物理学报Acta Physica Sinica

Institute of Physics, CAS

面向先进光源线站等大科学装置的低温X射线能谱仪原理及应用进展

张硕 崔伟 金海 陈六彪 王俊杰 伍文涛 吴秉骏 夏经铠 宋艳汝 杨瑾屏 翁祖谦 刘志

Development of basic theory and application of cryogenic X-ray spectrometer in light sources and X-ray satellite Zhang Shuo Cui Wei Jin Hai Chen Liu-Biao Wang Jun-Jie Wu Wen-Tao Wu Bing-Jun Xia Jing-Kai Song Yan-Ru Yang Jin-Ping Weng Tsu-Chien Liu Zhi

引用信息 Citation: Acta Physica Sinica, 70, 180702 (2021) DOI: 10.7498/aps.70.20210350 在线阅读 View online: https://doi.org/10.7498/aps.70.20210350 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

一种聚焦型X射线探测器在轨性能标定方法

A method of calibrating effective area of focusing X-ray detector by using normal spectrum of Crab pulsar 物理学报. 2018, 67(5): 050701 https://doi.org/10.7498/aps.67.20172352

硬X射线调制望远镜低能探测器量子效率标定

Quantum efficiency calibration for low energy detector in hard X-ray modulation telescope satellite 物理学报. 2017, 66(11): 112901 https://doi.org/10.7498/aps.66.112901

一种点光源的自适应束斑X射线衍射仪的研制

A type of X-ray diffractometer with adaptive X-ray spot sizes 物理学报. 2021, 70(1): 010701 https://doi.org/10.7498/aps.70.20201228

多晶体光路配置的X射线衍射特性及在表征同步辐射光束线带宽上的应用

Characteristics of multi-crystals monfiguration X-ray diffraction and application in characterizing synchrotron beamline bandwidth 物理学报. 2020, 69(10): 104101 https://doi.org/10.7498/aps.69.20200165

强场X射线激光物理

High field X-ray laser physics 物理学报. 2021, 70(8): 084101 https://doi.org/10.7498/aps.70.20210096

激光高能X射线成像中探测器表征与电子影响研究

Detector characterization and electron effect for laser-driven high energy X-ray imaging 物理学报. 2017, 66(24): 245201 https://doi.org/10.7498/aps.66.245201

青年科学评述

面向先进光源线站等大科学装置的低温 X射线能谱仪原理及应用进展*

张硕¹) 崔伟²) 金海²) 陈六彪³) 王俊杰³) 伍文涛⁴) 吴秉骏⁴) 夏经铠¹) 宋艳汝¹) 杨瑾屏¹) 翁祖谦¹) 刘志^{1)4)†}

(上海科技大学,大科学中心,上海 201210)
 2)(清华大学天文系,北京 201203)
 3)(中国科学院理化技术研究所,北京 100190)
 4)(中国科学院上海微系统与信息技术研究所,上海 200050)
 (2021年2月23日收到;2021年4月9日收到修改稿)

低温 X 射线能谱仪兼具高能量分辨率、高探测效率、低噪声、无死层等特点,能量分辨率与 X 射线入射 方向无关,在暗弱的弥散 X 射线能谱测量方面具有明显优势.基于同步辐射及自由电子激光的先进光源线 站、加速器、高电荷态离子阱、空间 X 射线卫星这类大科学装置的快速发展对 X 射线探测器提出了更高要 求,因而低温 X 射线能谱仪被逐步引入到 APS, NSLS, LCLS-II, Spring-8, SSNL, ATHENA, HUBS 等大科学 装置与能谱测量相关科学研究中.本文从低温 X 射线能谱仪的工作原理及分类、能谱仪系统结构、主要性能 指标以及国内外大科学装置研究现状及发展趋势等方面作简要综述.

关键词:同步辐射装置,X射线卫星,X射线能谱仪,低温探测器
 PACS: 07.85.Qe, 95.55.Ka, 07.85.Nc, 07.20.Mc
 DOI: 10.7498/aps.70.20210350

1 引 言

X 射线谱学是一种重要的分析手段, 通过 X 射线发射谱、吸收谱、拉曼光谱及谱线移动等可以 分析材料的元素种类、价态、分布乃至运动状态. 应用场景涵盖实验室级别材料分析、先进光源等大 科学装置的材料分析、空间 X 射线天文学等. 能量 分辨率和探测效率是 X 射线能谱仪两个最为重要 的参数, 传统的能量色散型能谱仪及波长色散型能 谱仪在这两个参数上无法兼得, 因此在进行部分测 量时, 灵敏度无法进一步提升. 低温 X 射线能谱仪 兼具高能量分辨率、高探测效率、低噪声、能量分 辨率与 X 射线入射方向无关、无死层等特点,在暗 弱、弥散 X 射线源的能谱测量中优势十分明显^[1].

经过三十余年的发展,低温 X 射线能谱仪已 应用于多个科学领域.基于同步辐射及自由电子激 光的先进光源线站 X 射线通量远高于实验室级别 的 X 射线光源,在此类 X 射线光源上除一般的材 料的快速分析之外依然存在暗弱弥散 X 射线源的 能谱测量需求,因而对低温 X 射线能谱仪的需求 也越来越大^[2].低温 X 射线能谱仪已应用于先进光 源线站的轻元素 X 射线发射谱 (XES)^[3,4]、X 射线 近边吸收谱^[5-8]、时间分辨 X 射线吸收谱和发射

* 国家自然科学基金国家重大科研仪器设备研制专项(批准号: 11927805)、国家自然科学基金青年科学基金(批准号: 12005134, 11803014)和上海市浦江人才计划(批准号: 20PJ1410900)资助的课题.

© 2021 中国物理学会 Chinese Physical Society

[†] 通信作者. E-mail: liuzhi@shanghaitech.edu.cn

刘志,教授,上海科技大学大科学 中心主任兼物质学院副院长.1994年毕 业于北京大学,获得大气物理与大气环 境专业理学学士,在美国斯坦福大学获 电子工程硕士、物理学博士.回国前长 期在斯坦福线性加速器国家实验室和 美国劳伦斯伯克利国家实验室从事科

学研究. 20 多年来主要从事同步辐射原位谱学及其他相关 技术的应用研究,特别是近常压光电子能谱对催化和电化 学体系表界面的原位表征测量. 受"国家特聘专家"资助, 2013年全职回国后,主要从事同步辐射和自由电子激光原 位表征研究和大科学装置建设,主持完成了基金委国家重 大科研仪器设备研制专项"基于上海同步辐射光源的能源 环境新材料原位电子结构综合研究平台 (SiP·ME2)研制" 和国家重大科技基础设施"活细胞结构与功能成像等线站 工程".目前参与领导十三五国家重大科技基础设施"上海 硬 X 射线自由电子激光装置"的建设. 发表同行评议论文 220 余篇.

谱^[9-13]、共振软 X 射线散射 (RSXS)^[10]等前沿研究 领域.在大型加速器上低温 X 射线能谱仪已应用 于π和κ等介子原子能谱测量^[14-16].在高电荷态离 子阱上,低温 X 射线能谱仪被用于高电荷态离子 的能谱分析^[17-19].在 X 射线天文学方面,低温 X 射线探测器被应用于 XQC 及 Micro-X 探空火 箭实验^[20-22]、ASTRO-E/H 卫星^[23-25],并将应用 于 ATHENA 卫星^[26,27]、HUBS 卫星^[28,29]等空间科 学观测平台上.在电子显微镜应用方面,低温 X 射 线能谱仪被引入扫描电子显微镜应用方面,低温 X 射 线能谱仪还被应用于 X 射线计量学^[10]、核医学^[31,32]、 核时钟^[15,33]、核安检^[34,35]等领域.本文将按该顺序 对该谱仪在国内外的应用及发展作简要介绍.

为了让读者更加直观地理解该能谱仪,本文将 预先对其结构作简要介绍,内容包括制冷系统、低 温 X 射线探测器、低温信号放大器、数据采集分析 系统四部分.同时以轻元素 X 射线发射谱为例,对 比几种 X 射线能谱仪,进而指出低温 X 射线能谱 仪的研发方向.

2 低温 X 射线能谱仪基础

本节介绍低温 X 射线能谱仪的工作原理及分类,进而根据其细分种类讲解其结构和国内外发展现状.最后横向对比几种 X 射线能谱仪,讲解其优势领域和研发方向.

2.1 工作原理及分类

低温 X 射线能谱仪属于能散型能谱仪,可分为非平衡探测器和准平衡探测器两类^[1].非平衡探测器可达到更高的计数率,准平衡探测器可达到更高的能量分辨率.非平衡探测器将 X 射线转换为光子、正负离子对、电子空穴对、准粒子等次级粒子,通过统计次级粒子数确定 X 射线能量^[36].受统计规律限制,此类探测器的能量分辨率与 X 射线能量相关 $\delta E_{FWHM}/E \propto 1/\sqrt{E}$,本文将要介绍的超导隧道结 (superconducting tunnel junctions, STJ)属于该类探测器.准平衡探测器将 X 射线能量全部转换为热量,通过测量温度信号确定 X 射线能量,其统一的名称为 Microcalorimeter,中文翻译为微量能器,音译为微卡计^[37],此类探测器为本文的重点介绍内容.

2.1.1 STJ 工作原理

STJ 属于非平衡探测器, 图 1 简要展示了 STJ 的结构和工作原理, 当能量为 E的 X 射线与 STJ 吸收结构作用时, 打破库珀对, 产生数量约为 $n \approx E/E_c$ 的准粒子, 此处 E_c 为平均激发能, 当这 些准粒子穿过超导隧道结时会引起电压变化 δV , 通过该电压值可得 X 射线能量 $E \approx k \times \delta V$, 经已 知能量的 X 射线标定后, 可以得到斜率 $k^{[38]}$. 由于 准粒子数 $n \in S$ 计涨落影响, 实测值会存在一定误 差 $\delta n \approx \sqrt{n/F}$, 此处的 F为法诺因子, 一般小于 1.

图 1 STJ由一个超导-非超导-超导的结构组成.当X射 线与超导层作用时打破库珀对准粒子.准粒子在穿越非超 导层时会形成电压信号,通过电压信号幅度反推入射X射 线的能量.本图参考文献 [38] 绘制

Fig. 1. STJ detector is composed of a superconducting/nonsuperconducting/superconducting structure. When the Xray photon interacts with the superconducting layer, the Cooper pairs are broken, creating quasiparticle excitations. The tunneling of these quasiparticles through the nonsuperconducting layer gives rise to the voltage signal. By analyzing the amplitude of the voltage signal, the energy of incident X-ray can be calculated. Referenced from Ref. [38]. 因此, 实测能量分辨也是一个与入射能量相关的 值, 即 $\delta E_{\text{FWHM}} \approx \sqrt{E \times E_{\text{c}}/F}$.

2.1.2 微量能器工作原理及分类

微量能器是 20 世纪 80 年代由 Moseley 等^[39] 提出的一种新型探测器. 它是一种基于热信号的探 测器,与非平衡探测器不同,其能量分辨 δE_{FWHM} 与温度相关, 与 X 射线能量 E 无关^[1]: $\delta E_{\text{FWHM}} \propto$ $\sqrt{4k_{\rm B}T_0^2C/\alpha_{\rm I}}$. 如图 2(a) 所示, 它包含吸收体、温 度计、热学弱连接、热沉四部分. 当入射粒子被微 量能器的吸收层吸收后,转化为热能,引起吸收体 温度上升 $\delta T \propto \delta E/C$.利用热敏温度计测量温度变 $化 \delta R \propto \delta T$,可反推出入射粒子能量 $\delta E \propto \delta R \times C$. 一般选取探测器的线性区域做能谱测量,因此 $\delta E = k \times \delta R \times C$. 经已知能量的 X 射线标定后, 可以得到斜率 k. 此处 α_I 为电阻温度系数, C 为热 容. 温度越低, C越小, δT 越大, 同时温度越低, 温 度涨落越小, 信噪比越高, 因此微量能器一般工作 于极低温度下. 平衡恒温器制冷功率及能谱仪性能 等因素, 微量能器一般工作于 100 mK 或更低的温 度下.

根据温度计种类, 微量能器主要分为半导体温度计型微量能器^[40]、超导转变边缘传感器 (transition edge sensor, TES) 型微量能器^[41]、金属磁性微量能器 (metallic magnetic calorimeter, MMC)^[42]三种. 半导体型微量能器以硼掺杂硅或嬗变锗作为温度传感器, 温度电阻系数较低, 阻抗较大. TES工作在超导转变边缘上, 其阻值很小且对温度十分

敏感,亦即温度电阻系数很高,然而由于其转变边 缘窄,容易发生饱和且线性相对较差.MMC利用 金属磁性材料作为温度传感器,其温度线性区域非 常宽,弥补了TES的非线性问题,然而由于其热容 较大、工作温度低、复用困难,因此目前正处于发 展阶段.

2.2 低温 X 射线能谱仪系统结构

低温 X 射线能谱仪结构复杂,这里将其主要 分为制冷系统、低温 X 射线探测器、低温信号放大器、数据采集分析系统四部分进行介绍.其中制冷 系统受应用场景限制较大,本节重点描述制冷系统 从而为后面科学应用做好铺垫.

2.2.1 制冷系统

制冷系统为低温 X 射线探测器提供低温、恒 温、低振动、低磁场、低电磁干扰等环境,主要包含 恒温器、温控系统、振动隔离装置、磁场/电磁场屏 蔽系统、样品腔连接结构几部分.前文提到恒温器 需提供 100 mK 或更低的温度,为减小低温 X 射 线探测器的温度涨落,一般还需将恒温器温度涨落 控制在 μK 量级.恒温器可通过液氦、GM 制冷机 或脉冲管 (pulse tube, PT)获取 4 K 的初级低温, 液氦以及 GM 和 PT 的压缩机会引入振动,同时, 为了防止来自工作环境的其他振动,恒温器需要加 装振动隔离装置.低温 X 射线探测器对磁场非常 敏感,因此恒温器内需要做好磁场监测及屏蔽.同 时低温端电流/电压信号很小,也需要布置电磁

Fig. 2. (a) Schematic of the core structure of the microcalorimeter chip, including structures like absorber, weak thermal connection-1, thermometer, weak thermal connection-2, heat sink and so on. (b) The thermometer is the sign distinguishing different microcalorimeters, which determines the bias circuit and the type of signal amplifier.

屏蔽结构以减小电磁信号的干扰. 恒温器需要与样 品腔通过真空管道及法兰相连, 考虑到恒温器的真 空度与样品腔之间存在差别, 须在真空管道及法兰 间安装铍窗或真空差分结构.

目前一般采用绝热去磁制冷或稀释制冷的方 式获得 100 mK 的极低温. 绝热去磁制冷机 (ADR) 的体积较小,成本较低,无需重力,其最低温度一 般只能到 40 mK,且通常是间歇运行,在 100 mK 维持一段时间后需再次磁热循环才能再次使用,因 此该机器一般用于对体积和功耗要求较高的像素 数较少的低温 X 射线能谱仪上. 稀释制冷机 (DR) 体积较大且移动困难,成本较高,需要重力,最低 温一般低于 10 mK,可在 10—300 mK 范围内长 期连续工作.采用稀释制冷机可有效降低高通道数 的低温 X 射线能谱仪的设计难度.在空间 X 射 线天文学方面, XQC 及 Micro-X 探空火箭实验^[20]、 ASTRO-E/H 卫星^[25]、ATHENA 卫星^[27]、HUBS 卫星^[28]均采用绝热去磁制冷机.在先进光源线站 等大科学装置方面,初期均采用绝热去磁制冷机^[10],在对制冷温度和制冷量要求较高的科学装置计划里,均转向了稀释制冷机^[43,44].在小型实验室方面,出于体积及成本考虑,一般采用绝热去磁制冷机^[45].

先进光源线站等大科学装置上的制冷机:先进 光源线站上,一般利用低温 X 射线能谱仪测量 X 射线光束与待测材料作用后发出的 X 射线.在 此应用场景下,X 射线从一个发射点以很大的立体 角向空间发散开来,因此可以通过调节谱仪与样品 点距离和角度来调节 X 射线通量.为了增大谱仪 感光面与样品点距离的调节范围,此场景下的制冷 机必须具备探测鼻结构.国际上各光源线站的低 温 X 射线能谱仪多以 STJ 和 TES 型微量能器为 基础,直到现在,这些低温 X 射线能谱仪均采用绝 热去磁制冷机作为制冷系统,其基本结构如图 3 所 示,目前可承受 240 像素传感器及读出线路的热负 载.而正在规划中的 LCLS-II 的液体喷流实验站

Fig. 3. Structure diagram of early refrigerators for advanced beamline stations: (a) Structure of photosensitive surface of TES X-ray detector; (b) outlook of the TES-X-ray detector; (c) structure of the detector "snout" protrusion connected to the cold head of the refrigerator. The main body of the refrigerator is about 1.2 m high, and the supporting structure is determined by the application field, which will further increase the whole volume.

(liquid jet end-station),将采用稀释制冷机来承担 更多像素的热负载^[43].

