随机超网络模型的构建方法,并分析得出了节点超 度分布的解析表达式, 仿真实验结果表明, 本文提 出的 ER 随机超网络的节点超度分布服从泊松分 布,符合随机网络特征并与理论推导一致.为描述 更为复杂的多层、异质关系的网络,进一步构建了 节点超度分布具有双峰特性, 层间采用随机方式连 接, 层内分别为 ER-ER, BA-BA 和 BA-ER 三种 不同类型的双层超网络模型,理论分析得到了三种

双层超网络节点超度分布的解析表达式,并通过仿 真实验对其进行了验证.

2 ER 随机超网络

2.1 ER 随机超网络模型的构建方法

在超图结构中引入 ER 随机图理论, 提出了一种 ER 随机超网络模型, 记为 *H*(*N*,*p*), 构建过程如下:

1) 初始化: 给定节点数量 N和超边连接概率
 p, *p* ∈ [0,1];

2) 在 N 个节点中任意选择 r 个不相同的节点, $r \leq N$;

3) 生成一个随机数 $s, s \in (0, 1);$

4) 如果 *s* < *p*, 将第 2 步中选择的 *r* 个节点组成一条超边;

5) 重复 2)—4) 步, 直至所有的 *r*个不相同的 节点都被选择—次.

在以上的构建过程中,由于每次选择 r个节点 形成一条超边,因此本模型构建的超网络为 r均匀 超网络.最终生成的超边数量 $m \approx p \binom{N}{r}$.

2.2 ER 随机超网络节点超度分布理论分析

在本文提出的 ER 随机超网络中,一个节点与其他r-1个节点组成一条超边的概率为 $p^k(1-p)^{F-k}$,其中 $F = \binom{N-1}{r-1}$,则网络中一个给定节点超度为k的概率分布为:

$$p(k) = \begin{pmatrix} \mathbf{F} \\ k \end{pmatrix} p^k (1-p)^{\mathbf{F}-k}.$$
 (1)

网络节点的平均超度为

$$\langle k \rangle = p \times \boldsymbol{F}.$$
 (2)

所以,当 ER 随机超网络的节点数 N 较大并 且超边连接概率 p 较小时,节点超度为 k 的二项分 布近似为泊松分布:

$$p(k) = \begin{pmatrix} \mathbf{F} \\ k \end{pmatrix} p^k (1-p)^{\mathbf{F}-k} \approx \frac{\langle \lambda \rangle^k}{k!} e^{-\langle \lambda \rangle}, \quad (3)$$

其中, $\langle \lambda \rangle = p \times F$.

2.3 仿真实验

图 2 为 N = 500, r = 3时, 在超边连接概率 p = 0.004, p = 0.006, p = 0.008 和 p = 0.01 四种不 同条件下取 100 次平均值的节点超度分布情况.

图 2 500个节点的随机 3 均匀超网络在不同连接概率 p 值时的节点超度分布 (a) p = 0.004; (b) p = 0.006; (c) p = 0.008; (d) p = 0.01

Fig. 2. The hyper degree distribution of 3-uniform random hyper networks under different p: (a) p = 0.004; (b) p = 0.006; (c) p = 0.008; (d) p = 0.01.

从图 2(a)—图 2(d) 可以看出,本文提出的 ER 随机超网络模型的节点超度分布在四种不同超 边连接概率条件下均服从泊松分布并与理论分析 结果一致,符合随机网络特征.

3 双层超网络模型

超网络在描述复杂多元关系的系统时有着较强的优势,而随着一些实际研究工作的展开,我们发现单层超网络在描述多层异质关系时会略显不足.例如在交通网络中,如何准确地描述航空超网络和铁路超网络之间的关系等.针对此类问题,本文构建了节点超度分布具有双峰特性的双层超网络模型,层间采用随机方式连接,层内分别为ER-ER,BA-BA和BA-ER三种不同类型的双层超网络模型(简记为EE,BB和BE,其中E代表本文提出的ER随机超网络;B代表BA无标度超网络).本文以双层3均匀超网络为例,分析三种不同类型的双层超网络模型.

3.1 EE 双层 3 均匀超网络

EE 双层 3 均匀超网络包含两层 ER 随机 3 均匀超网络, 层与层之间采用随机连接方式.