空间 X 射线天文学相关制冷机: 空间 X 射线 卫星及探空火箭探测的 X 射线均来自遥远的天体, 这些 X 射线的平行度较好,因此谱仪的感光面允 许设计在制冷机的内部,无需探测鼻结构. 然而空 间卫星对功耗和体积限制较大,同时外太空无重 力,因此只能采用 ADR 提供制冷^[46]. 国际上成功 使用低温 X 射线能谱仪的案例较少,目前成功发 射的有 XQC 及 Micro-X 探空火箭以及 ASTRO-E/H 卫星. 探空火箭实验的探测时间较短,因此对 低温 X 射线探测器的功耗限制较小,然而其体积 受到火箭结构限制较大^[47]. 与之相反, X 射线卫星 对低温 X 射线探测器功耗限制很大,对其体积限 制相对较小^[48-50]. 图 4 给出了 XQC 探空火箭实验

图 4 XQC 探空火箭上绝热去磁制冷机的结构图,为了 适应探空火箭环境,该制冷机在机械结构强度以及体积方 面做了特别设计.同时,探空火箭实验测量周期短,因此该 制冷机的液氮存储体积可以设计得比较小.本图参考文献[51] 绘制

Fig. 4. Structure diagram of the adiabatic demagnetization refrigerator (ADR) on the XQC sounding rocket. In order to adapt to the environment of the sounding rocket, the refrigerator is specially designed in terms of mechanical structure strength and volume. At the same time, the measurement period of the sounding rocket experiment is short, thus the storage volume of liquid helium of the refrigerator can be designed to be relatively small. Referenced from Ref. [51]. 的制冷机结构,为了适应探空火箭实验需求,该制 冷机在结构设计上追求更小的体积和更高的机械 强度^[51].

地面小型实验室的制冷机:地面小型实验室的 应用场景与先进光源线站相近.针对不同的应用场 景,制冷机结构设计需做相应调整.在扫描电子显 微镜 (SEM)应用场景下,减小机械振动,以及减小 探头与样品点间的距离是制冷机设计的重点,而对 制冷机类型则无特殊要求,Los Alamos National Laboratory (LANL)和 NIST采用小体积及低成 本的 ADR,东京大学等单位则采用制冷功率较大 的 DR,其制冷机结构在图 5 中做简要展示^[52].在 电子束刻蚀 (electron beam-induced etching)应用 情景下,低温 X 射线能谱仪作为 EDS 角色,一般 采用成本较低的 ADR^[53].

图 5 应用于 SEM 上低温 X 射线能谱仪所用稀释制冷机 的结构图,该制冷机为了减小对 SEM 系统的振动干扰,做 了很多隔振结构,整体高度约 2 m. 本图参考自文献 [52]

Fig. 5. Structure diagram of the dilution refrigerator (DR) used in the cryogenic X-ray spectrometer for SEM application. In order to reduce the vibration interference to the SEM system, the refrigerator has made many vibration-isolation structures with an overall height of about 2 m. Referenced from Ref. [52].

2.2.2 低温 X 射线探测器

低温 X 射线探测器由 X 射线传感器芯片、前 级信号放大器和低温封装组成. X 射线传感器芯片 将 X 射线转化为电压、电阻、电流或磁通量信号; 前级信号放大器将其转化为电压信号; 低温封装的 功能主要包括低温电路、磁屏蔽、电磁屏蔽、热沉 以及光学窗口.

X 射线传感器件 X 射线传感器将 X 射线阻 挡并吸收,将其转化为数量巨大的准粒子或温度变 化信号,然后进一步转化为电压信号、电阻、电流 或磁通量信号.X 射线传感器为整个低温 X 射线 能谱仪的核心,它的种类决定了谱仪的能量分辨 率、计数率、放大电路类型以及环境敏感性等问题. 其中包含非平衡探测器 STJ,也包含准平衡态的半 导体型微量能器、TES 和 MMC 三种,其他类型如 利用动态电感测量 X 射线的传感器尚在起步阶段, 此处不作介绍.

STJ 的工作原理如图 6 所示^[54], X 射线被顶 层的 Ta 元素吸收,产生一定数量的准粒子,准粒 子穿过约瑟夫森结时产生一定的电压变化,通过该 电压信号可反推 X 射线能量,详细工作原理见文 献 [38]. STJ 能量分辨与入射光子能量正相关,即 $\delta E_{FWHM} \propto 1/\sqrt{E}$,一般在 6 eV@400 eV^[55]的水平. 同时它的 X 射线吸收层较薄,因此 STJ 一般只用 于弥散软 X 射线源的能谱测量中^[56,57]. STJ 利用 X 光子能量吸收过程中的非平衡状态进行探测,因 此计数率相对较高,可达 100 kcps 量级^[58]. STJ 可用 SQUID 作为放大器,在允许损失部分信噪比 的前提下亦可使用结型场效应管 (junction field effect transistor, JFET)^[59],可大幅压缩使用成本 和操作难度,然而 JFET 无法复用,经过多年发展, STJ 像素数量在 100 左右^[60].同时, STJ 一般只要求

图 6 STJ 的结构图,最外层的 Ta 用于 X 射线的吸收,中 间的 Al-AlO_x-Al 作为约瑟夫森结产生电压信号,本图参考 自文献 [54]

Fig. 6. Structure diagram of the STJ detector, the outermost Ta layer is used for X-ray absorption, and the middle Al-AlO_x-Al structure is used as a Josephson Junction to generate voltage signals. Referenced from Ref. [54]. 300 mK 左右的低温, 对制冷系统的要求有所降低, 使其具备与更多应用场景对接的能力^[57]. 另外, STJ 阵列可以实现接近 SDD 的计数率, 而且能量 分辨率比 SDD 高一个量级, 因此它十分适合高计 数率下的软 X 射线能谱采集工作. STJ 型低温 X 射线探测器历经三十余年的发展, 在国际上被 AIST, LLNL, PTB 等机构广泛应用.

半导体型微量能器是最早实现应用的一种微 量能器,其结构和实物照片如图7中的左侧两幅图 所示. 半导体材料一般选用硼掺杂硅或者嬗变 锗^[20,37], 它们的温度电阻系数较低且为负数, 需采 用准恒流偏置实现较高的稳定性^[40].因为温度电 阻系数较低,它需要选取低比热材料,如碲化汞单 晶、锡、铅等材料作为吸收体^[20,37]. 在低温下, 一般 低比热材料的热导率较低,因此该类微量能器的计 数率较低^[21]. 半导体温度计的阻抗较大, 一般采用 JFET 作为低温信号放大器^[25]. JFET 结构简单, 成本较低,同时其复用困难,这从本质上限定了半 导体温度计型微量能器实现大阵列较为困难,另外 一个导致它无法实现大阵列的次要因素为该类型 微量能器的吸收体无法通过微加工方式加工出来. 相对于超导材料, 硼掺杂硅或嬗变锗以及 JFET 受 磁场/电磁场影响较小,半导体型微量能器对低温 封装要求相对较低,因此以半导体型微量能器为 载荷的 XQC 探空火箭实验相对于使用 TES 作为 载荷的 micro-X 探空火箭实验早了将近 30 年获取 实用数据^[21,22]. 截至目前, XQC项目组利用该类 传感器进行了弥散软 X 射线的背景辐射研究^[21], ASTRO-H项目组实现了星系团动力学的研究^[24], 复旦大学使用该探测器实现了 EBIT 高电荷态铁 能谱的研究[17].

TES 型微量能器是目前应用最为广泛的一种 微量能器,其结构和实物照片如图 7 中的中间一列 图所示,相较半导体型微量能器,TES 温度电阻系 数的提高使其结构设计获得非常大的自由发挥空 间^[41].例如可以选取高比热材料(如金)作为吸收 体,这一变化大幅提高了该类微量能器的计数率, 同时大大扩展了材料选取范围,允许使用微加工的 方法获得大阵列^[61].对吸收体热容限制的降低也 使将被测源埋至吸收体成为可能,因此多家研究单 位利用该特点进行中微子质量测量研究^[62].TES 的缺点表现在它的转变边缘非常窄,较高能量的 X 射线会导致其发生饱和,因此 TES 型微量能器

图 7 三种微量能器的结构图,他们的区别主要体现在温度计结构以及吸收体材质和厚度上

Fig. 7. Structure diagrams of three different kinds of microcalorimeter. They are mainly differed in the structure of the thermometer, and the material and thickness of the absorber.

的能量范围较窄,线性相对较差. TES 的阻抗很小, 需采用 SQUID 对其信号进行放大. SQUID 结构 复杂,成本较高,但是可通过复用同时读取多个 TES 像素的信号,这使其具备了同时读取上千甚 至上万像素信号的可能^[63].另外需要强调的是, TES 及 SQUID 均为超导器件,受磁场/电磁场影 响较大,对低温封装要求很高.截至目前,TES 被 广泛应用在先进光源线站、EBIT、大型加速器、 重离子激发 X 射线荧光、核医学、核安检等各类 场景中,文献 [10, 41, 61] 对其应用作了非常详尽 的阐述.

MMC利用金属磁性材料作为温度传感器,其 结构和实物照片如图7中的右侧两图所示,其温度 线性区域非常宽,一定程度上解决了 TES 线性度 差和能量范围窄的问题,因此它非常适合测量宽能 量范围能谱[42,44]. 此外,由于它的线性敏感温度区 域可以到达 20 mK 甚至更低 [64], 它的能量分辨率 可以根据恒温器制冷能力进行调节. 与 TES 型微 量能器相同, MMC 也可通过微加工方式获得大阵 列. MMC利用 SQUID 测量其磁通量信号,为获 取高信噪比和一致性, 一般要求 MMC 与 SQUID 离得足够近,然而又要保证两者各自的工作温度, 设计加工难度较大^[65]. MMC 可通过双像素线圈反 向与 DC-SQUID 连接的方式自然实现 1:2 的复用 比,若想实现更高的复用比,需采用 RF-SQUID^[66]. MMC及 SQUID 为超导器件, 受磁场/电磁场影响 较大,对低温封装要求很高.由于 MMC 克服了 TES 的非线性和饱和问题, PTB 和 LLNL 等单位 致力于将其应用于 X 射线计量学等领域.

前级信号放大器 前级信号放大器用于放大 来自X射线传感器件的微弱电压、电阻、电流、磁 通量信号. 高阻抗器件, 如 STJ 以及半导体型微量 能器,可使用工作于 130 K 的 JFET^[25,60],本文将 其放入低温信号放大器部分进行介绍. 用于 X 射 线探测的 TES 芯片常态电阻较低, 一般在 10 m Ω 水平,因此,需要在接近 TES 芯片处使用前级 SQUID 芯片将其电流信号转化为电压信号. 与之 类似, MMC芯片为了降低环境噪声影响, 需要使 用前级 SQUID 芯片将磁通量转化为幅度较高的 电压信号.因此,TES及MMC需要使用前级 SQUID 实现与后端低温信号放大器的匹配,此处 重点讲述前级 SQUID. SQUID 分为非复用和复 用 SQUID 两大类, 非复用 SQUID 有单级 SQUID、 SQUID 阵列、单级 SQUID + SQUID 阵列、SQUID 阵列+SQUID 阵列;复用 SQUID 有时间复用 (TDM-SQUID)、频率复用 (FDM-SQUID)、编码 复用 (CDM-SQUID)、微波复用 (RF-SQUID) 等 方式.

非复用 SQUID: 一个典型的非复用 SQUID 结构如图 8 所示, 它采用了单级 SQUID + SQUID 阵列架构, 它的单级由 2 个结构相同的约瑟夫森结 组成^[67], 当 TES 内电流发生变化或 MMC 自身磁 通量发生变化时, 该器件两端电压发生变化, 最终 通过后端常温运算放大器构成闭环负反馈, 实现

电流、磁通量信号的线性放大.该类 SQUID 结构 相对简单,主要应用于通道数要求较低的 TES 器 件以及 MMC 为主流的器件中.根据对环境噪声压 制要求,可以使用单级或多级 SQUID 串联.图 8 给出了非复用 SQUID 的结构图^[68].

图 8 非复用 SQUID 的结构图, 右侧的单级 SQUID 将电流信号放大为电压信号, 左下侧的 SQUID 阵列将信号作进一步放大以降低在后端信号传输时杂散信号的干扰. 本 图参考自文献 [68]

Fig. 8. Structure diagram of the none-multiplexed SQUID. The single-stage SQUID on the right amplifies the current signal into a voltage signal, and the SQUID array on the lower left amplifies the signal further to reduce the interference of stray signals when the back-end signal is transmitted. Referenced from Ref. [68].

复用 SQUID: 为了在电子学通道数处于可控 数量内的前提下尽量增加像素数, NIST, NASA, PTB, SRON 等多家单位开发出了多种 SQUID 的 复用方式. 其中包括时分复用 (time civision multiplexing, TDM)的 TDM-SQUID, 码分复用 (code division multiplexing, CDM)的 CDM-SQUID, 频 分复用 (frequency civision multiplexing, FDM) 的 FDM-SQUID, 及微波复用 (microwave SQUID multiplexing, uMUX)的 RF-SQUID^[61,69]. 图 9 给 出了这四种复用 SQUID 芯片的结构图. 对于 n 列 TDM-SQUID 通过控制超导开关,在每一时间窗 口内只读取 n 列信号, 这种方式结构相对简单, 但 是会导致电子学噪声随复用比上升. CDM-SQUID 可以看作改进型 TDM, 它将每一个 TES 的串联 电流与每个前级 SQUID 相连, 但是连接的线圈磁 场方向是经过编码的,这样通过反编码,就可重建 每个 TES 的波形. FDM-SQUID 的 TES 与不同谐 振频率的 LC 电路串联,不同通道的 TES 对应不 同频域,通过频谱可以同时分析出多通道 TES 的信号. RF-SQUID 将不同通道的信号加载到 GHz 频谱上, 通过频域分析多通道 TES 或 MMC 的信号.前面三种复用方式一般应用于 TES 上, RF-SQUID 一般应用于 TES 和 MMC 上.

图 9 复用 SQUID 的原理图. 左上图为 TDM-SQUID, 通过控制超导开关来决定读取哪一通道. 右上图为 CDM-SQUID, 通过控制超导开关和后期反编码实现所有通道同时读取. 左下图为 FDM-SQUID, 通过频谱移动区分和鉴别不同像素 TES 的信号. 右下 图是 RF-SQUID, 通过微波频段的频谱移动鉴别不同像素的信号

Fig. 9. Schematic diagram of multiplexed SQUID. The picture on the top left shows that TDM-SQUID, decides which channel to read by controlling the superconducting switch. The picture on the top right shows that CDM-SQUID, can read all channels at the same time by controlling the superconducting switch and post-reverse coding. The image below on the left shows that FDM-SQUID, distinguishes and discriminates the signals of different TES pixel through spectrum shift. The image below on the right shows RF-SQUID, distinguishes different pixels by the frequency spectrum shifting of the microwave band.

低温封装 低温封装负责在电学上连接 X 射 线传感器和前级信号放大器 (前级电缆),同时负责 与制冷机的热连接(冷头),电磁场/磁场的屏蔽 (屏蔽罩)等工作.STJ由于工作温度高,电阻较大, 对连接电缆要求不高,因此其设计较为灵活.但是 其器件受外界磁场影响较大,因此对磁场屏蔽罩的 设计要求较高. 半导体微量能器工作温度较低, 对 冷头要求较高. TES 及 MMC 对前级电缆和冷头 以及屏蔽罩要求都十分苛刻,图 10 是一个 TES 封 装的典型结构. 低温封装同时受芯片结构和科学应 用限制,其结构多种多样.如面向先进光源线站和 SEM 时,其体积受到了严格的限制,因此前级电缆 的线密度以及可弯折性变得极为重要. 多家科研单 位在此方面投入了较大人力物力[70-72]. 图 10 给出 了用于 ATHENA 卫星上低温封装的结构图, 为了 实现更高的分辨率,该低温封装具备多个屏蔽 结构.

图 10 一种高密度封装示意图,主要包含高密度电缆、低 温热沉、低温电路、转接插头、磁屏蔽、电磁屏蔽、红外遮 光膜等结构

Fig. 10. Schematic diagram of a high-density package, which mainly includes high-density cables, low-temperature heat sink, low-temperature electronics, transfer plugs, magnetic filed shielding, electromagnetic shielding, infrared filter etc.

2.2.3 低温信号放大器

低温信号放大器承接来自低温 X 射线探测器 的电压信号,将其进一步放大,并通过低温线缆传 输到室温端.

JFET STJ 或半导体型微量能器属于高阻器件,其信号一般采用可工作于 130 K 甚至更低温度的低噪声 JFET 作进一步放大,以获得足够的信噪比,图 11 给出了一套用于半导体型微量能器的JFET 原理图^[73].

图 11 一种用于半导体型微量能器的 JFET 放大器结构 示意图. 本图参考自文献 [73]

Fig. 11. Schematic diagram of the structure of a JFET amplifier for the semiconductor microcalorimeter. Referenced from Ref. [73].

SQUID 基于 TDM-SQUID, CDM-SQUID, 以及 FDM-SQUID 的信号放大系统一般会在 4 K 冷盘处使用 SQUID 阵列对信号作进一步放大,主 要作用为抑制 SQUID 常温控制电路中的运算放大 器噪声,图 12 所示为其反馈放大原理.在 FLL 工 作模式下,不管是两级电路还是一级电路,放大倍 数只和反馈电阻和输入互感相关.这种情况下, FLL 环路以外的常温设备的噪声其实很难影响系 统,因为 FLL 的放大倍数有10⁵之大.这个时候噪 声基本都来自于 FLL 环路内部,也就是运算放大 器,为了消除运算放大器对前级探测器噪声的 影响,就引入了 SQUID 阵列作为次级放大,因为 SQUID 阵列有较大的磁通电压转换系数,可以大 大减小运放噪声对前端的影响.