3.1.1 构建方法

EE 双层 3 均匀超网络模型的构建过程如下:

1) 采用本文提出的 ER 随机超网络模型 H(N, p) 构建第一层和第二层超网络 H₁(N₁, p₁)和 H₂(N₂, p₂);

2) 层间连接:采用随机方式连接层间,即第一 层中的任意一个节点与第二层中的任意两个不相 同节点以概率 p_{12} 组合生成一条超边,直至层间形 成 $N_1 \begin{pmatrix} N_2 \\ 2 \end{pmatrix} p_{12}$ 条超边为止.

3.1.2 理论分析

根据以上构建方法中的第2步可知, EE 双层 超网络的节点平均超度 $\langle k \rangle$ 由第一层超网络的节点 平均超度 $\langle k_1 \rangle$ 和第二层超网络的节点平均超度 $\langle k_2 \rangle$ 决定.其中, EE 双层超网络中第一层网络中的任 意一个节点与层内其他任意两个节点形成超边的 数量为 $\binom{N_1-1}{2}p_1$,与第二层超网络中的任意两 个节点形成超边的数量为 $\binom{N_2}{2}p_{12}$;同理,第二层 超网络中任意一个节点在层内形成的超边数量为 $\binom{N_2-1}{2}p_2$,第二层超网络中任意两个节点方,那成超边的数量为 $\binom{N_2-1}{2}p_2$,第二层超网络中任意两个节点与第 一层超网络中任意一个节点形成超边的数量为 $N_2(N_2-1)p_{12}$,故第一层和第二层超网络节点平 均超度的计算表达式为:

$$\langle k_1 \rangle = \binom{N_1 - 1}{2} p_1 + \binom{N_2}{2} p_{12}, \qquad (4)$$

$$\langle k_2 \rangle = \binom{N_2 - 1}{2} p_2 + N_2 (N_2 - 1) p_{12},$$
 (5)

式中, N_1 和 N_2 分别为第一层和第二层超网络的节 点数, p_1 和 p_2 分别为第一层和第二层超网络的层 内超边连接概率, p_{12} 为层间超边连接概率.由 (4) 式和(5)式可得 $\langle k \rangle = \frac{(\langle k_1 \rangle \times N_1 + \langle k_2 \rangle \times N_2)}{(N_1 + N_2)}$.

EE 双层超网络的节点超度分布由第一层超网络的节点超度分布 $p^{1st}(k)$ 和第二层超网络的节点超度分布 $p^{2nd}(k)$ 组成.第一层超网络中任意一个节点与其他两个节点组成一条超边的概率为 $p_1^{i}(1-p_1)^{F_1-i}$,其中 $F_1 = \binom{N_1 - 1}{2}$,与第二层超网络中的任意两个节点组成一条超边的概率为 $p_{12}^{k-i} \times (1-p_{12})^{Q_1-(k-i)}$,其中 $Q_1 = \binom{N_2}{2}$.由此可以得出第一层超网络中节点超度为 k的概率分布为

$$p^{1st}(k) = \frac{\sum_{i=0}^{k} N_1 \times \begin{pmatrix} F_1 \\ i \end{pmatrix} \times p_1^i \times (1-p_1)^{F_1-i} \times \begin{pmatrix} Q_1 \\ k-i \end{pmatrix} \times p_{12}^{k-i} \times (1-p_{12})^{Q_1-(k-i)}}{(N_1+N_2)}.$$
 (6)

同理, 第二层超网络中节点超度为 k 的概率分布为

$$p^{2\mathrm{nd}}(k) = \frac{\sum_{i=0}^{k} N_2 \times {\binom{F_2}{i}} \times p_2^i \times (1-p_2)^{F_2-i} \times {\binom{Q_2}{k-i}} \times p_{12}^{k-i} \times (1-p_{12})^{Q_2-(k-i)}}{(N_1+N_2)},$$

其中, $F_2 = {\binom{N_2-1}{2}}, \ Q_2 = N_2 (N_2-1), \ Q_2 = 2Q_1,$ 则:

$$p^{2\mathrm{nd}}(k) = \frac{\sum_{i=0}^{k} N_2 \times \binom{\mathbf{F}_2}{i} \times p_2^i \times (1-p_2)^{\mathbf{F}_2 - i} \times \binom{2\mathbf{Q}_1}{k-i} \times p_{12}^{k-i} \times (1-p_{12})^{2\mathbf{Q}_1 - (k-i)}}{(N_1 + N_2)}.$$
 (7)

3.1.3 仿真实验

在 EE 双层超网络节点超度分布仿真实验中, N_1 和 N_2 取值为 500, 层内连接概率 p_1 和 p_2 为 0.006, 层间连接概率 p_{12} 分别为 0.001 和 0.01, 为了结果 的合理有效, 实验结果取了 100 次的平均值.

表 1 为 EE 双层超网络节点超度分布实验的 统计信息,其中 N 代表双层网络的总节点数, M 为 层间的超边数量.实验结果表明, EE 双层超网络 的节点超度分布在不同层间超边连接概率条件下 均具有双峰特性,如图 3(a) 和图 3(b) 所示.

表 1 EE 双层 *3* 均匀超网络实验统计 Table 1. Experimental statistics of EE hyper network.

图 3 双层 3 均匀 EE 超网络在不同层间超边连接概率时 的节点超度分布 (a) *p*₁₂ = 0.001; (b) *p*₁₂ = 0.01

Fig. 3. The EE hyper degree distribution of double-layer 3uniform hyper network under different p_{12} : (a) $p_{12} = 0.001$; (b) $p_{12} = 0.01$.

3.2 BB 双层 3 均匀超网络

BB 双层 3 均匀超网络包含两层 3 均匀无标度 超网络, 层与层之间采用随机连接方式. 在构建 3 均匀无标度超网络时, 采用文献 [17] 提出的均匀 无标度超网络模型构建方法, 记为*H*(*m*₀, *m*). 该超 网络模型的节点超度分布服从幂律分布, 符合无标 度网络特征. *H*(*m*₀, *m*)模型的构建过程如下:

1) 初始化: 给定初始 m_0 个节点 { v_1, v_2, v_3, \cdots , v_{m0} } 与一条包含这些节点的超边 $E_0 = \{v_1, v_2, v_3, \cdots, v_{m0}\};$

2) 超边增长:每个时间步 t添加 m个节点 { $v_{t1}, v_{t2}, v_{t3}, \dots, v_{tm}$ }与一个已存在的节点 v_i 组合 成一条新的超边 $E_t = \{v_{t1}, v_{t2}, v_{t3}, \dots, v_{tm}, v_i\}$.这 个已存在节点的选取方式为"超度优先连接",即节 点 v_i 被选中的概率正比于这个节点的超度,定义为:

$$\prod d_H(v_i) = \frac{d_H(v_i)}{\sum_j d_H(j)}$$

式中,分子*d_H*(*v_i*)为节点*v_i*的超度,分母表示当前 网络中所有节点超度之和.在该均匀无标度超网络 中,一个给定节点超度为*k*的概率分布为^[18]

$$p(k) = m(m+1)k^{-(2+m)},$$

式中, *m* 为每次添加新节点的个数, 当*m* = 2时, 该超网络为3均匀无标度超网络.

3.2.1 构建方法

BB 双层 3 均匀超网络模型的构建过程如下:

1) 采用 H (m₀, m)模型构建第一层和第二层 3 均匀无标度超网络 H₁ (m₁₀, m₁)和 H₂ (m₂₀, m₂);

2) 层间连接:采用随机方式连接层间,即第一 层中的任意一个节点与第二层中的任意两个不相 同节点以概率 p_{12} 组合生成一条超边,直至形成 $(m_{10} + m_1) \binom{(m_{20} + m_2)}{2} p_{12}$ 条超边为止.

3.2.2 理论分析

由于第一层与第二层超网络均为3均匀无标 度超网络,每次增加2个新节点与1个已存在节点 组合生成一条超边,所以在层间连接之前,各层超 网络的节点平均超度约为3/2.由此可得,第一层 超网络的节点平均超度 〈k1〉和第二层超网络的节 点平均超度 〈k2〉分别为:

$$\langle k_1 \rangle \approx 1.5 + \binom{N_2}{2} p_{12},$$
 (8)

$$\langle k_2 \rangle \approx 1.5 + N_2 \left(N_2 - 1 \right) p_{12},$$
 (9)

其中, N₂为第二层超网络的节点数, 则 BB 超网络

的节点平均超度 $\langle k \rangle = \frac{\langle k_1 \rangle \times N_1 + \langle k_2 \rangle \times N_2}{(N_1 + N_2)}.$