HEMT 基于 RF-SQUID 的信号放大系统需要使用 HEMT 对高频信号作进一步的放大^[66]. HEMT 工作于 4 K 的冷盘上, 功耗在 mW 量级,可以对高频信号进行放大, 然而它的低频噪声较高, 因此一般不能直接用于 STJ 或半导体型微量能器的信号放大.

2.2.4 数据采集及分析系统

数据采集分析系统主要包括与低温电子学对 接的模数转换模块 (ADC)、波形重建模块以及能 谱分析系统模块. ADC 将来自低温信号放大器的 模拟电压、频谱信号数字化. 在使用 JFET和非复 用 SQUID 的系统中, ADC 后的数据无需波形重 建. 在基于 TDM-SQUID 和 CDM-SQUID的系统 中,该 ADC 属于低温电子学的一部分,数字化后

图 12 一个完整 SQUID 放大器结构示意图, SQUID 阵列一般置于 4 K 温区, 亦可根据实验需求将其放置于更低温区 Fig. 12. Complete schematic diagram of the SQUID amplifier structure. The SQUID array is generally placed in the 4 K temperature region, but also can be placed in the lower temperature region according to the experimental requirements.

的结果需要经 FPGA 计数后通过 DAC 对低温端 进行反馈.而且数字化后的结果需要在波形重建软 件中还原出多通道的信号.在基于 FDM-SQUID 和 RF-SQUID 的系统中,不需要 TDM-SQUID 那 种反馈机制,但是需要将频域信号的移动进行快速 分析,重建出原始波形.

在得到原始波形后,需要通过最佳滤波器法精 确计算每个脉冲的高度[1],最终统计每个脉冲的高 度获得能谱. 最佳滤波器法的工作原理是, 将脉冲 信号和等宽度的噪声信号转换到频域,比较两者在 不同频率的幅度比,在幅度比大的地方给予更多的 权重,在幅度比小的地方给予更少的权重,从而有 效地压制噪声.同时该方法需要制作标准模板来限 定脉冲的形状,模板来自预先选择好的脉冲,模板 的好坏对能谱的分辨率有较大影响^[74].同时需要 指出的是,最佳滤波器法的前提是信号系统处于线 性区域,在整个脉冲范围内,噪声水平不变,实际 情况尤其是在基于 TES 的低温 X 射线能谱仪中, 脉冲往往是非线性的,需要引入修正来降低非线性 导致的能量分辨率下降^[75].另外,当计数率较高时, 脉冲之间的堆积较为明显,此时也需要引入额外的 修正方法来降低对能量分辨率的影响,详细计算参 考文献 [75, 76].

2.3 低温 X 射线能谱仪的关键性能指标

2.3.1 能量分辨率

能量分辨率是 X 射线能谱仪的一个核心参数, 它表征了能谱仪本身对输入光谱的展宽. 当谱线密 集或背景较强时,高能量分辨率的优势便十分明 显. 较为宽泛地讲,高能量分辨需求主要来自元素 谱线的分辨以及价态的分析. 在 2 keV 能量以下, 有轻元素的 K 线、过渡金属的 L 线以及重金属的 M 线,在此能量区域如果样品成分较多,要求能谱 仪至少有几十 eV 的能量分辨率来分辨元素. 如果 成分更加复杂,则需要 10 eV 以下的分辨能力. 在 2 keV 以上,谱线重叠现象不是十分严重, SDD 便 可应对很多测量需求,但是在高灵敏度测量时仍然 捉襟见肘. 对于价态分析需求,根据测量方法,一 般要求能谱仪具有 10 eV 以下甚至亚 eV 级别的 能量分辨.

传统半导体探测器的能量分辨率在 100 eV 量级,由于它的计数率较高,对测量环境要求较低, 很多应用会使用 SDD 或以其作为参考探测器使用.在不考虑探测效率的前提下,X 射线分光器件的分辨率可以达到几十 meV 量级,而且允许单脉冲成谱,在大型光源线站上优势明显.STJ 的能量分辨率与能量正相关,在1 keV 以下可以获得10 eV 以下的能量分辨,虽然其计数率比 SDD 稍弱,仍可应付很多元素分析测量.微量能器分为半导体温度计、TES 和 MMC 三代,区别主要在计数率、线性度及吸收体的选择性等方面.总体来说,该类能谱仪可以达到几个 eV 甚至亚 eV 水平,在暗弱弥散源的价态分析方面优势较大.微量能器吸收体尺寸 (与饱和能量对应)确定后微量能器的能量分辨与能量无关.

前面提到微量能器的分辨率受制于传感器与 基底之间的功率涨落、约翰森噪声以及放大器噪 声.总体来说能量分辨与(k_BT²C/α)^{1/2}成正比,此 处热容 C代表了传感器与吸收体的总热容,T代 表了传感器温度,α代表了温度计的温度灵敏度^[1]. 其中传感器代表了半导体温度计、TES 或 MMC. 半导体温度计的α较小,一般在5左右,为了获得 较高的能量分辨率,必须选取热容足够小的吸收体 材料,因此此类微量能器的吸收体往往是单晶或 *T*_c较高的超导体.TES的α可以轻易超过50,因 此降低了对吸收体材料的限制,也因此增大了其最 佳计数率以及能量分辨率.由于TES的工作区间 只有几mK,因此它较为容易饱和,在测量能谱时 往往需要在旁边放置参考放射源来实时标定能量. MMC 克服了TES工作范围窄、线性度差的缺点, 同时 MMC 传感器本身的热容较大,对吸收体的限 制进一步放宽.但是它的最佳能量分辨尚未超过 TES,复用困难,像素数目前比TES 有劣势.

对于目前应用最为广泛的 TES 型微量能器, 其饱和能量与热容 C相关,也导致其能量分辨率 与饱和能量相关,一般会存在 $\delta E \propto (E_{max})^{1/2}$ 的现 象^[3].根据 TES 微量能器的实测,已在 5900 eV 处 最佳尺寸的像素获得约 1.6 eV 的分辨,在 1500 eV 处最佳尺寸的像素获得 0.9 eV 的分辨,与预测公 式较为符合.对于 STJ,其实测结果比微量能器差 将近一个量级.图 13 同时给出了常规分光器件的 分辨率,同时该图将部分元素的 K 线及 L 线本征 宽度列了出来^[3].通过对比可知,低温 X 射线能谱 仪在元素组成分析及元素价态分析方面有较广的 应用前景.

另外需要指出的是,能量分辨率与计数率相关.由于低温 X 射线能谱仪工作于单光子探测模式下,当计数率较高时,脉冲之间存在较为严重的

堆叠现象,会导致能量分辨率下降[75].

2.3.2 量子效率

前面提到不考虑探测效率时分光器件的能量 分辨率可以达到非常高的水平,实际测量过程中是 需要考虑探测效率的,它决定了实验过程的长短, 对于卫星项目,这一参数是非常致命的.分光型器 件存在分辨率越高,效率越低的情况,低温 X 射线 能谱仪一定程度上可以将两者解耦.当然,由于低 温 X 射线能谱仪需要工作在 100 mK 的极低温下, X 射线到达传感器之前需要经过几层红外遮光膜, 导致其对超软 X 射线的探测效率很低.此处需要 提出探测效率与量子效率的区别,微量能器器件本 身对软 X 射线的量子效率很高,但是由于系统设 置,造成其整体探测效率较低.若被测样品在极低 温下不会有此类问题.

2.3.3 最大计数率

计数率关乎能谱仪在能量分辨率足够时的采 谱时间,而采谱时间关乎整个实验测量的安排,极 为重要.X射线分光器件不存在计数率问题,原则 上可以单脉冲成谱.STJ的单像素计数率在几千 CPS到几万 CPS范围,而微量能器的单像素计数 率在几百 CPS以下.在能量分辨率可以适当降低 的测量场景下,计数率可以适当提高.

2.3.4 像素数量

微量能器的能量分辨率和计数率等关键参数 与其热容直接相关,热容越大,分辨率越差.因此

图 13 不同 X 射线能谱仪的能量分辨率对比图,同时给出了不同元素 K 线及 L 线的本征展宽用于直观比较各能谱仪的性能差 异.本图摘自文献 [3]

Fig. 13. Comparison diagram of energy resolution of different X-ray spectrometers. The natural line widths of K-line and L-line of different elements are given to directly compare the performance of different spectrometers. Referenced from Ref. [3].

无法在保持能量分辨率和计数率的前提下大幅增 加单像素感光面积,增大像素数量是解决这一矛盾 的直接途径.

2.3.5 立体角

相较于 X 射线分光器件, 低温 X 射线能谱仪 的一大优势在于它可以直接测量弥散源的能谱. 该 特点允许地面应用时通过距离调节获得较大立体 角. 这样可以大幅提高暗弱弥散源的探测灵敏度. 对于空间应用, 被测天体距离地球很远, 无法通过 调节距离改变立体角, 然而存在很多弥散源, 分光 器件无法对其进行精确的能谱测量, 更无法对其进 行成像, 因此必须使用低温 X 射线能谱仪.

2.4 X 射线能谱仪的综合性能对比

根据 2.3 节内容, X 射线能谱仪的各个参数之间是相互关联的, 在优化能量分辨率时往往伴随着能谱宽度以及最大计数率的降低.因此一个 X 射线能谱仪的优劣需要根据测量场景进行综合评估, 下面以先进光源线站中常见的荧光谱线分析场景为例, 对 X 射线能谱仪作综合性能对比, 以此提出低温 X 射线能谱仪的优势以及亟待解决的问题. 为量化能谱仪的灵敏度, 将应用场景确定为一个厚度为 d 的样品, 包含待查测元素 x, 该元素的吸收常数为 μ_x , 荧光能量为 E_x , 荧光产额为 ε_x .如果该样品被强度为 I_0 , 能量为 E_0 的光束照射, 立体角为 $\Omega_{det}/(4\pi)$ 的探测器信号计数 S_x 和量子效率 η_{det} 的关系由如下公式给出^[77]:

$$S_x = I_0 \tau \frac{\mu_x(E_0)\varepsilon_x}{\mu_{\text{tot}}(E_0) + \mu_{\text{tot}}(E_x)} \times \left(1 - \exp\left\{-\left[\mu_{\text{tot}}(E_0) + \mu_{\text{tot}}(E_x)\right]d\right\}\right) \Omega_{\text{det}}\eta_{\text{det}}/(4\pi),$$
(1)

其中, μ_{tot} 为总吸收系数, $\mu_x(E_0)/[\mu_{tot}(E_0) + \mu_{tot}(E_x)]$ 是输入光束线被元素 x 吸收的比例, 其强度与含量 成正相关. $\mu_{tot}(E_x)$ 代表了荧光被样品本身吸收的 部分. 样品厚度需要满足 $d \gg 1/[\mu_{tot}(E_0) + \mu_{tot}(E_x)]$ 以使 (1) 式的指数部分远小于 1. 如果样品为高度 稀释状态, 即 $\mu_x \ll \mu_{tot}$, 总吸收被背景主导, 信号 S_x 与元素 x的吸收 $\mu_x(E_0)$ 成正比. 为了对比不同 X 射线能谱仪技术的灵敏度, 考虑 S_x 受背景谱 B以及从另一种荧光能量为 E_y 元素影响的情景, 假 设能谱仪响应为高斯的, 能谱展宽为 ΔE_{FWHM} . 背 景谱 B 因为谱仪的响应函数非理想, 假设 B 为常数. 此情形下,两种元素的统计涨落可表示为[2]

$$N_x^2 = aB + bS_x + cS_y,$$

$$N_y^2 = aB + bS_y + cS_x,$$

$$a = \Delta E_{\rm FWHM} \pi^{1/2} / [(2\ln 2)^{1/2} (1 - d^2)],$$

$$b = (2 - 4d^{7/3} + 2d^{10/3}) / [3^{1/2} (1 - d^2)^2],$$

$$c = (2d^{4/3} - 4d^{7/3} + 2d^2) / [3^{1/2} (1 - d^2)^2],$$

$$d = \exp[-2\ln 2(E_x - E_y)^2 / \Delta E_{\rm FWHM}^2].$$
 (2)

需要指出的是,(2) 式描述的是系统误差可以 忽略的情况下的噪声贡献,它通过 $E_x - E_y$ 和 ΔE_{FWHM} 定量描述了该极限.参数 a 描述了 B 对噪 声的影响,当背景涨落主导能谱,即 $d \to 0$ 和 B ≫ $(S_x + S_y)$ 时, $N_{x,y} \propto \Delta E_{FWHM}^{1/2}$.参数 c 定量描述 了一条线与另外一条谱线发生重合时的影响,当 $d \to 0$ 和 $(E_x + E_y) \gg \Delta E_{FWHM}$ 时 $c \to 0$.

图 14 所示为通过 (2) 式计算得到的不同能量 分辨率下的信噪比 S_x/N_x ,该图同时给出了不同样 品稀释程度下的计算结果. 总计数为107, 对应于 计数率约为 6×10^5 cps 的探测器以及 15 s 的采集 时间.对于每个样品稀释度,各给出了 $P/B = \infty$, P/B = 100以及P/B = 10三种情形下的 S_x/N_x . 在稀释样品中, 谱仪分辨率 ΔE_{FWHM} 在小于线间距 $E_x - E_y$ 时方显示出其重要性,此情形下 S_x/N_x 随 ΔE_{FWHM} 的多项式等比降低,降低速率受谱线的面 积比以及谱线重合程度影响。 如果能量分辨率足 够高,可以清晰地分辨两条谱线, S_x/N_x几乎不受 ΔE_{FWHM} 影响, 在 $P/B = \infty$ 时只受 $1/(N_x)^{1/2}$ 的泊 松统计涨落影响. 如果背景对信号有贡献, S_x/N_x 则随P/B正相关下降,同时因为分辨率差时背景 对有效信号进行了稀释, S_x/N_x 会随 (ΔE_{FWHM})^{1/2} 值线性下降.

低温探测器低于 0.1 K 的要求限制了其与室 温样品的距离,因此限制了它的立体角. 图 14(b) 给出了信噪比与探测效率的关系,探测效率与单像 素立体角和量子效率相关. 对于存在不同谱线重叠 场景的稀释样品,入射光束通量为 $I_0 = 10^{12}$ cps, 荧光产额为 $\varepsilon = 10^{-3}$,能谱仪参数从表 1 中获取. 低像素数的低温 X 射线能谱仪的总探测效率虽然 只有 10^{-4} — 10^{-3} ,仍然能在可接受的测量时间内 从质量分数为 1000×10^{-6} 的样品测量中获得 S/N > 100的测量结果.

图 14 (a) 能量分辨率、(b) 探测效率及 (c), (d) 探测器种类对信噪比的影响, 图 (c) 和 (d) 为不同探测器在不同元素处性能比较. 本图参考自文献 [2]

Fig. 14. (a) Effects of energy resolution, (b) detection efficiency and (c), (d) the type of detector on the signal-to-noise ratio. Panel (c) and (d) compare the performance of different detectors at different element positions. Referenced from Ref. [2].

表 1 针对软 X 射线波段几种 X 射线能谱仪的性能参数对比

 Table 1.
 Comparison of performance parameters of several X-ray spectrometers in soft X-ray range.

Detector	Resolution $E_{\rm FWHM}/{\rm eV}$	Count rate /cps	Efficiency (O)	P/Bratio
Ge (typical)	130	3×10^5	0.1	50:1
Ge (best)	60	3×10^4	0.003	200:1
STJ (typical)	20	10^{5}	10^{-4}	200:1
STJ (best)	10	10^{6}	10^{-3}	1000:1
Grating (typical)	0.5	10^{5}	10^{-6}	200:1
$\begin{array}{c} \text{Grating} \\ \text{(best)} \end{array}$	0.2	10^{6}	10^{-5}	1000:1
Grating (best)	0.2	10^{6}	$3 imes 10^{-4}$	200:1

对于轻元素,低于1keV的轻元素荧光线的产额是非常低的,一般介于0.1%—1%之间,多数计数来自背景材料,因此对谱仪的计数率要求不言而喻.如图14(d)所示,对于不同能谱仪从锂到氟元素的信噪比,计算所用元素浓度为1%.解谱工作的干扰项主要来自背景谱和氧元素在525eV的特征谱线.将表1以及教材上荧光产额代入(1)式可

以得到信号计数率,当然该计数率需要考虑探测器 自身的最高计数率限制.总体来说,因为荧光产额 ε_x随原子序数上升而上升,因此会有更高的信号计 数率,因此信噪比随原子序数有所上升,当然氮氟 元素会因为发射线离氧元素的吸收线过近而导致 信噪比下降.STJ 像素数的提升带来的更高的探测 效率以及计数能力使其信噪比大幅提高,将来像素 数的进一步提升会使其灵敏度进一步提高.

对于谱线重叠较为严重且信号峰较弱的软 X射线波段,STJ优势较为明显.谱线重叠更为严 重,且计数率要求较低时,微量能器则较为容易应 对.对于谱线重叠现象较少的场景,传统的硅基锗 基X射线能谱仪则显示出优势.对于谱线较多,且 部分谱线强度较高,又不在关心范围内时,X射线 光栅和晶体探测器则优势较大.总体来说,相对于 传统X射线能谱仪,低温X射线能谱仪无法全面 占优,但是对其形成了优势互补.通过横向对比, 面向先进光源线站应用,低温X射线能谱仪的发 展需求主要集中在进一步提高能量分辨率和计数 率方面.解决途径主要包括减小吸收体热容以增强 能量分辨率和单像素计数率,另外可以通过提高像 素数以提高总计数率. 3 低温 X 射线能谱仪的科学应用

经过多年的发展,低温 X 射线能谱仪已广泛 应用于先进光源、粒子物理研究装置、空间 X 射线 天文学中.下面将按照先进光源线站、大型加速 器、高电荷态离子阱、空间 X 射线天文、电镜及半 导体工业应用、X 射线计量学、核科学与粒子物理 相关的谱线测量等方面作详细介绍.

3.1 先进光源

与粒子物理、X 射线天文学等学科不同,先进 光源线站可以灵活操纵输入 X 射线,因此谱学手 段多,对应的科学应用更加纷繁,在国际上美国国 家标准技术研究所 (NIST)联合先进光子源 (APS)、 隆德大学、SSRL、Spring-8、LCLS-II等先进光源 线站,致力于研发应用于先进光源线站等大科学装 置的低温 X 射线能谱仪,已实现较多应用.国内首 套基于 TES 的低温 X 射线能谱仪在上海科技大学 建设完成.由于自由电子激光装置发展较晚,低温 X 射线能谱仪尚无实际应用案例,因此本节不会按 光源种类进行分类,而是要按照 X 射线谱学方法 作应用介绍,后面介绍几个典型光源线站并指出整 体发展趋势.

3.1.1 轻元素 X 射线荧光谱

元素分析是 X 射线谱学的一项基本应用, 可 以通过材料发射出的特征 X 射线能量判断其中的 元素成分,同时可以根据特征线的相对强度判断元 素的相对含量. 通过设置其他测量量可以提供更多 的信息,例如扫描光束可以进行元素分布成像,结 合 CT 可以进行元素三维 (3D) 分布成像, 亦可利 用总 X 射线反射荧光分析进行表面成分分析. X射线荧光分析 (XRF)已被应用于科学研究的方 方面面, 轻元素 XRF, 此处定义为 Z 值位于 3—9 的范围,要求高能量分辨率和高峰值背景比 (P/B). 由于荧光线间隔小于 100 eV, 任何能谱背景都会 降低信噪比.由于轻元素的荧光产额低,并且将微 弱的信号从背景涨落中区别出来非常困难,高能量 分辨率和高 P/B 值对分析稀释元素的分析至关重 要. 低温 X 射线能谱仪集合了高能量分辨率、低噪 声和高探测效率等特点,可大幅提高轻元素 XRF 的灵敏度.

氮元素的发射谱: 一套基于 TES 微量能器的 低温 X 射线谱仪于 2011 年安装于 NSLS 的 U7A 弯铁束线站上^[3], 使其 XES 测量能力得以加强, U7A 束线站能段覆盖了广泛存在的碳氮氧元素, 非共振氮发射谱在很多科学工业及安检应用中都 会用到. 选择与安检相关的两种易爆氮化合物硝酸 铵NH4NO3以及黑索金C3H6N6O6为例, 尤其是硝酸 铵里两个氮原子一个处于高氧化态,一个处于高还 原态. 样品被沉积在洁净的硅片上, 能谱仪是一套 距离样品 5 cm 的 45 像素 320 µm × 305 µm 的 TES 微量能器. 能谱仪与光束线成 90°, 样品与光束线 成 45°, 在样品和能谱仪之间有厚度为 300 nm 的 铝和 Moxtek-AP3.3 真空窗口. 原始输入光束光斑 在 425 eV 时大小为几个 mm, 光子数在2×10¹⁰量 级, 对硝酸铵和黑索金的采谱时间分别为 29 和 23 min. TES 微量能器可以对整个能谱进行同时 测量,因此可以同时获得碳氮氧的发射线,不同元 素的谱线面积可以用作其他测量的标定源.

Vila 等[78]于 2011 年使用光栅能谱仪对同类 样品做过测量,使用了高于 TES 测量 3 个量级的 输入光强和相同量级的测量时间,获得了相似的信 噪比. 他们展示了与理论计算相符的测量结果. TES 的测量结果里两个最明显的特征1和特征2与 Vila等的结果相符,其中特征 2—4 与氮元素的高 氧化态有关,特征1与氮元素的高还原态有关.由 于黑索金无硝酸铵内的化学价态的不一致性,因此 其特征谱只包含特征 5 一个明显的峰值,同时存在 一些如特征 6-8 的可分辨特征. TES 微量能器的 测量结果与 Vila 等的测量结果高度一致. 通过图 15 可以得出结论, TES 微量能器不仅可以分辨氮元 素价态,而且可以用更弱的输入光获得与理论模型 相符的能谱. 当然, TES 微量能器尚在发展阶段, 不久的未来可以获得更大的优势. 实验中使用的 TES 微量能器饱和能量为 10 keV, 在整个能量范围内 其能量展宽保持 2.5 eV 不变. 如果专为 600 eV 的 能区优化,可以获得 0.6 eV 的能量分辨. 将像素数 进一步提升至 240 以上可以获得更高的探测效率, 从而可以测量更加暗弱的信号.例如测量充满氦气 的环境内的氮气, 3 cm 厚的 1 atm氦气便可吸收 掉一半的氮元素 K_{α} 线. 这个距离 TES 微量能器可 以做到,但是光栅能谱仪则十分困难.

图 15 利用低温 X 射线能谱仪测量到的两种氮化物的 XES. 本图摘自文献 [3]

Fig. 15. Nitrogen X-ray emission spectrum (XES) of two kinds of nitrides measured by cryogenic X-ray spectrometer. Referenced from Ref. [3].

3.1.2 X 射线近边吸收谱

稀释元素的化学价态和成键环境信息可以通 过 X 射线近边吸收谱测量获得,其中 X 射线吸收 近边结构 (XANES)可以获取元素能级的详细信 息. 扩展 X 射线吸收精细结构 (EXAFS)可以获取 元素的成键环境信息.

XANES 可通过部分电子产额 (PEY) 的方式 将不感兴趣的元素 PFY-XANES 要求能散型探测 器在感兴趣的荧光线附近工作.由于入射能量与被 测能级接近引起其共振,发射谱强度远高于背景 谱强度,测量灵敏度可以获得质的飞跃.但要求 探测器的能量分辨率足够高以将背景荧光线区别 开,同时要求具有足够大的立体角和*P/B*以缩短 测量时间.与之相比,Ge 探测器的能量分辨率不 够,光栅的探测效率不足.尤其是在高度稀释的轻 元素 K 谱线以及过渡金属的 L-M 谱线相关的软 X 射线分析中,低温 X 射线能谱仪的重要性尤为 明显.

可利用 XANES 测量第一行过渡金属元素,科 学问题往往以过渡金属的化学价态和它在特定环 境下的变化为中心,尤其可以通过 L 边的 XANES 得到这些信息.首行过渡金属元素的 L 边介于 395—1012 eV 之间,在此范围内谱线众多,重叠现 象时有发生.除了 O 元素的 K 线之外无其他接近 的谱线干扰前提下,对于 Sc, Fe 和 Zn, 30 像素锗 探测器可以提供比 9 像素 STJ 更高的信噪比.由 于 STJ 可以将氧元素的 525 eV 谱线区别开,因此 它对于 Ti 到 Mn 元素更加有优势,同时随像素数 的提升,优势元素范围也随之拓展.

NIST 在光源线站的首套谱仪主要用于 PFY-XANES 和 XES. NSLS 的 U7A 束线站上安装了 一套 240 像素的 TES 微量能器,它的像素尺寸分 两种,120 像素为 124 µm,另外一种 120 像素为 350 µm. 整套谱仪如图 3 所示.对于 20 µm 厚的 SiO₂上覆盖有重量比重 0.7% 的 C 样品,由于它不 导电且倍频光导致的 O 荧光线会给 TFY-XANES 谱形成一个很强的背景,这一样品的测量对于传统 的 TFY-XANES 来说非常有挑战性. NSLS 的研 究团队利用 120 个大面积像素在提供较大的收集 面积前提下保持了 2.5 eV 能量分辨,成功获得了 该样品的 PFY-XANES 谱图.

SSRL 的 BL10-1 上安装了一套 240 像素的基于 TES 的低温 X 射线能谱仪, 主要用于 XES 和 XAS 测量以提高对高度稀释及辐射敏感样品的测量灵 敏度^[79].为了展示该套谱仪的灵敏度及宽能谱 能力,该团队展示了两个样品的能谱:一个是1% N 元素掺杂的蓝宝石 (在硅衬底上), 另一个是干燥 的 photosystem-II, 测量结果展示出了在强背景下 微弱谱线的测试能力. Titus 等^[80,81]利用该系统 对含水 K₃[Fe(CN)₆]中的 Fe 元素 3d2p 做了 PFY-XAS, 以及 Fe 元素的 3s2p 做了 PFY-XAS 测量, 实验结果表明,即便在 0.5 mMol 的低浓度下,仍 然可以清晰地分辨出相关谱线,如图 16 所示.在 2019年的会议报道上,该团队展示了 0.001% 的高 度稀释样品的测量结果. 该团队利用此系统测量了 锂电池电极材料在高温和常温下的 X 射线能谱, 解释了高温对电池寿命的影响[80,81].

图 16 利用低温 X 射线能谱仪测得的不同稀释浓度 Fe 元素样品的吸收谱

Fig. 16. XAS spectrum of Fe elements in different concentrations of samples, which were measured by cryogenic Xray spectrometer. 价态和自旋敏感的 EXAFS 和 XANES 是荧 光探测式 XAS 的扩展,它们可以给出元素的不同 价态及自旋信息.它需要分辨从同种金属不同价态 和不同自旋态发出的荧光信号,目前此类测量只能 依赖光栅探测器和晶体探测器,因为化学价态变化 导致的谱线移动往往只有几个 eV,更多的情况是 低于 1 eV.当然,一些个例也是存在的,例如在双 核 Mn 配合物中, $K_{\beta'}$ 和 $K_{\beta13}$ 相差 16 eV^[82].特定元 素的 X 射线吸收边也会受其化学价态影响而移动 较大幅度,例如 Mn 的 $K_{\beta'}$ 和 $K_{\beta25}$ 线会因为化学价 态的不同有高达 5 eV 的移动^[83]. 低温 X 射线能谱 仪可以分辨该移动,然而与化学价态相关的谱线周 围往往伴随着很强的发射线,因此低温 X 射线能 谱仪的能量分辨率和计数率需要进一步提高,方能 在价态和自旋相关的谱学测量中获得优势.

NIST 建设了一套用于时间分辨谱学的 TES 微量能器,为了标定这套能谱仪,采集了草酸高铁 铵水溶液的静态 EXAFS 谱,测量草酸铁离子的原 因是它对光敏感^[84],并且在很多水环境系统里消 耗溶解氧^[85]. 实测结果表明,可以通过吸收谱判断 Fe 元素的化学价态.在另一个测量中,利用该谱仪 测量了氧化铁和硫化铁两种高自旋态及低自旋态 铁化合物.与之前晶体探测器测量结果一致,两者 的 $K_{\alpha 1}$ 和 $K_{\alpha 2}$ 谱线面积比有明显不同.同时氧化铁 能谱数据也显示了低于 $K_{\beta 1,3}$ 15 eV 处存在明显的 $K_{\beta'}$ 谱线.详细计算结果表明,NIST 该套系统可 以有效地区分铁的化学态随时间的演化过程.在 铁的 K_{α} 线位置,240 像素的整体能量分辨率约为 $\Delta E_{combined} = 5.5$ eV.

3.1.3 共振软 X 射线散射

共振软 X 射线散射 (RSXS) 是测量奇异电子 材料价态的有效工具^[86], 例如在高温超导体中价 电子自发形成了异构导带, 例如条形. RSXS 将输 入单色光调节到内壳层电子的共振能量上, 并将其 激发到未占据态上^[87]. 电子跃迁概率与自旋、电荷 以及价电子自旋耦合方式相关. 电子退激到原位置 会发射出等能量的 X 射线. 共振发生在该材料的 特定角度上, RSXS 同时测量不同角度和输入能 量, 可以探知材料的空间排列以及价电子状态.

多数 RSXS 实验中,使用积分型成像探测器, 例如 CCD 或微通道板作为探测器.一个主要困难 是 RSXS 扫描产生大幅度的非相干背景和荧光背 景谱线. 对于特定种类材料, 如长程有序的电子态 材料上, 散射峰相较于背景来说足够高, 允许在可 接受时间内取得有效计数. 尽管在此情况下, 信号 幅度相对背景幅度依然很弱, 只能达到百分之几的 水平^[88]. 对于更普遍的情况, 材料是短程有序、长 程无序的玻璃态, 例如非均匀掺杂^[89], 其 RSXS 信 号就更难与背景区分开来. 到目前为止, 利用积分 型探测器的 RSXS 尚未能区分玻璃态材料中电荷 是否有序性排列.

一个较新的方案为利用高能量分辨率探测器 将信号从荧光背景里区分出来.为了探索该可能 性,APS在29-ID (IEX-CDT) 束线站上安装了一 套以TES为基础的低温 X 射线能谱仪.该套谱仪 与一套大尺寸 (1.1 m) 超高真空腔对接,该真空腔 内装有一套带低温样品台的高度集成 Kappa 结构 X 射线衍射仪.该套谱仪有240 像素,由复用30倍 的TDM-SQUID 读出.该套谱仪选用的TES 尺寸 较小,适宜2 keV 以下的能谱测量.为了完成RSXS 测量,该套谱仪的结构非常夸张,它的传感器离制 冷机距离约0.95 m,法兰尺寸约为8 in.该套谱仪 可转动125°,来方便高温超导体的价带测量.该谱 仪传感器与样品最近距离为5 cm.为了演示,实测 了 Ce 掺杂的Y₃Al₅O₁₂(Ce:YAG) 晶体的散射谱, 实测能量分辨率约为1 eV@500 eV.

高效的 X 射线光栅能谱仪可以作为能谱分析 器^[90,91], Ghiringhelli 等^[92]用该方法研究长程有序 的高温超导体, 尽管这种方法有着非常高的能量分 辨率 (结合输入单色光的分辨率 0.13 eV@930 eV), 实验结果将散射峰和 d-d 激发背景分开了 (相差 2 eV). 这充分说明 1 eV 的分辨率足以减少 d-d 激 发以及铜 L 荧光线的影响. 亚 eV 分辨率的光栅谱 仪^[90]的收集效率与该谱仪 240 像素中的单个像素 的效果相近. 该谱仪允许对 10.3°范围内的散射谱 进行同时测量. Joe 等^[93]经过实测, 基于 TES 的 低温 X 射线能谱仪有效压低了背景影响,将灵敏 度提高了 5—10 倍.

3.1.4 时间分辨 X 射线能谱

在隆德大学,一套以 TES 为基础的低温 X 射 线能谱仪与一套超快宽谱脉冲式 X 射线光源连接, 用于超快 X 射线谱学研究^[94]. 该套 X 射线装置的 原理为:一团时间展宽约为 60 fs 的红外激光分光 后光束 1 照射样品,同时光束 2 通过高次谐波过程 产生一团时间展宽稍大的脉冲 X 射线, X 射线与 光束1的时间间隔可以通过光路调节.该激光脉冲 重复频率为1kHz,这意味着该实验每毫秒都可重 复一次. 此泵浦探测过程可以分为两种模式: 时间 分辨的 X 射线吸收谱 (TR-XAS) 以及时间分辨的 X射线发射谱 (TR-XES). 在TR-XAS 模式下, 超 窄 X 射线脉冲穿透样品照射到探测器上. 该实验 以1kHz的重频进行,直到统计量达到所需要求. 首先在无样品时测量一个能谱S0,之后在有样品 时测量一个能谱S_x,将两个能谱作对比即可得到 时间分辨的 X 射线吸收谱 S_x/S_0 . 由于 X 射线源 与能谱仪均具备超宽能谱的特性,所有的元素及吸 收边可以被同次测量得到.所有的吸收边均可利用 传统的 EXAFS 以及 XANES 方法进行分析. 测量 一个时间延迟后, 泵浦光及探测光的时间切换至下 一数值,从而获得下一时延下的吸收谱信息,如此 重复,便可获得 XAS 的时间演化过程.在 TR-XES 模式下 X 射线脉冲照射样品后,发射光照射到能 谱仪上. 从样品发射的所有荧光线可以被同时测量 到. XES 对占据态非常敏感,对 XAS 谱提供了有 效的补充. 两种模式下, 产生的 X 射线信号均等间 隔1ms到达能谱仪,因此可以根据泵浦探测时间 延迟给出演化谱,当然也可以直接去掉泵浦光,进 行常规的 X 射线吸收谱和发射谱测量.