在具有 N个节点的 3 均匀无标度超网络中, 超度为 1 的节点数 M(1)的上下界为 $N/2 + 1 \le$ $M(1) \le N - 1$, 超度为 2 的节点数 M(2)的上界为 $M(2) \le N/2$.所以, BB 双层超网络的第一层超网 络中节点超度为 k的概率分布为

$$p^{1st}(k) = \frac{W_1(1) + W_1(2) + \sum_{i=3}^k i^{-4} \times \begin{pmatrix} \mathbf{Q}_1 \\ k-i \end{pmatrix} \times p_{12}^{k-i} \times (1-p_{12})^{\mathbf{Q}-(k-i)}}{(N_1 + N_2)},$$
(10)

同理, 第二层超网络中节点超度为 k 的概率分布为

$$p^{\text{2nd}}(k) = \frac{W_2(1) + W_2(2) + \sum_{i=3}^k i^{-4} \times \binom{2Q_1}{k-i} \times p_{12}^{k-i} \times (1-p_{12})^{2Q_1-(k-i)}}{(N_1+N_2)},$$
(11)

3.2.3 仿真实验

在 BB 双层超网络节点超度分布的仿真实验中, 第一层与第二层超网络的节点数 $N_1 = m_{10} + m_1$ 和 $N_2 = m_{20} + m_2$ 取值为 500, 其中各层初始节点 m_{10} 和 m_{20} 均为 3, 层间连接概率 p_{12} 分别为 0.001和 0.01, 为了结果的合理有效, 实验结果取了 100次的平均值.

表 2 为 BB 超网络节点超度分布实验的统计 信息.与 EE 双层超网络的结果相同, BB 双层超 网络的节点超度分布在不同层间超边连接概率条 件下均具有双峰特性, 如图 4(a) 和图 4(b) 所示.

3.3 BE 双层 3 均匀超网络

BE 双层 3 均匀超网络由第一层 3 均匀无标度 超网络和第二层 ER 随机 3 均匀超网络组成, 层与 层之间采用随机连接方式.

表 2 BB 双层 3 均匀超网络实验统计 Table 2. Experimental statistics of BB hyper network.

N_1	N_2	N	$m_{10} = m_{20}$	p_{12}	М	$\langle k_1 \rangle$	$\langle k_2 \rangle$	$\langle k \rangle$
500	500	1000	3	0.001	62375	126	251	188
				0.01	623750	1992	3240	2616

3.3.1 构建方法

BE 双层 3 均匀超网络模型的构建过程如下:

1) 采用 H (m₀, m)模型构建第一层超网络 H₁ (m₁₀, m₁);

2) 采用 H (N, p)模型构建第二层超网络 H₂ (N₂, p₂);

3) 层间连接:采用随机方式连接层间,即第一 层中的任意一个节点与第二层中的任意两个不 相同节点以概率 p_{12} 组合生成一条超边,直至形成 $(m_{10} + m_1) \binom{N_2}{2} p_{12}$ 条超边为止.

3.3.2 理论分析

BE 双层超网络的节点平均超度 〈k〉由第一层 无标度超网络的节点平均超度 〈k₁〉和第二层 ER 随机超网络的节点平均超度 〈k₂〉决定, 分别为:

$$\langle k_1 \rangle \approx 1.5 + \binom{N_2}{2} p_{12},$$
 (12)

$$\langle k_2 \rangle = \binom{N_2 - 1}{2} p_2 + N_2 (N_2 - 1) p_{12},$$
 (13)

其中, N_2 为第二层超网络的节点数, p_2 为第二层超 网络的层内超边连接概率, p_{12} 为层间超边连接概 率, 则 $\langle k \rangle = (\langle k_1 \rangle \times N_1 + \langle k_2 \rangle \times N_2)/(N_1 + N_2).$

BE 双层超网络的节点超度分布与 EE 双层超

网络和 BB 双层超网络类似,由第一层无标度超网络的节点超度分布和第二层 ER 随机超网络的节

点超度分布组成. 第一层超网络中节点超度为 k 的 概率分布为

$$p^{1\text{st}}(k) = \frac{W_1(1) + W_1(2) + \sum_{i=3}^k i^{-4} \times \begin{pmatrix} \mathbf{Q}_1 \\ k-i \end{pmatrix} \times p_{12}^{k-i} \times (1-p_{12})^{\mathbf{Q}-(k-i)}}{(N_1 + N_2)},$$
(14)