该套谱仪的一套样机于 2010 年安装, 它采用 复用比为 6 的 4 通道 TDM-SQUID 读出 24 像素 信号. 首次运行采用 Fe55 标定, 多像素平均能量 分辨率为 $\Delta E_{\text{combined}} = 3.1 \text{ eV}$. 整套被用于二茂铁 (Fe(C₅H₅)) 中 Fe 元素 K 边的静态 EXAFS 谱, 选 用二茂铁的原因是它是金属配位体的典型代表. 最 终在 14.1 h 内采集了 8.9 × 10⁶ 个计数, 约 175 cps. 随后的 EXAFS 分析与同步辐射测量结果一致. 这 是首个由超宽输入光和能谱仪得到的结果.此前 Doriese 等^[10] 用超宽 X 射线源和单像素 TES 采集 了 Ti 以及 Co 薄膜的吸收边, 但是由于信噪比较 差,未能分辨任何的精细结构.隆德大学的谱仪也 被用于氧化铁静态 XES 测量中, 能谱数据准确地 显示了低于K_{β1,3} 15 eV 处存在较清晰的K_{β'}结构^[3]. 这是高自旋铁杂化的特征.160像素的正式运行版 本于 2013 年安装, 电子学的升级于 2014 年安装完 成, 整套系统在 5.9 keV 处有 $\Delta E_{\text{combined}} = 3.5 \text{ eV}$ 的 分辨.

NIST 也在发展一套与隆德大学相近的系统,

相比之下, NIST 的激光系统功率更高, 脉宽更窄, 仅约 35 fs. X 射线脉冲产生后,由反射镜聚焦到 83 µm, X 射线通过一个 3d 过渡金属做成的环形 靶照射到能谱仪上,这个环形靶由一个 X 射线管 提供能量标定. NIST 的该套系统进行了两次时间 分辨的 X 射线谱测量,首次测量了三联吡啶铁 (Fe tris bipyridine) 这种典型的自旋交叉材料. 通过测 量 Fe 元素的 K_a及 K_β比值随泵浦探测光时间差的 变化得到其分子比例随时间的演化, 通过多方校准, 得到高自旋态的指数衰减周期约为 (570 ± 100) ps, 这与之前发表结果一致^[13]. 同时,这次测量也得到 了 NIST 的这套系统计算时间精度为 2.5 ps, 实际 测量结果显示小于 6 ps. 此次测量在 6.4 keV 处能 量分辨率约为 $\Delta E_{combined} = 5.2$ eV.

在第二次测量中^[12],比较了未泵浦激发以及 延迟 100 ps激发的草酸铁铵溶液的 EXAFS 谱, 在该溶液中中心铁离子为三价.在 100 ps 延迟对 应的谱中 EXAFS 结构减少了, Fe 的吸收边向低 能端移动了(2.0±0.4) eV,这表示二价铁离子的存 在.因此此次测量说明发生了光致还原过程,此过 程中铁首先被还原,然后配位键被断开.这个草酸 铁中发生的光致还原过程与教科书中描述的行为 不相符.

3.1.5 重要线站上的应用

APS硬X射线谱学与NIST合作,APS针对2—20 keV能段,主要针对化学敏感的X射线显微成像、能量色散X射线衍射以及康普顿轮廓测量3个研究方向^[95].X射线荧光XRF是一种有效的元素鉴别手段,2 keV以上的XRF对原子序数15以上的元素十分有效,2—20 keV能段可以有效覆盖3d过渡金属的K边及5d过渡元素的L边,形成有效覆盖.低温X射线能谱仪可以在10 keV附近轻松实现优于10 eV的分辨率,这将提高元素鉴别的灵敏度,也允许超宽能谱范围的EXAFS.结合APS先进的X光调节能力,可以实现化学敏感的显微成像.目前该团队已实现几十像素的能谱仪运行,并对Cu-Ni-Co薄膜样品和SiGeBiCMOS集成芯片进行了能谱测量^[96].

Spring-8 稀土金属的 XANES 日本 SPring-8 的 BL37XU 线站上安装了一套 240 像素的基于 TES 的低温 X 射线能谱仪,该套谱仪设置为 XANES 测量模式,目前已获得初步测试结果^[97]. BL37XU

线站可以提供 4.5—18.8 keV 能段的 X 射线, 可用 于过渡金属的 K 线及稀土金属的 L 边测量. 使 用 SDD 的 XANES 很难探测高度稀释稀土金属 样品的 L 线, 低温 X 射线能谱仪的引入解决了该 问题.

LCLS-II 自由电子激光 LCLS 是世界首套 X 射线自由电子激光, 它利用自由电子在周期性磁 铁中产生的 X 射线激光照射样品,可以获得很多 重要的信息. LCLS-II 在 LCLS 的基础上, 将重复 频率和亮度等参数作进一步提升,平均功率提高 了 4 个量级. 将低温 X 射线能谱仪的探测能力与 LCLS-II 的高亮度光相结合, 将产生十分重要的研 究成果. 初期规划中, 低温 X 射线能谱仪安装在液 体喷流实验站上^[43], 在该线站上, 液体喷流将为被 测物质提供更为真实的原位环境. 一个典型的应用 对象是被称作 Photosystem-II 的蛋白质复合体, 它是光合作用过程中的重要物质. 以往的研究是将 其冻住,然后进行谱学以及成像研究.而在液体喷 流中,该蛋白质将在更加真实的情形下被研究.同 时,性能提高的低温 X 射线能谱仪将使统计量大 幅提高,获得更精准的结果.为了获得足够高的灵 敏度,该套能谱仪规划像素数为1000,工作能段 为1 keV 以下,能量分辨率要求低于 0.5 eV. 目前 NIST 已经针对该项目展开了芯片研制工作,初步 测量结果显示,在1250 eV 处可以获得 0.75 eV 的 能量分辨[98]. 为了获得足够的制冷能力, 该套谱仪 计划使用稀释制冷机.

SXFEL及 SHINE 项目 张江综合性国家科 学中心已具备第三代同步辐射光源 (SSRF)、国家 蛋白质科学设施 (上海) 和软 X 射线自由电子激光 装置 (SXFEL) 等为主的大科学装置集群. 同时具 有国际领先性能的硬 X 射线自由电子激光装置 (SHINE)已经开始建设,它是一个以高重复频率 X 射线自由电子激光为基础的大科学装置,具备超 高峰值亮度和平均亮度、高重复频率、飞秒级超快 脉冲等优异特性. 同时具备纳米级的超高空间分辨 能力和飞秒级的超快时间分辨能力,为物理、化 学、生命科学、材料科学、能源科学等前沿领域提 供了前所未有的研究手段. 首批建设 10 个实验站 的探测需求主要包括 X 射线成像和 X 射线能谱测 量两个方面. 以硬 X 射线超快谱学等实验站为例, 它涵盖了 X 射线吸收、发射、拉曼散射等诸多光谱 学测量.结合 SXFEL 及 SHINE 的高光子通量特 性和低温 X 射线能谱仪的暗弱弥散源探测能力, 将可探测低荧光产额极弱信号,或观测发生概率低 的罕见事件. 针对 SXFEL 及 SHINE 需求已展开 了低温 X 射线能谱仪的研制, 初步具备了传感器 芯片、低温封装、数据采集分析系统的建设能力, 目前已建设完成了一套基于 TES 的低温 X 射线能 谱仪. 目前在硬 X 射线能段 (8 keV 处标定结 果)获得了 7.6 eV 的能量分辨率, 在软 X 射线能 区 (1.5 keV 处标定结果) 获得了约 2 eV 的能量分 辨.为了测试该套系统的计数率,同时建设了一套 405 nm 激光标定系统, 可以标定器件的能量分辨 率及计数率.为了展示该套能谱仪的宽谱测量能 力,利用该套谱仪测量了来自钢厂和热电厂附近 的 PM2.5 空气颗粒物 X 射线荧光谱, 实测结果如 图 17 所示,可以清晰地分辨出 PM2.5 中存在的元 素种类和相对含量.

图 17 上海科技大学低温 X 射线能谱仪研制团队采集得到的 PM2.5 样品能谱

Fig. 17. Energy spectrum of PM2.5 samples collected by the Cryogenics X-ray Spectrometer Development team of Shanghai Tech University.

3.1.6 低温 X 射线能谱仪在先进光源线站的 发展趋势

与其他大科学装置不同,先进光源线站可以灵 活地调节 X 光束的亮度和能量,同时具备高单色 性、高平行度等特点,这允许波长色散型 X 射线能 谱仪以及传统的半导体探测器完成多数 X 射线谱 学测量. 然而在高背景、谱线繁杂且能量范围较宽 的情形下,需要引入低温 X 射线能谱仪与传统 X 射线能谱仪形成优势互补. 由于该方向应用往往 伴随着高 X 射线通量, 需要进一步提高低温 X 射 线能谱仪的整体计数率以压缩采谱时间. STJ 的单 像素计数率比微量能器高两个数量级以上,在软 X 射线波段优势较大. 微量能器以 TES 为主, 可以 应对 20 keV 乃至更高能量的测量, 然而亟需通过 增加像素数来提高整体的计数率. MMC 虽然比 TES 的能量范围更宽, 但是单像素计数率比 TES 更低, 且对 MMC 而言, 提高像素数更为困难, 因 此 MMC 在此方向暂时处于劣势.

除了与传统 X 射线能谱仪进行优势互补, 低 温 X 射线能谱仪在暗弱弥散源测量方面的优势允 许它脱离先进光源线站完成与之相同的测量工作. 如 Miaja-Avila 等^[99]于 2021 年演示了利用一套 X 射线光管对 Ti 元素的不同化合物进行了 XES 测量,借由低温 X 射线能谱仪清晰地分辨出了 Ti 各化合态两条 K_α的谱线移动. George 等^[100]则 提出了基于 X 射线光管和低温 X 射线能谱仪对较 高浓度的样品做 lab-based 超宽能谱 EXAFS, 并 给出了详细的计算. 这意味着由于该谱仪的引入, 很多传统必须在先进光源线站上进行的测量可以 迁移到小型实验室完成, 为很多科学研究提供了更 强的灵活性.

3.2 加速器

3.2.1 强子原子

强子原子是一种电子被带负电的介子,如 π^- 介子或 K^- 介子替代后形成的原子.由于介子比电子重很多,壳层能量增大很多,增大幅度与介子质量有关.例如 π^- 替代的 $^{12}_6$ C的4-3转变边能量约为6.4 keV.强子原子是通过如下方法制成的:将非相对论强子对准包含感兴趣元素的材料进行照射,强子原子形成初期处于高激发态,通过多次跃迁,到达低激发态,同时发射出X射线及俄歇电子.最终

原子核将此强子吸收掉,结合能以及 X 射线能量 可以通过第一性原理计算得到.需要注意的是,之 前纯电磁作用的哈密顿量已不再适用,需要引入介 子与核之间的强相互作用.强相互作用会引起内壳 层几个 eV 量级的移动,并且导致这些谱线变宽. 因此高能量分辨的 X 射线谱可用于合理的研究. HEATES 研究组的目标是通过 X 和弦谱研究反 K 介子与不同原子核的作用.K 介子是最轻的强 子,它含有一个奇夸克或反夸克.

为了测试 TES 为基础的低温 X 射线能谱仪与 强子束流的兼容性, PSI 部署了一套该谱仪到 π M1 束线站上.在三周的测试中,该套谱仪包含 240 像素 (使用 8 × 30 的 TDM-SQUID).介子束 流被一个中空的锥形碳靶阻挡,从而产生 π^- 替代 的 $_{6}^{12}$ C.一个 X 光管照射到高纯铬以及高纯钴箔 上,激发出 K 线用于能量标定.同时 X 射线光 管也激发了测试环境周围的不锈钢,从而产生较 弱的铁元素 K 谱线.介子束流未运行时,系统在计 数率约 4.4 cps 每像素的前提下,在 6.4 keV 处有 $\Delta E_{\text{combined}} = 4.6 \text{ eV} 的分辨^[14].$

前面介绍的对 π^- 替代的 $_6^{12}$ C进行的测量,观察 其 4f —3d 以及 4d—3p 跃迁,能量差约为 7 eV, 在 Fe 元素的 6.4 keV 附近的能量误差为 0.12 eV, 时间分辨率约为1.2 μ s. 这说明低温 X 射线能谱仪 可以为计划的 K 介子原子能谱测量提供足够的能 量分辨率、能量标定、时间分辨率以及灵敏度. 另 外—套安装于 J-PARC 的 K1.8BR 束线站上的该 谱仪目前已经运行^[15,16].

3.2.2 PIXE

基于 X 射线的无损分析应用十分广泛, 粒子 激发 X 射线发射谱 (PIXE) 是其中一个重要的分 支,常见的粒子包括质子、氦核等. PIXE 相较于 X 射线管,有无特征峰、与薄片样品作用概率高、 对重元素敏感等特点. 传统的 PIXE 与 SDD 结合, 可以分析元素种类较少情形下的材料. 但是当元素 种类众多且庞杂时,需要引入低温 X 射线能谱仪. 如图 18 所示,于韦斯屈莱大学的研究团队利用 该谱仪对多种样品进行了 PIXE 测量,获得了超 宽的高能量分辨率能谱^[101]. 目前该团队为 PIXE 系统增加了聚焦结构,进一步提升了能谱采集时 间^[102].

图 18 利用低温 X 射线能谱仪与 PIXE 结合获得的超宽 X 射线谱. 本图引自文献 [101]

Fig. 18. Ultra-wide X-ray spectrum obtained by the combination of cryogenic X-ray spectrometer and PIXE. Referenced from Ref. [101].

3.3 高电荷态离子阱

在高电荷态离子阱上, 低温 X 射线探测器主要用于高电荷态原子能谱测量^[17-19]. 本节将按照国际及国内应用进行介绍.

3.3.1 国际

高电荷态离子阱利用聚焦后的高能电子将输 入元素的电子全部去除,这种高电荷态粒子与一般 存在于天文相关的等离子体情况类似.一个 NASA-GSFC 的 TEMS 计划中,在 LLNL 的 EBIT 建造 一套 TES 为基础的低温 X 射线能谱仪,以替换原 来的 36 像素硅基微量能器.该套新谱仪像素数为 256,吸收体为蘑菇结构.该套谱仪将用于天文 相关的高电荷态离子电荷交换等过程.另一套为 NIST-EBIT 建造的能谱仪用于中高原子序数高电 荷态原子的发射谱,可以用于原子物理理论以及量 子电动力学效应.目前 NIST 已对其低温 X 射线 能谱仪从半导体温度计型升级为 TES 型,在像素 数等方面有较大提升,收集面积提高了近 30 倍^[103].

3.3.2 国内

LLNL 建造的 EBIT 原则上可以产生任何元 素的任何价态,这些高电荷态离子在电子束中产生 并束缚在磁场中,原则上它已经是非常完美的离子 源. 然而该系统的离子束缚量较低,因此该源的光 通量较低.复旦大学也建造了一套 EBIT,目标是 在获得大多数离子的同时获得较高的 X 射线通量. 为了获得较高的能量分辨率,复旦大学为该设备 配备了一套基于半导体温度计的低温 X 射线能谱 仪.为了获得较宽的能量覆盖范围,该套能谱仪 配备了两种尺寸的吸收体, 一种厚度为 7 μm, 一种 厚度为 90 μm. 制冷系统采用 ADR. 经过测试, 该 套系统 7 μm 厚度的像素在 3 keV 处获得了 13 eV 的分辨率^[17].

3.4 空间应用

X 射线光谱学研究是 X 射线天文学中极为重 要的研究手段, 通过分析 X 射线能谱, 可以研究宇 宙的演化、星际气体、元素的生成、中子星及黑洞 吸积盘等课题, 而低温 X 射线能谱仪在此研究领 域具有无可比拟的优势.威斯康星大学麦迪逊分 校 (UW-Madison) 与美国航天局 (NASA) 合作, 以低温 X 射线能谱仪为主要载荷, 观测到了太阳 风电荷交换机制产生的 X 射线能谱线,并计算出 了其对弥散软 X 射线背景辐射 (SXRB) 的贡献比 例,更新了人们对 SXRB 的认识^[20,21].日本空间局 (JAXA) 与 NASA 于 2016 年以低温 X 射线能谱仪 为主要载荷发射了 HITOMI 卫星, 尽管 HITOMI 在工作一个月之后失事,但是它在短短几周的观测 时间内便观测到了星系间气体的漩涡结构,为星系 动力学提供了重要的研究依据,该结果发表在 Nature 正刊上^[23,24]. Micro-X 探空火箭实验组利 用以 TES 为基础的低温 X 射线能谱仪作为载荷, 计划用于小立体角天体的 X 射线源短期观察, 同 时为后期的 ATHENA 和 LYNX 项目打下基础^[22]. 欧洲空间局 (ESA) 与 NASA 正在合作研制名为 ATHENA 的 X 射线卫星, 研究重点为元素形成和 黑洞演化等课题, 低温 X 射线能谱仪是该卫星的 主要载荷[26,27]. 清华大学牵头提出, 并联合国内外 相关单位开展了"宇宙热重子探寻"(hot universe baryon surveyor, HUBS) 卫星的研制^[28,29], 希望通 过高精度 X 射线光谱及成像观测, 获取来自宇宙 的微弱 X 射线信号, 以揭开宇宙重子缺失之谜, 推 动星系宇宙学前沿领域突破发展瓶颈^[104]. 由于空 间科学研究周期长, 研究团队数较少且科学目标存 在很强的互补性, 其发射时间存在很大的关联性, 本节将以时间顺序为主对相关研究项目进行介绍.

3.4.1 XQC 探空火箭实验

科学背景 软 X 射线背景辐射 (diffuse soft X-ray background, SXRB) 是 X 射线天文学较为 早期的发现,它广泛分布于空间中,组成非常复杂. SXRB 因其来源的不同,在不同能段的行为特性也 不一样. 受超新星遗迹前沿激波的影响和大质量年 轻恒星星风的加热,星际气体被加热至上百万摄 氏度, 通过热辐射产生 X 射线, 是低于 0.25 keV 能段 X 射线辐射的主要来源. 在高于 0.5 keV 能 段,超新星遗迹和大质量年轻恒星星风的影响减 小, SXRB 趋向各向同性, 因此它更有可能来自于 银河系外. XQC 探空火箭实验的研究目标为观测 20-1000 eV 能段的软 X 射线背景^[20] 以确定其详 细产生机制.由于软 X 射线穿透力弱,无法在地面 甚至是高空气球上进行观测,只能将能谱仪发射 至160 km 以上的高空才可观测到有效数据, 但是 空间卫星成本高周期长,因此 XQC 探空火箭实验 研究团队^[20]选用了成本相对较低的探空火箭作为 载体.由于探空火箭在空间停留时间较短,且处于 飞行状态,其姿态控制相对较难,因此要求能谱仪 具有极高的分辨率以减少对统计量的要求,同时要 求该探测器对光输入角度变化不敏感,所以低温 X 射线能谱仪成了最佳之选.

装置介绍 XQC 项目选用的探空火箭最高高 度可达 235 km,在 160 km 以上停留时间约 240 s. 它选用了以半导体温度计为基础的低温 X 射线 能谱仪作为载荷,能谱仪像素数为 36,有效面积 36—144 mm^{2[20,105]}.工作温度约为 50—60 mK,该 项目采用液氦进行初级制冷获得 4 K 低温,之后 绝热去磁制冷机获得所需工作温度,图 4 所示为该 项目的制冷系统结构^[51]. XQC 的信号放大器采用 JFET^[21],数据采集完成后以离线处理的方式得到 能谱结果^[74].另外需要重点强调的是,为了提高低 能端光子的通过效率,该项目制作了专门的红外遮 光装置,在 200 eV 处仍然允许 10% 的光子通过^[21]. XQC上的低温 X 射线能谱仪, 在轨能量分辨约为 6 eV, 未考虑红外吸收膜作用时探测效率高于 99%, 由于它的时间常数约为 9 ms, 不能进行高计 数率测量, 因此该项目未采用 X 射线聚焦镜.

研究成果 XQC 探空火箭实验作为首个将低 温 X 射线能谱仪发射升空并成功采集科学数据的 空间项目,首次实现了 X 射线微量能器在空间天 文观测的应用,并获得了至今唯一的弥漫 X 射线 背景辐射的高分辨光谱.能量分辨率和探测效率相 较之前项目提高 2 个量级以上,对 X 射线天文学 做出了极大的贡献.该项目多次成功发射,获得的 科学结果主要有:

• 能谱中的 Fe 元素线非常暗弱, 这意味着星 系热气体中铁元素含量偏低.

• 较亮谱线的红移小于 0.005, 意味着多数的 热辐射 X 射线并非来自星际介质 (IGM).

• C-VI 谱线可用于确定太阳风重离子电荷交换对 X 射线背景辐射的贡献比例.

• 等离子体谱线主要来自太阳周围的热气泡.

• 首次探测到了天文学家盼望已久的 Fe 元素 M 线.

• 50 eV 以下的光子计数较少的测量结果将强相互作用暗物质候选者排除掉.

• 对失踪重子的观测极限做出了限定[106].

3.4.2 ASTRO-E/H 系列卫星项目

科学背景 XQC 探空火箭实验的多次成功观 测为空间 X 射线天文学作出了重要指导,日本空 间局 (JAXA) 相关单位联合美国空间局 (NASA) 相关多家单位展开了一项名为 ASTRO-E/H 的 X 射线卫星项目,以获得长期稳定的高能量 X 射 线能谱观测能力^[25].由于种种原因,该卫星历经 ASTRO-E 两次发射失败以及 ASTRO-H 一次发 射失败,目前正在复制 ASTRO-H 多数设计,计划 以项目名为 XRISM 再次发射,由于 ASTRO-H 采 集到了一个月的有效数据,后面均以 ASTRO-H 称呼该卫星项目.该卫星的科学目标如下^[107].

•揭示宇宙大尺度结构及其演化史: a) 星系团 是宇宙中最大的关联结构, ASTRO-H将以其作为 观测对象, 以揭示星系团间介质热能与亚星系团动 能之间的反馈机制为目标, 测量非热能量及化学组 成, 从而给出星系团的演化过程. b) ASTRO-H 将观测藏身于厚视界外围物质的超大型黑洞, 以 研究它在星系演化过程中扮演的角色.

• 理解宇宙极端条件: ASTRO-H 将测量十分 接近黑洞边缘的物质运动, 进而观测时空在重力下 的变形, 从而理解相对论时空观以及宇宙大爆炸的 暴涨过程相关物理.

· 探索非热平衡宇宙的诸多现象: ASTRO-H
 将测量高能宇宙射线产生位置,将阐明重力、碰撞、恒星爆炸等过程在高能宇宙射线加速过程中扮演的角色.

• 阐明暗物质及暗能量本质: ASTRO-H 将给 出暗物质在星系团中的分布情况,同时确定不同距 离的星系团质量,从而揭示暗物质和暗能量在星系 团演化过程中的作用.

装置介绍 ASTRO-H卫星采用近地轨道,轨 道高度 550 km,计划运行寿命约 3 年.与 XQC 探 空火箭项目相同,它选用了以半导体温度计为基础 的低温 X 射线能谱仪作为载荷^[107],能谱仪像素数 为 36,有效面积约 24 mm^{2[73]}.工作温度约为 50— 60 mK,该项目采用液氩、液氦以及 GM 制冷机做 初级制冷获得 4 K 低温,之后绝热去磁制冷机做 初级制冷获得 4 K 低温,之后绝热去磁制冷机做 初级制冷获得 4 K 低温,之后绝热去磁制冷机做 有奶需工作温度,图 4 所示便是该项目的制冷系统 结构^[48]. ASTRO-H 的信号放大器采用 JFET^[73], 数据采集完成后以离线处理的方式得到能谱结 果^[74]. ASTRO-H 上的低温 X 射线能谱仪,在轨能 量分辨在 6 keV 处约为 4.9 eV.由于该项目吸收 体面积较小,时间常数相对 XQC 项目较低.同时 考虑到光收集问题,因此该项目采用了 X 射线聚 焦镜^[107].

研究成果 ASTRO-H 卫星于 2016 年发射升 空,在轨测量约 1 个月之后出现故障并损毁. 虽然 只有 1 个月的观测时间,该卫星仍然得到了极为重 要的测量结果^[23,24]. 星系团是宇宙中质量最大的结 构,它是宇宙常数以及其他天体物理过程的一个重 要的探针. 然而对占据大部分星系团质量的高能气 体认识非常缺乏,获得这些信息对了解大质量黑洞 对气体动能贡献程度十分重要,同时对通过流体静 力平衡计算星系团质量十分重要. 来自英仙座星系 团中心的 X 射线是由5×10⁶ K 的弥散热等离子体 发出的. 中心星系 NGC1275 的活动星系核通过喷 流将能量输送给周围的星际气体,形成向外扩散的 相对论气体充斥的气泡. 这些气泡或许导致了星系 间介质的高速运动并加热了内部气体,从而阻止了 辐射能量的耗散. ASTRO-H项目观测了英仙座 星系团,测量到了在距离中心 30—60 千角秒距处 气体有 (164±10) km/s的离散,在 60 千角秒距外 有 (150±70) km/s的速度. 湍流压是热力学压力的 4%. 测量结果意味着通过流体静力平衡计算得到 的星系团质量需要修正.

3.4.3 Micro-X 探空火箭实验

科学背景 Micro-X 探空火箭实验作为 TES 为基础的低温 X 射线能谱仪的验证型号,以立体 角相对较小的 PUPPIS-A 超新星遗迹为首次观测 目标,观测能段涵盖 100—2500 eV^[108].选取该超 新星遗迹的原因为另外一颗 X 射线卫星 SUZAKU 测量发现该位置有相干的大尺度硅发射线放出. Micro-X 项目长期的研究目标为:1) 通过测量谱线 移动测量星际气体的运动;2) 测量等离子体谱线 来限制等离子体的性质,同时通过谱线高度实现被 观测天体的温度分布、电离状态以及元素占比的信 息.该项目将以类 He 原子和 Fe 的 L 边发射线为 主要测量对象.

装置介绍 Micro-X项目历经选用的探空火 箭最高高度可达 270 km,在 160 km 以上停留时 间大约 300 s^[108]. 它选用了以 TES 为基础的低温 X 射线能谱仪作为载荷,能谱仪像素数 128,有效面 积 44 mm². 工作温度约为 50—60 mK,该项目采 用液氦做初级制冷获得 4 K 低温,之后绝热去磁 制冷机获得所需工作温度,结构与 XQC 探空火箭 实验的类似,图 4 给出了与本项目类似的制冷机结 构. XQC 的信号放大器采用 TDM-SQUID,数据 采集完成后以离线处理的方式得到能谱结果. Micro-X 探空火箭上的低温 X 射线能谱仪,地面 标定能量分辨约为 2—4 eV^[108],由于该项目计划 观测较小立体角的目标,所以配备了 X 射线聚 焦镜.

研究成果 Micro-X 探空火箭历经多次延迟 终于于 2018 年首次发射,此次发射是 TES 以及 TDM-SQUID 在空间首次成功运行. 但是由于火 箭控制系统的问题,此次发射并未对准观测源,然 而给出了 TES 为基础的低温 X 射线能谱仪的在轨 标定和测量结果, 128 像素中有 107 像素成功工作, 分辨率最高的一个像素约 4.4 eV,分辨率低于 10 eV 的只有 39 像素.

3.4.4 ATHENA 卫星项目

科学背景 ATHENA 卫星项目与 IXO 项目 存在历史沿革,因此,科学背景也较为相似^[27].其几 项重要的观测目标包括温热宇宙及宇宙中的能量 传输过程涉及的数十个 X 射线天文学核心问题^[26].

装置介绍 与 IXO 相同, ATHENA 也是一颗 结构非常复杂的卫星^[27], 它的主要载荷是以 TES 为基础的低温 X 射线能谱仪. 该套谱仪的参数如 表 2 所列^[109].

表 2 安装于 ATHENA 卫星的低温 X 射线能谱仪关键 参数

 Table 2.
 Key parameters of cryogenic X-ray spectrometer installed on ATHENA satellite.

参数	设计指标	备注
能量范围/keV	0.2 - 12	
能量分辨率	$2.5~{\rm eV}@7~{\rm keV}$	
$\mathrm{FOV}/\mathrm{arcmin}$	5	
像素尺寸/arcsc	${<}5$	
单像素计数率/cps	0.25	保证80%的事例优 于设计能量分辨率
非X射线背景 /(cps·cm ⁻²)	5^{-3}	

研究成果 目前该卫星尚在研制阶段,发射时间已推迟至 2032 年.

3.4.5 HUBS 卫星项目

科学背景 星系形成与演化是天体物理前沿 热点之一.美国科学院上个天文十年规划列出了 19个重大问题,4个直接涉及星系,9个与星系和 大尺度的结构、形成和演化有密切联系.中国基金 委 2011—2020天文学科发展战略也指出"星系宇 宙学"和"银河系"两个优先发展方向.得益于国际 上在观测设备等方面的投入,该领域几年来发展迅 速,取得了很多突破性的进展.但是,有些关键的 核心科学问题至今却仍不清楚,主要有两个,一是 标准的宇宙学理论预言的重子物质和金属比观测 中实际发现的要多很多,理论正确的话,这些"缺 失"的重子和金属在哪里?他们在宇宙中是如何分 布的?

第二个关键问题是星系形成与演化方面的.观测发现,星系中心的超大质量黑洞与星系核球之间 具有非常好的相关性.黑洞的尺度要比星系尺度小 接近 10 个量级,为何尺度上相差如此巨大的两者 之间存在这么好的相关性?另外一个相关问题是, 宇宙学框架下的星系形成理论预言的星系的数目, 除了对中等质量星系的预言与观测一致外,观测到 的大质量星系与小质量星系数目都要比预言的少 很多,原因是什么?

针对上述两个疑难问题,理论学家利用大规模 数值模拟、解析等方法进行了大量的研究.针对第 一个问题,几乎所有研究都得出了类似的结论:一 部分"缺失"的重子物质分布在大尺度纤维状结构 的热气体中,另一部分则分布在星系周围的环星系 介质以及热晕里.最近 Planck 卫星探测到了弥漫 热气体对微波背景辐射的扰动 (所谓的 Sunyaev-Zeldovic 或 SZ 效应),也验证了星系际及星系周热 气体的存在,表明理论模型在定性层面是正确的, 但在定量层面上有着非常大的不确定性,这对理解 宇宙大尺度结构形成和演化形成了极大的障碍.

针对第二个问题,理论研究几乎都认为解决问题的关键是"反馈过程".这包括星系中心的活动星系核以及超新星爆发产生的辐射和物质外流与星系中的星际介质气体之间的相互作用,这些相互作用影响了星系中气体的温度和密度值,以及它们的空间分布,进而影响了恒星形成和星系的演化.比如,活动星系核以及超新星爆发产生的携带着巨大能量的风可能会把星系中的气体和金属吹到星系外部的环星系介质甚至星系际介质中,这样星系内的恒星形成就会被抑制.

对上述理论猜想的观测检验显然至关重要,但 是目前都很欠缺.实际上,可以看到,对重子物质 缺失以及对反馈过程这两个科学问题的观测研究 是密切相关的,两者都需要对大尺度纤维状结构的 热气体、星系周围的环星系介质、热晕中以及星系 内部的热气体的温度、密度、金属丰度、运动学状 态等方面进行详细观测.它们的辐射一般集中在 软 X 射线波段,但是,由于在此波段缺乏观测能 力,大部分这类热气体至今还未被直接观测到.现 有 X 射线观测通过获取比较亮的背景活动星系核 吸收谱,测量吸收线,间接地揭示了热气体的存在, 但观测还仅限于几个视线方向.探测这些热气体并 研究他们的空间分布、物理和化学性质,解决重子 物质的缺失以及深刻理解反馈过程对星系演化影 响即是提出的 HUBS 卫星的核心科学目标.

该项目(简称 HUBS)将围绕着"宇宙重子缺 失"重大科学问题,通过研制发射卫星及大视场、 高效率、高分辨 X 射线成像和光谱观测手段, 探测 宇宙大尺度纤维状结构及星系周物质分布, 致力于 发现宇宙中"缺失"的物质的空间分布及其物理与 化学性质, 以取得完善星系形成与演化理论的突破 性成果, 具有重要意义, 并引领"以我为主"的国际 大科学计划. 与此同时, 填补国内在 TES 微量能 器、极低温制冷、大视场 X 射线聚焦等先进技术领 域的空白.

从国际长期空间规划来看,在未来的至少20---25年内,只有欧空局已立项(计划于2028年发 射)的 ATHENA 卫星配备了一台高分辨率成像光 谱仪 (X-IFU), 但其视场非常小 (大致 5 × 5 平方 角分),不适合用来观测空间大尺度分布的热气体 (也不是它的核心科学目标). X-IFU 可以用来做一 些尝试性的相关工作,但它的灵敏度需要提高至少 一个数量级才可能在宇宙重子缺失问题上取得实 质性进展,这为中国强力推动天体物理及宇宙学前 沿研究提供了一个契机. HUBS 将聚焦于"宇宙重 子缺失"重大科学问题,与ATHENA卫星在核心 科学目标及观测能力两方面形成互补. HUBS 的大 视场 (大致一个平方度) 也将大大推动其他高能天 体物理中许多其他前沿科学问题的研究,包括宇宙 软X射线弥漫背景辐射的起源、超新星遗迹的物 理及化学性质、活动星系核对星系演化的影响、活 动恒星的特性、太阳风与地球周物质电荷转移辐射 过程等[28,29].

装置介绍 HUBS 科学载荷的主要系统包括: 一台基于 TES 微量能器的成像光谱仪及相应信号 读出复用电路、一台基于机械制冷和 ADR 的极低 温制冷机和一台大视场 X 射线聚焦望远镜. HUBS 卫星的初步设计如下.

• 探测波段: 0.1—2 keV, 预期是热重子辐射 谱线聚集的波段.

 · 探测器系统: 60 × 60 微量能器阵列,像素 能量分辨率优于 2 eV.为了增强吸收线光谱观测 能力,考虑用更小的 12 × 12 像素替代中心 3 × 3 正常像素,从而达到更好的谱分辨率 (< 1 eV).

• X 射线光学系统:有效集光面积在 0.6 keV 光子能量处大于1000 mm²,视场大致 1 平方度,角 分辨率优于1角分.

•极低温制冷系统:机械制冷从环境温度降到4K附近,绝热去磁制冷从4K附近降至50mK.

● 载荷电功耗: < 1000 W.

• 载荷质量: < 1000 kg.

•卫星轨道:低倾角、近地轨道,保障至少5年运行寿命.处于近地轨道探测器的粒子本底比高轨 (例如 ATHENA 的 L2 轨道)要低至少一个量级,有利于弱信号探测;低倾角有利于提高观测效率.

•观测模式:以深度曝光的定点模式为主,巡 天模式为辅.

研究成果 HUBS 尚处于研制阶段, 预期 2030 年左右发射.