其中,
$$W_1(1) = M_1(1) \times \begin{pmatrix} \mathbf{Q}_1 \\ k-1 \end{pmatrix} p_{12}^{k-1} \times (1-p_{12})^{\mathbf{Q}_1 - (k-1)}, W_1(2) = M_1(2) \times \begin{pmatrix} \mathbf{Q}_1 \\ k-2 \end{pmatrix} p_{12}^{k-2} \times (1-p_{12})^{\mathbf{Q}_1 - (k-2)}.$$

第二层超网络中节点超度为 k 的概率分布为

$$p^{2\mathrm{nd}}(k) = \frac{\sum_{i=0}^{k} N_2 \times {\binom{F_2}{i}} \times p_2^i \times (1-p_2)^{F_2-i} \times {\binom{2Q_1}{k-i}} \times p_{12}^{k-i} \times (1-p_{12})^{2Q_1-(k-i)}}{(N_1+N_2)}, \quad (15)$$

其中, $F_2 = \binom{N_2 - 1}{2}$, $Q_1 = \binom{N_2}{2}$, p_2 为第二层随 机超网络的超边连接概率.

3.3.3 仿真实验

在 BE 双层超网络的节点超度分布实验中,第 一层与第二层超网络的节点数 $N_1 = m_{10} + m_1$ 和 N_2 取值为 500,其中第一层超网络的初始节点 m_{10} 为 3,第二层超网络的超边连接概率 p_2 为 0.006,层

图 4 双层 3 均匀 BB 超网络节点超度分布 (a) $p_{12} = 0.001$; (b) $p_{12} = 0.01$

Fig. 4. The BB hyper degree distribution of double-layer 3uniform hyper network under different p_{12} : (a) $p_{12} = 0.001$; (b) $p_{12} = 0.01$. 间连接概率 p₁₂分别为 0.001 和 0.01, 为了结果的 合理有效, 实验结果取了 100 次的平均值.

表 3 为 BE 超网络节点超度分布实验的统计 信息. BE 双层超网络的节点超度分布与以上两种 类型的双层超网络情况相同,在不同的层间超边连 接概率的条件下,节点超度分布均具有双峰特性, 如图 5(a) 和图 5(b) 所示.

图 5 双层 3 均匀 BE 超网络模型节点超度分布 (a) $p_{12} = 0.001$; (b) $p_{12} = 0.01$

Fig. 5. The BE hyper degree distribution of double-layer 3uniform hyper network under different p_{12} : (a) $p_{12} = 0.001$; (b) $p_{12} = 0.01$.

	Table	e 3.	Experimental statistics of BE hyper network.						·k.
N_1	N_2	Ν	m_{10}	p_2	p_{12}	M	$\langle k_1 \rangle$	$\langle k_2 \rangle$	$\langle k \rangle$
500	500	1000	3	0.006	0.001	62375	126	994	560
					0.01	623750	1249	3240	2244

4 结 论

本文基于经典的 ER 随机模型构建了基于超 图的 ER 随机超网络模型, 通过理论分析得到了该 模型的节点超度分布 $p(k) \approx \frac{\langle \lambda \rangle^k}{k!} e^{-\langle \lambda \rangle}$, 其中泊松 分布的期望值 λ 与超边连接概率 p 有关, 计算机仿 真实验结果与理论分析一致. 与普通的 ER 随机网 络相比, 本文提出的 ER 随机超网络模型对于描述 和分析关系更复杂、节点属性更多元化的随机社会 网络具有一定的实际应用价值. 同时, 在 ER 随机 超网络模型的基础之上,构建了 ER-ER, BA-BA 和 BA-ER 三种不同类型的双层超网络模型. 理论分析发现, 三种双层超网络的节点平均超度与 层间超边连接概率密切相关, 随着层间超边连接概 率的增大网络节点的平均超度也随之增大; 仿真实 验结果表明, 三种模型的节点超度分布在不同的层 间超边连接概率条件下均具有双峰特性.

本文提出的 ER 随机超网络模型和双层超网 络模型对今后进一步研究此类超网络的熵、超网络 动力学、超网络表示学习、超网络链路预测和交通 超网络优化等提供了理论基础,对研究多层超网络 的演化具有一定的借鉴意义.