3.4.6 历史回顾及展望

X 射线天文学与低温 X 射线能谱仪特性极为 契合,历经三十余年的发展,已应用到或即将应用 到各种极端物理的研究中. XOC 探空火箭实验使 用基于半导体温度计的低温 X 射线能谱仪, 历经 多次发射,成功获得多项观测成果.其中包括星系 热气体中铁含量问题、热辐射 X 射线来源问题、太 阳风电荷交换问题等,为X射线天文学提供了有力 的保障. ASTRO-H 卫星项目组历经多次失利, 在 较短的观测周期内测量到了星系团周围热气体涡 流,对星系团动力学有重大贡献.基于 TES 的低温 X 射线能谱仪在 Micro-X 探空火箭项目中首次实 现了空间测量. ATHEN 卫星是 ESA 主导的卫星, 该卫星以低温 X 射线能谱仪为主要载荷,目前处 于研制阶段. HUBS 卫星是我国主导的一颗 X 射线 卫星,该卫星以失踪重子探测为主要探测目标,以 低温 X 射线能谱仪为主要载荷,目前正在关键技 术研发阶段. 美国正在推动 LYNX 卫星项目 [110,111].

3.5 电镜应用及半导体工业应用

相较于 X 射线, 电子束系统, 如扫描电子显微 镜 (SEM) 和透射电子显微镜 (TEM), 更容易获得 更高的空间分辨率. 将 SEM 和 TEM 的空间分辨 率与低温 X 射线能谱仪结合可以获得亚微米乃至 纳米尺度的元素分布情况^[30], 这为将来的材料分 析需求提供了坚实保障. 用 SEM 分析材料的组成 和结构时, 高的电子能量意味着更深的穿透率和更 差的空间分辨率. 但是降低电压后, 激发的 X 谱线 能量很低, 常用的基于半导体 X 射线探测器的能 谱仪 (EDS) 无法提供足够的能量分辨率, 这样就 无法做充分的元素组成分析. 利用低温 X 射线能 谱仪做 EDS 可以解决该问题. 将低温 X 射线能谱 仪替换半导体 X 射线探测器后,颗粒的分辨能力 从原来的几千纳米提高到了几十纳米量级^[30].在 TEM 上,低温 X 射线能谱仪相对 SDD 并无压倒 性优势,但是在元素成分较为复杂且灵敏度要求较 高时,低温 X 射线能谱仪将变得十分重要.

3.5.1 SEM

科学背景 高空间分辨的材料分析十分重要, 低温X射线能谱仪的引入允许使用低偏置电压场 发射扫描电子显微镜 (FFG-SEM) 获得可以媲美 TEM 的空间分辨率. 相比 TEM, FFG-SEM 的优 势在于测量传统抛光的平面样品时,可以在很大的 范围内获得很高的空间分辨率.同时由于电子束能 量降低, X 射线发射团面积减小到了亚微米, 例如 在硅材料上 5 keV 的电子束对应 0.5 μm 的 X 射 线发射尺寸,若能量降低到 2 keV,则对应 0.1 µm. 但是当电子束能量降到如此低时, X 射线能谱也被 压缩到了2keV以下,在此能量范围内,轻元素的 K 线与过渡金属的 L 线以及重元素的 M 线混叠在 一起,必须使用高能量分辨率的能谱仪来进行测 量^[53]. 与此同时, 由于 FEG-SEMs 的发射电流极 为微弱 (0.1-1 nA), 因此在分析小质量厚度的材 料时其 X 射线通量也极为低下,因此对能谱仪的 探测效率要求也很高.因此一般需要聚焦镜来提高 光子收集效率.

材料表面纳米尺度化学分析 分析环境中的 颗粒物是环境监测、核安全监测、条约核查中最为 常见的工作需求.这些颗粒物往往是无定型结构、 且带有含铀矿物质.此类样品数量众多,使用光源 进行测量的话耗费大量的排队时间,因此需要建造 一套实验室级别的测量系统来满足此类测量需求. 纳米尺度的成像一般要求一个纳米尺度的探针,传 统的光学手段 (UV, VLS, NIR, Raman, LIBS) 以 及 X 射线手段 (μXRF, XPS) 无法提供如此小尺 度的探针,而 FE-SEM 可以给出如此高的精度.同 时为了实现化学价态的分析,需要引入低温 X 射 线能谱仪.为了实现该测量目标,美国成立了 HXI 项目组,参与单位包括 LANL, NIST, 科罗拉多大 学以及 STAR-CRYO 公司^[30].

半导体工业应用前景 在半导体工业中,原位 探测在微加工过程中掉落于硅衬底上的亚微米颗 粒十分重要.目前的光学检测系统允许在 200 mm 范围内快速定位 50 nm 尺寸的微颗粒,之后该硅 片被送到 FFG-SEM 上鉴定该颗粒的成分. 由于传 统 EDS 的分辨率不够高,只能将激发能量提高到 5—10 keV. 然而在该能段多数电子能量未沉积到 微颗粒上,而是沉积到了衬底上,这将导致其背景 信号过强. 若降低激发能量, 又遇到分辨率不足的 问题,因此低温 X 射线能谱仪是十分重要的.当半 导体器件尺寸和微颗粒尺寸进一步减小时,低温 X射线能谱仪的必要性将进一步体现^[53]. Redfern 等[112] 从能量分辨率、制冷时间、计数率、振动水平 等方面分析了低温 X 射线能谱仪在该方面的应用 前景. Wollman 等^[113]则演示了在硅衬底上 0.3 μm 大小的钨颗粒以及 0.1 µm 大小的氧化铝颗粒的实 测结果. 日本 SIINT 的研究团队 [52] 研发了一套基 于稀释制冷机的低温 X 射线能谱仪,该能谱仪可 以连续工作 24 h, 无需循环. 该团队将其应用到了 SEM 上用于微颗粒的价态检测,为了获得较高的 统计量,使用的能谱仪单像素计数率高达 500 cps. 他们区分了广泛存在于环境中的 Mg 元素 K 线及 As 元素的 L 线, 同时演示了铝衬底上亚微米结构 的元素分析. 该团队于 2008年首次演示了使用 SEM 分析过渡金属氧化物和层状双氢氧化物的无 机纳米片, 演示样品为厚度低于 20 nm 的 Nb₃O₈, 他们长期的测量目标为碳纳米管. NIST 的研究 团队演示了一套 240 像素低温 X 射线能谱仪结合 SEM 在 IC 器件检测方面的能力, 可以在亚微米级 别快速检测元素分布,并计划将该系统进一步升级 到 3000 像素以提高其检测能力[114].

稀土元素分析 低温 X 射线能谱仪已在先进 光源线站 SPRING-8 上实现了对稀土金属的测 量^[15]. 与此同时, 日本九州大学利用 FE-SEM 实现 了对稀土微颗粒的高空间分辨测量[115]. 激发电压 的降低要求能谱仪工作于谱线密集的软 X 射线波 段,然而低温 X 射线能谱仪的分辨率足够高,解决 了该问题. 基于 TES 的低温 X 射线能谱仪的引入 允许将电压降至5 kV 以下. 该团队分析了 La B₆ 的 4 条特征线: La M_ζ (640 eV), La M_{αβ} (841 eV), La My (1021 eV) 以及 1100 eV 处的一条极为微弱 的M2N2线.他们使用该方法分析了稀土金属、稀 土磷酸盐以及独居石的能谱.为了获得定量分析, 通过比较 P, Ca, La, Ce, Pr 的谱线强度和重量比 值, 对测量系统进行了标定. 同时发现 Maß线的强 度会随着原子序数增加而急剧增强,这意味着低 温 X 射线能谱仪对稀土元素的研究十分有效.

电子束刻蚀微颗粒 3D 元素分析 彗尾物质、 月壤和星尘样品极为珍贵,样品量少,包含的信息 却丰富多彩.为了实现对星辰的测量,将环境控制 扫描型电子显微镜改造后允许实现材料选择型电 子束刻蚀,同时给该套系统配备低温 X 射线能谱 仪^[53].该套系统可以实现星尘颗粒边刻蚀边测量 能谱,从而可以获得微颗粒的 3D 结构,进而获得 星尘的生长过程等信息,为天文研究提供有用的参 考.同时,也可以定量详细分析星尘的元素成分, 乃至化学状态,这些信息对天体演化过程十分重 要.当然,该测量不限于星尘研究,对环境科学等 研究也十分重要.

3.5.2 TEM

科学背景 在 TEM 中,由于电压较高,可以 通过 5 keV 以上的谱线分辨元素,因此多数元素分 析工作可以使用 SDD 完成,然而在元素成分复杂 和存在暗弱谱线测量需求的情况下,需要提高能谱 仪的探测灵敏度,低温 X 射线能谱仪的重要性便 得以体现^[116].

研究成果 日本九州大学等多家单位联合将 低温 X 射线能谱仪安装到了一套扫描透射电镜 上^[117],为了提高扫描速度,该团队为其设计制造了 一套连续工作的低振动稀释制冷机系统.该团队利 用该套系统扫描了 BaTiO₃的能谱,成功地区分了 SDD 测量中混叠在一起的 Ti 的 K 线和 Ba 的 L 线.扫描了低导热钢的能谱,可以区分 SDD 测量 中混叠在一起的 Co 的 K_a线以及 Fe 的 K_β线^[116]. Yamada 等^[118]于 2020 年用类似系统测量了 Fe-P-Mo-Mn 合金中的 P 含量及分布,成功测到了 SDD 无法测量到的 P 元素 K_a线,并将 P 元素的探测灵 敏度提高到了重量比重 0.0005%.

3.5.3 小 结

降低加速电压和电流将大幅提高 SEM 的空间 分辨能力,一般要求电压低于 5 keV,这导致发射 线处在软 X 射线能段,此区域谱线密集,需要引入 低温 X 射线能谱仪来解决该问题.该谱仪将在 FE-SEM 中起到至关重要的作用.在 TEM 中低 温 X 射线能谱仪对 SDD 形成了重要的互补.

3.6 X 射线计量学

时至今日, X 射线数据库涵盖了 X 射线谱线 的中心值、宽度、形状. 该类数据已经支撑了详细 的数据库供人查询. 然而这里面很多数据已经超过 了 50 年,并且存在难以估算的不确定度,更有甚者,一些谱线的数据在标准数据中无法找到, X 射线分析团队对此颇有微词,因此亟需对这些数据进行重新测量^[10].

由于基于 TES 的低温 X 射线能谱仪出色的能量分辨率和相对较宽的探测范围,美国 NIST^[10] 在 开展 X 射线谱线重新标定工作,他们利用一套基 于 TDM-SQUID 读出的 32 像素能谱仪,在 5.9 keV 获得了 $\Delta E_{\text{combined}} = 2.55 \text{ eV}$ 的能量分辨,在首次 实验中在 4.5—7 keV 之间获得了 0.4 eV 的精度. Fowler 等^[75] 通过改进算法,将堆积问题带来的能量分辨率降低问题进一步降低,实现了更高的能量 分辨率和计数率.

基于 TES 的 X 射线能谱仪对 X 射线的标定 分辨率要求已基本满足, 然而它的线性度、稳定性 以及动态范围限定了它在计量学方面的应用.例 如, Miaja 等^[99]进行 Ti 的氧化物 X 射线发射谱测 量时, 需要周期性地调换靶位以消除 TES 微量能 器的不稳定性.而稳定性强、线性度高的 MMC 型 微量能器更加适合计量学方面的应用.因此德国海 德堡大学以及美国 LLNL 等单位均在推动 X 射线 能谱计量工作^[64].两家单位的 MMC 芯片结构、制 冷系统、低温电子学、数据处理系统乃至数据处理 人员均不相同, 然而两家的测量结果极为相似, 具 体数据对比见图 19^[65].同时, 由于 MMC 本身热容 较大, 在吸收体内掺杂样品对其性能影响较小, PTB 等单位将放射源埋藏在吸收体内, 实现了 4II 立体角的绝对测量^[119].

3.7 核科学与粒子物理相关应用

低温 X 射线能谱仪也可以用来探测能量较低的核谱线,该方面的应用前景也非常广泛.

3.7.1 核时钟

核时钟利用核能级确定周期,相较于传统原子钟,核时钟的能级变化发生在原子核内,受环境影响很小.目前主要选定的核素为²²⁹Th,为了确定该能级差,日本多家科研单位使用低温 X 射线能谱仪对相关能级做了精确测量^[15,33]

3.7.2 核安检

低温 X 射线能谱仪可用来做国防安检工作, 高浓铀最重要的信号是从铀 235 发射的 185.7 keV 的γ射线,这与存在于其他材料中的镭 226 所发射

图 19 利用 MMC 对不同核素进行标定的误差对比情况,两家研发单位的 MMC 结构、制冷系统乃至数据分析均相互独立,仍 然得到了十分一致的标定效果.本图摘自文献 [65]

Fig. 19. Different MMC detectors from two research and development unit are used to compare the calibration errors of different nuclides. Both MMC structures, refrigeration systems and data analysis of these two research and development units are independent of each other, however still result in very consistent calibration results. Referenced from Ref. [65].

的 186.1 keV 的γ射线几乎相同,利用低温 X 射线 能谱仪便可轻松区别开这两条谱线.另外, NIST 利用他们研制的低温 X 射线能谱仪精确测量了钚 同位素混合物的谱线^[34,35].

3.7.3 核医学

重离子治癌是一个正在研究发展中的医疗方向,该方法利用高能带电碳核入射到靶点,将癌细胞杀死.为了精确测量碳离子布拉格峰特性,结合低温 X 射线能谱仪的吸收体厚度可以较为灵活地调节这一特点,日本东京大学等相关单位利用基于 TES 的低温 X 射线能谱仪对能量约 100 MeV的入射粒子进行了测量,如此高的能量导致 TES 严重饱和,该团队通过脉冲饱和顶端宽度来估算能量^[31,32].

3.7.4 粒子物理

除了上述应用外,以基于 MMC 微量能器为 主,被广泛应用于暗物质^[64]、双贝塔衰变^[120]、中微 子质量测量^[62,121]中,该类测量装置结构与低温 X 射线能谱仪结构差别较大,本文不作详细介绍.

3.7.5 小 结

在核物理及粒子物理应用领域, 低温 X 射线 能谱仪可以将灵敏度提高多个量级, 对该领域至关 重要. 在该领域, MMC 微量能器相较 TES 微量 能器和半导体温度计微量能器优势明显, 应用前景 广泛.

4 总结及展望

低温 X 射线能谱仪主要包括 STJ 和微量能器 两大类,根据温度计的种类,微量能器包含半导体 温度计型、TES 型和 MMC 型三类.目前 TES 型 应用最为广泛, MMC 尚在研发阶段.STJ 具有相 对较高的能量分辨率和非常高的计数率,可以用于 高灵敏度的元素分辨的场景中,该类能谱仪在美国 和日本的光源线站上实现了应用,在国内尚未实现 应用.基于半导体温度计的低温 X 射线能谱仪目 前在空间科学实现了应用,对 X 射线天文学产生 了重大的影响, 在国内, 该类能谱仪被应用于复旦 大学的 EBIT上. 基于 TES 的低温 X 射线能谱仪 降低了对吸收体的要求, 使其具备了大范围应用的 潜力, 目前已广泛应用于先进光源线站、电子显微 镜等装置, 并在多个空间 X 射线卫星项目上作为 主要载荷, 上海科技大学已完成首套该类能谱仪的 研制, 清华大学正在研发基于该能谱仪的 X 射线 卫星. 基于 MMC 的低温 X 射线能谱仪解决了非 线性和动态范围问题, 目前受制于复用和制冷, 尚 未实现大阵列的应用.

对于先进光源的意义:高能量分辨率、大立体 角及高量子效率对高度稀释元素的分析极为重要, 尤其是在元素种类混杂较为严重的情形下,低温 X射线能谱仪将有效提高先进光源的探测能力.基 于 STJ 的低温 X 射线能谱仪计数率较高,在对能 量分辨率要求相对较低的元素分辨场景十分有用. 基于微量能器的低温 X 射线能谱仪在元素的价态 分析场景下优势明显,但其像素数是需要突破的重 点.目前,以 NIST 等单位为基础, NSLS, SSRL, APS, SPRING-8 等先进光源已经实现了低温 X 射线能谱仪的能谱测量工作.同时美国的 LCLS-II、中国的 SXFEL 及 SHINE 项目正在规划和建造 面向自由电子激光装置的低温 X 射线能谱仪.

对于加速器应用的意义: 在加速器相关的强子 原子能谱测量以及粒子激发的 X 射线荧光谱测量 中, 低温 X 射线能谱仪对暗弱弥散源的测量优势 尽显, 将对该领域做出重要贡献.

对于高电荷态离子阱的意义:高电荷态离子 的 X 射线通量较低,且为弥散源,低温 X 射线能 谱仪可以大幅提高灵敏度,目前国际上正在对安装 在 EBIT 上的低温 X 射线能谱仪进行升级,从半 导体温度计型升级到了 TES 型,像素数及有效收 集面积也获得大幅提升,这将大幅压缩测量时间, 为该领域带来新的机遇.

对于 X 射线天文学的意义: X 射线天体的通 量极低, 低温 X 射线能谱仪的引入将为 X 射线天 文学带来翻天覆地的变化, 例如, XQC 项目以及 ASTRO-H 项目以较短的测量时间获得了可以推 动 X 射线天文学重大发展的成果. 目前国际及国 内相关的空间单位均在为该能谱仪投入巨大的人 力物力, 正在建设的有欧洲的 ATHENA 项目及 中国的 HUBS 项目.