参考文献

- [1] Wuchty S 2001 Mol. Biol. Evol. 18 1694
- Wasserman S, Faust K 1994 Social Network Analysis (Cambridge: Cambridge University Press) pp1-66
- [3] Wang X F, Li X, Chen G R 2012 Network Science: An Introduction (Beijing: Higher Education Press) pp194–226 (in Chinese) [汪小帆, 李翔, 陈关荣 2012 网络科学导论 (北京: 高 等教育出版社) 第194 — 226页]
- Wang P, Xu B W, Wu Y R, Zhou X Y 2015 Sci. Chin. Inf. 58 011101
- [5] Lü L Y, Zhou T 2011 Phys. A **390** 1150
- [6] Liben-Nowell D, Kleinberg J 2007 J. Am. Soc. Inf. Sci.

Technol. 58 1019

- [7] Newman M E J 2001 Proc. Natl. Acad. Sci. 98 404
- [8] Zhou T, Wang B H, Jin Y D, He D R, Zhang P P, He Y, Su B B, Chen K, Zhang Z Z, Liu J G 2007 Int. J. Mod. Phys. C 18 297
- [9] Berge C 1973 Graphs and Hypergraphs (New York: American Elsevier Publishing Company, Inc.) pp389-425
- [10] Camarinha-Matos L M, Afsarmanesh H 2003 Comput. Ind. 51 139
- [11] Wu Z Y, Duan J Q, Fu X C 2014 Appl. Math. Modell. 38 2961
- [12] Hu F, Zhao H X, He J B, Li F X, Li S L, Zhang Z K 2013 Acta Phys. Sin. 62 198901 (in Chinese) [胡枫, 赵海兴, 何佳倍, 李发旭, 李淑玲, 张子柯 2013 物理学报 62 198901]
- [13] Estrada E, Rodríguez-Velázquez J A 2006 Phys. A 364 581
- [14] Ghoshal G, Zlatić V, Caldarelli G, Newman M E J 2009 Phys. Rev. E 79 066118
- [15] Zlatić V, Ghoshal G, Caldarelli G 2009 Phys. Rev. E 80 036118
- [16] Zhang Z K, Liu C 2010 J. Stat. Mech. 10 1742
- [17] Wang J W, Rong L L, Deng Q H 2010 Eur. Phys. J. B 77 493
- [18] Hu F, Zhao H X, Ma X J 2013 Sci. China, Ser. G 43 16 (in Chinese) [胡枫, 赵海兴, 马秀娟 2013 中国科学: 物理学 力学 天文学 43 16]
- [19] Guo J L, Zhu X J 2014 Acta Phys. Sin. 63 090207 (in Chinese) [郭进利, 祝昕昀 2014 物理学报 63 090207]
- [20] Suo Q, Guo J L 2017 System Eng. Theor. Prac. 37 720 (in Chinese) [索琪, 郭进利 2017 系统工程理论与实践 37 720]
- [21] Zhou Z, Jin Z, Jin J 2019 J. Phys. A 123 765
- [22] Li M N, Guo J L, Bian W, Chang N G, Xiao X, Lu R M 2017 Complex Systems and Complexity Science 4 66 (in Chinese) [李甍娜, 郭进利, 卞闻, 常宁戈, 肖潇, 陆睿敏 2017 复杂系统与 复杂性科学 4 66]
- [23] Hu F, Liu M, Zhao J 2018 Complex Systems and Complexity Science 4 31 (in Chinese) [胡枫, 刘猛, 赵静 2018 复杂系统与 复杂性科学 4 31]
- [24]~ Fang J Q, Liu Q H, Tang M 2016 $JAAC\,\mathbf{6}$ 12
- [25] Liu Q, Fang J Q, Li Y 2015 Complex Systems and Complexity Science 12 64 (in Chinese) [刘强, 方锦清, 李永 2015 复杂系统 与复杂性科学 12 64]
- [26] Boccaletti S, Bianconi G, Criado R 2014 Phys. Rep. 544 1
- [27] Jiang W J, Liu R R, Fan T L, Liu S S, Lü L Y 2020 Acta Phys. Sin. 69 088904 (in Chinese) [蒋文君, 刘润然, 范天龙, 刘 霜霜, 吕琳媛 2020 物理学报 69 088904]
- [28] Yang X Y, Wu Y H, Zhang J J 2019 J. Elec. Sci. Tech. Univ. 10 12178 (in Chinese) [杨喜艳, 吴亚豪, 张家军 2019 电子科技 大学学报 10 12178]
- [29] Erdös P, Rényi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17
- [30] Xu X P, Liu F 2008 Phys. Lett. A 372 6727
- [31] Xue X F 2017 Phys. A 486 434
- [32] Lima F W S, Sousa A O, Sumuor M A 2008 Phys. A 387 3503
- [33] Zehmakan A N 2020 Discrete. Appl. Math. 277 280
- [34] Li Y, Tang G, Song L J, Xu Z P, Xia H, Hao D P 2013 Acta Phys. Sin. 62 046401 (in Chinese) [李炎, 唐刚, 宋丽建, 寻之 朋, 夏辉, 郝大鹏 2013 物理学报 62 046401]

Double-layer hypernetwork model with bimodal peak characteristics^{*}

Lu Wen $^{(1)2(3)4)}$ Zhao Hai-Xing $^{(3)4)\dagger}$ Meng Lei $^{(2)3(4)}$ Hu Feng $^{(2)3(4)\ddagger}$

1) (School of Computer Science, Shaanxi Normal University, Xi'an 710119, China)

2) (College of Computer, Qinghai Normal University, Xining 810008, China)

3) (Key Laboratory of Tibetan Information Processing and Machine Translation of Qinghai Province, Xining 810008, China)

4) (Key Laboratory of Tibetan Information Processing, Ministry of Education, Xining 810008, China)

(Received 4 July 2020; revised manuscript received 31 August 2020)

Abstract

With the rapid development of social economy, the relationship between social members and groups has shown more complex and diverse characteristics. As a network depicting complex relation and multi-layer, hyper network has been widely used in different fields. Random network that obeys Poisson distribution is one of the pioneering models studying complex networks. In the existing hyper network researches, the hyper network based on ER random graph is still a blank. In this paper, we first propose an ER random hyper network model which is based on the hypergraph structure and it adopts the ER random graph theory. Furthermore, using this model, the node hyper degree distribution of this hyper network model is analyzed theoretically, and the node hyper degree distribution is simulated under different hyper edge probabilities: p = 0.004, p = 0.006, p = 0.008 and p = 0.01. The results show that the node hyper degree distribution of this hyper network model complies to the Poisson distribution $p(k) \approx \frac{\langle \lambda \rangle^k}{k!} e^{-\langle \lambda \rangle}$, which conforms with the characteristics of random networks and is consistent with the theoretical derivation. Further, in order to more accurately and effectively describe the multiple heterogeneous relationship in real life, in this paper we construct three different kinds of double-layer hyper network models with node hyper degree distribution with bimodal peak characteristics. The three kinds respectively are ER-ER, BA-BA and BA-ER, where ER represents the ER random hyper network, and BA denotes the scale-free hyper network, and the layers are connected by a random manner. The analytical expressions of node hyper degree distribution of the three kinds of double-layer hyper network models are obtained by theoretical analysis, and the average node hyper degrees of the three doublelayer hyper networks are closely related to the inter-layer hyper edge probability. As the inter-layer hyper edge probability increases, the average node hyper degree increases. The results of simulation experiments show that the node hyper degree distributions of three kinds of double-layer hyper network models proposed in this paper possess the characteristics of bimodal peaks. The ER random hyper network model and the double-layer hyper network model proposed in this paper provide the theories for further studying the hyper network entropy, hyper network dynamics, hyper network representation learning, hyper network link prediction, and traffic hyper network optimization of such hyper networks in the future, and also it has certain reference significance for studying the evolution of multilayer hyper networks.

Keywords: hypergraph, ER random hyper network, bimodal peaks characteristic, double-layer hyper networkPACS: 89.75.Fb, 02.10.Ox, 87.23.Ge, 05.65.+bDOI: 10.7498/aps.70.20201065

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos.11661069, 61663041), the Science and Technology Plan of Qinghai Province, China (Grant No. 2018-ZJ-777), and the Chun Hui Project from the Ministry of Education of China (Grant No. 22016101).

[†] Corresponding author. E-mail: h.x.zhao@163.com

 $[\]ddagger$ Corresponding author. E-mail:
 <code>qhhuf@163.com</code>