对于电镜发展的意义: 低温 X 射线能谱仪的

引入使 FE-SEM 的激发电压降到了 5 kV 以下,从 而提高了空间分辨精度,可以达到亚微米精度.在 材料表面纳米尺度化学分析、半导体微颗粒检测、 稀土元素分析等方面具有巨大的推动作用.在透射 电镜方面,低温 X 射线能谱仪可以提高微量元素 的探测灵敏度.

对于计量学的意义:低温 X 射线能谱仪对 X 射线计量学极为关键,它可以用于谱线的重新计 量以及以往数据库中未录入谱线的测量工作.基 于 MMC 的微量能器能频范围宽、线性度好,更加 适合该领域.

基于 MMC 的低温 X 射线能谱仪对核科学及 粒子物理极为重要,在核时钟、核安检、核医学、双 贝塔衰变、中微子质量测量乃至暗物质探测方面将 有广泛的应用前景.

非常感谢中国辐射防护研究院放射化学分析研究室的 戴雄新教授及宋丽娟老师为我们提供 PM2.5 样品,用于能 谱展示.

参考文献

- McCammon D 2005 Cryogenic Particle Detection (Heidelberg: Springer) pp1-34
- [2] Friedrich S 2006 J. Synchrotron Rad. 13 159
- [3] Uhlig J, Doriese W B, Fowler J W, Swetz D S, Jaye C, Fischer D A, Reintsema C D, Bennett D A, Vale L R, Mandal U 2015 J. Synchrotron Rad. 22 766
- [4] Bechstein S, Beckhoff B, Fliegauf R, Weser J, Ulm G 2004 Spectrochim. Acta, Part B 59 215
- [5] Drury O B, Friedrich S 2005 IEEE Trans. Appl. Superconduct. 15 613
- [6] Friedrich S, Funk T, Drury O, Labov S E, Cramer S P 2002 *Rev. Sci. Instrum.* 73 1629
- [7] Ohkubo M, Shiki S, Ukibe M, Matsubayashi N, Kitajima Y, Nagamachi S 2012 Sci. Rep. 2 831
- [8] Ukibe M, Fujii G, Shiki S, Kitajima Y, Ohkubo M 2016 J. Low Temp. Phys. 184 194
- [9] Uhlig J, Fullagar W, Ullom J N, Doriese W B, Fowler J W, Swetz D S, Gador N, Canton S E, Kinnunen K, Maasilta I J 2013 Phys. Rev. Lett. 110 138302
- [10] Doriese W B, Abbamonte P, Alpert B K, Bennett D A, Denison E V, Fang Y, Fischer D A, Fitzgerald C P, Fowler J W, Gard J D 2017 *Rev. Sci. Instrum.* 88 053108
- [11] Joe Y I, O'Neil G C, Miaja-Avila L, Fowler J W, Jimenez R, Silverman K L, Swetz D S, Ullom J N 2015 J. Phys. B: At. Mol. Opt. Phys. 49 024003
- [12] O' Neil G C, Miaja-Avila L, Joe Y I, Alpert B K, Balasubramanian M, Sagar D M, Doriese W, Fowler J W, Fullagar W K, Chen N 2017 J. Phys. Chem. Lett. 8 1099
- [13] Miaja-Avila L, O'Neil G C, Joe Y I, Alpert B K, Damrauer N H, Doriese W B, Fatur S M, Fowler J W, Hilton G C, Jimenez R 2016 Phys. Rev. X 6 031047

- [14] Okada S, Bennett D A, Curceanu C, Doriese W B, Fowler J W, Gard J D, Gustafsson F P, Hashimoto T, Hayano R S, Hirenzaki S 2016 Prog. Theor. Exp. Phys. 2016 091D01
- [15] Yamada S, Tatsuno H, Okada S, Hashimoto T 2020 J. Low Temp. Phys. 200 418
- [16] Hashimoto T, Bennett D A, Doriese W B, Durkin M S, Fowler J W, Gard J D, Hayakawa R, Hayashi T, Hilton G C, Ichinohe Y 2020 J. Low Temp. Phys. 199 1018
- [17] Shen Y, Xiao J, Yao K, Yang Y, Lu D, Fu Y Q, Tu B S, Hutton R, Zou Y M 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 408 326
- [18] Betancourt-Martinez G L, Adams J, Bandler S, Beiersdorfer P, Brown G, Chervenak J, Doriese R, Eckart M, Irwin K, Kelley R 2014 Proc. SPIE 9144 91443U
- [19] Brown G V, Adams J S, Beiersdorfer P, Clementson J, Frankel M, Kahn S M, Kelly R L, Kilbourne C A, Koutroumpa D, Leutenegger M 2009 AIP Conf. Proc. 1185 446
- [20] Porter F S, Almy R, Apodaca E, Figueroa-Feliciano E, Galeazzi M, Kelley R, McCammon D, Stahle C K, Szymkowiak A E, Sanders W T 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 444 220
- [21] McCammon D, Barger K, Brandl D E, Brekosky R P, Crowder S G, Gygax J D, Kelley R L, Kilbourne C A, Lindeman M A, Porter F S 2008 J. Low Temp. Phys. 151 715
- [22] Adams J S, Baker R, Bandler S R, Bastidon N, Danowski M E, Doriese W B, Eckart M E, FigueroaFeliciano E, Goldfinger D C, Heine S N T 2020 J. Low Temp. Phys. 199 1062
- [23] ZuHone J A, Markevitch M, Zhuravleva I 2016 Astrophys. J. 817 110
- [24] The Hitomi Collaboration 2016 Nature 535 117
- [25] Kilbourne C A, Adams J S, Brekosky R P, Chervenak J A, Chiao M P, Eckart M E, Figueroa-Feliciano E, Galeazzi M, Grein C, Jhabvala C A 2018 J. Astron. Telesc. Instrum. Syst. 4 011214
- [26] Barcons X, Barret D, Decourchelle A, den Herder J W, Fabian A C, Matsumoto H, Lumb D, Nandra K, Piro L, Smith R K 2017 Astron. Nachr. 338 153
- [27] Barret D, Trong T L, Den Herder J-W, Piro L, Barcons X, Huovelin J, Kelley R, Mas-Hesse J M, Mitsuda K, Paltani S 2016 Proc. SPIE 9905 99052F
- [28] Cui W, Bregman J N, Bruijn M P, Chen L B, Chen Y, Cui C, Fang T T, Gao B, Gao H, Gao J R 2020 Proc. SPIE 11444 114442S
- [29] Wang Y R, Wang S F, Li F J, Liang Y J, Ding J, Chen Y L, Cui W, Huang R, Hua X Y, Jin H 2020 *Proc. SPIE* 11444 114449C
- [30] Carpenter M H, Croce M P, Baker Z K, Batista E R, Caffrey M P, Fontes C J, Koehler K E, Kossmann S E, McIntosh K G, Rabin M W 2020 J. Low Temp. Phys. 200 437
- [31] Ohno M, Irimatsugawa T, Miura Y, Takahashi H, Ikeda T, Otani C, Sakama M, Matsufuji N 2018 J. Low Temp. Phys. 193 1222
- [32] Smith R, Ohno M, Miura Y, Nakada N, Mitsuya Y, Takahashi H, Ikeda T, Otani C, Sakama M, Matsufuji N 2020 J. Low Temp. Phys. 199 1012
- [33] Yamaguchi A, Muramatsu H, Hayashi T, Yuasa N, Nakamura K, Takimoto M, Haba H, Konashi K, Watanabe M, Kikunaga H 2019 *Phys. Rev. Lett.* **123** 222501
- [34] Rabin M W 2009 AIP Conf. Proc. 1185 725

- [35] Winkler R, Hoover A S, Rabin M W, Bennett D A, Doriese W B, Fowler J W, Hays-Wehle J, Horansky R D, Reintsema C D, Schmidt D R 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 770 203
- [36] Ding H L 2010 Nuclear Radiation Detector (Harbin: Harbin Engineering University Press) p376 (in Chinese) [丁洪林 2010 核辐射探测器 (哈尔滨:哈尔滨工程大学出版社) 第 376页]
- [37] Shen Y 2011 Ph. D. Dissertation (Shanghai: Fudan University) (in Chinese) [沈扬 2011 博士学位论文 (上海: 复 旦大学)]
- [38] Frank M, Hiller L J, Le Grand J B, Mears C A, Labov S E, Lindeman M A, Netel H, Chow D, Barfknecht A T 1998 *Rev. Sci. Instrum.* 69 25
- [39] Moseley S H, Mather J C, McCammon D 1984 J. Appl. Phys. 56 1257
- [40] McCammon D 2005 Cryogenic Particle Detection (Heidelberg: Springer) pp35-62
- [41] Irwin K D, Hilton G C 2005 Cryogenic Particle Detection (Heidelberg: Springer) pp63-150
- [42] Fleischmann A, Enss C, Seidel G M 2005 Cryogenic Particle Detection (Heidelberg: Springer) pp151–216
- [43] Li D, Alpert B K, Becker D T, Bennett D A, Carini G A, Cho H M, Doriese W B, Dusatko J E, Fowler J W, Frisch J C 2018 J. Low Temp. Phys. 193 1287
- [44] Unger D, Abeln A, Enss C, Fleischmann A, Hengstler D, Kempf S, Gastaldo L 2020 arXiv:2010.15348 [physics.ins-det]
- [45] Newbury D E, Irwin K D, Hilton G C, Wollman D A, Small J A, Martinis J M 2005 Cryogenic Particle Detection (Heidelberg: Springer) pp267-312
- [46] Collins S A, Rodriguez J I, Ross Jr R G 2002 AIP Conf. Proc. 613 1053
- [47] Wikus P, Rutherford J M, Trowbridge S N, McCammon D, Adams J S, Bandler S R, Das R, Doriese W B, Eckart M E, Figueroa-Feliciano E 2008 International Cryocooler Conference-16th Atlanta, Georgia, USA, May 17–20, 2008 p547
- [48] Fujimoto R, Mitsuda K, Yamasaki N, Takei Y, Tsujimoto M, Sugita H, Sato Y, Shinozaki K, Ohashi T, Ishisaki Y 2010 Cryogenics 50 488
- [49] Prouve' T, Duval J M, Charles I, Yamasaki N Y, Mitsuda K, Nakagawa T, Shinozaki K, Tokoku C, Yamamoto R, Minami Y 2018 *Cryogenics* 89 85
- [50] Wang J, Pan C, Zhang T, Luo K Q, Xi X T, Wu X L, Zheng J P, Chen L B, Wang J J, Zhou Y 2019 Sci. Bull. 64 219
- [51] McCammon D, Almy R, Apodaca E e a, Tiest W B, Cui W, Deiker S, Galeazzi M, Juda M, Lesser A, Mihara T 2002 Astrophys. J. 576 188
- [52] Maehata K, Hara T, Ito T, Yamanaka Y, Tanaka K, Mitsuda K, Yamasaki N Y 2014 Cryogenics 61 86
- [53] Silver E, Lin T, Vicenzi E, Toth M, Westphal A, Beeman J, Haller E E, Burchell M 2012 43rd Lunar and Planetary Science Conference Woodlands, Texas ,USA, March 19–23, 2012 p2511
- [54] Carpenter M H, Friedrich S, Hall J A, Harris J, Cantor R 2014 J. Low Temp. Phys. 176 222
- [55] Ukibe M, Fujii G, Shiki S, Kitajima Y, Ohkubo M 2016 J. Low Temp. Phys. 184 200
- [56] Fujii G, Ukibe M, Ohkubo M 2015 Supercond. Sci. Technol. 28 104005
- [57] Fujii G, Ukibe M, Shiki S, Ohkubo M 2017 X-Ray Spectrometry 46 325

- [58] Fujii G, Ukibe M, Shiki S, Ohkubo M 2019 Microsc. Microanal. 25 262
- [59] Kishimoto M, Ukibe M, Katagiri M, Nakazawa M, Kurakado M 1996 Nucl. Instrum. Methods Phys. Res., Sec. A 370 126
- [60] Shiki S, Zen N, Ukibe M, Ohkubo M 2009 AIP Conf. Proc. 1185 409
- [61] Ullom J N, Bennett D A 2015 Supercond. Sci. Technol. 28 084003
- [62] Alpert B, Balata M, Bennett D, Biasotti M, Boragno C, Brofferio C, Ceriale V, Corsini D, Day P K, De Gerone M 2015 Eur. Phys. J. C 75 1
- [63] Irwin K D 2020 J. Supercond. Novel Magn. 34 1601
- [64] Kempf S, Fleischmann A, Gastaldo L, Enss C 2018 J. Low Temp. Phys. 193 365
- [65] Friedrich S 2020 Magnetic Microcalorimeter (MMC) Gamma Detectors with Ultra-High Energy Resolution (Livermore: Lawrence Livermore National Laboratory) Report No. LLNL-TR-744808
- [66] Wegner M, Karcher N, Krömer O, Richter D, Ahrens F, Sander O, Kempf S, Weber M, Enss C 2018 J. Low Temp. Phys. 193 462
- [67] Cantor R 1996 SQUID Sensors: Fundamentals, Fabrication and Applications (Heidelberg: Springer) pp179–233
- [68] Eschweiler J D 2014 Ph. D. Dissertation (Hamburg: University of Hamburg)
- [69] Sakai K, Takei Y, Yamamoto R, Yamasaki N Y, Mitsuda K, Hidaka M, Nagasawa S, Kohjiro S, Miyazaki T 2014 J. Low Temp. Phys. 176 400
- [70] de la Broïse X, Le Coguie A, Sauvageot J L, Pigot C, Coppolani X, Moreau V, d Hollosy S, Knarosovski T, Engel A 2018 J. Low Temp. Phys. 193 578
- [71] Navick X F, Sauvageot J L, de La Broise X, Charvolin T, Thibon R, Lugiez F, Le Coguie A 2020 J. Low Temp. Phys. 200 187
- [72] Sauvageot J L, de la Broïse X, Charvolin T, Thibon R, Lugiez F, Le Coguie A, Zahir A 2018 Proc. SPIE 10699 106992I
- [73] Chiao M P, Adams J, Goodwin P, Hobson C W, Kelley R L, Kilbourne C A, McCammon D, McGuinness D S, Moseley S J, Porter F S 2016 *Proc. SPIE* 9905 99053M
- [74] Wulf D, Jaeckel F, McCammon D, Chervenak J A, Eckart M E 2020 J. Appl. Phys. 128 174503
- [75] Fowler J W, Alpert B K, Doriese W B, Fischer D A, Jaye C, Joe Y I, O'Neil G C, Swetz D S, Ullom J N 2015 Astrophys. J. Suppl. Ser. 219 35
- [76] Titus C J, Li D, Alpert B K, Cho H M, Fowler J W, Lee S J, Morgan K M, Swetz D S, Ullom J N, Wessels A 2020 J. Low Temp. Phys. 200 1038
- [77] Jaklevic J, Kirby J A, Klein M P, Robertson A S, Brown G S, Eisenberger P 1977 J. Microsc. 199 37
- [78] Vila F D, Jach T, Elam W T, Rehr J J, Denlinger J D 2011 J. Phys. Chem. A 115 3243
- [79] Lee S J, Titus C J, Alonso Mori R, Baker M L, Bennett D A, Cho H M, Doriese W B, Fowler J W, Gaffney K J, Gallo A 2019 Rev. Sci. Instrum. 90 113101
- [80] Li S, Lee S J, Wang X, Yang W, Huang H, Swetz D S, Doriese W B, O'Neil G C, Ullom J N, Titus C J 2019 J. Am. Chem. Soc. 141 12079
- [81] Titus C J, Baker M L, Lee S J, Cho H M, Doriese W B, Fowler J W, Gaffney K, Gard J D, Hilton G C, Kenney C 2017 J. Chem. Phys. 147 214201
- [82] Peng G, Degroot F M F, Hämäläinen K, Moore J A, Wang X, Grush M M, Hastings J B, Siddons D P, Armstrong W H

1994 J. Am. Chem. Soc. 116 2914

- [83] Bergmann U, Horne C R, Collins T J, Workman J M, Cramer S P 1999 Chem. Phys. Lett. 302 119
- [84] Kurien K C 1971 J. Chem. Soc. B 2081
- [85] Miles C J, Brezonik P L 1981 Environ. Sci. Technol. 15 1089
- [86] Abbamonte P, Rusydi A, Smadici S, Gu G D, Sawatzky G A, Feng D L 2005 Nat. Phys. 1 155
- [87] Abbamonte P, Venema L, Rusydi A, Sawatzky G A, Logvenov G, Bozovic I 2002 Science 297 581
- [88] da Silva Neto E H, Comin R, He F, Sutarto R, Jiang Y, Greene R L, Sawatzky G A, Damascelli A 2015 Science 347 282
- [89] Serban Smadici, Abbamonte P, Taguchi M, Kohsaka Y, Sasagawa T, Azuma M, Takano M, Takagi H 2007 Phys. Rev. B 75 075104
- [90] Fuchs O, Weinhardt L, Blum M, Weigand M, Umbach E, Bär M, Heske C, Denlinger J, Chuang Y D, McKinney W 2009 Rev. Sci. Instrum. 80 063103
- [91] Ghiringhelli G, Piazzalunga A, Dallera C, Trezzi G, Braicovich L, Schmitt T, Strocov V N, Betemps R, Patthey L, Wang X 2006 Rev. Sci. Instrum. 77 113108
- [92] Ghiringhelli G, Le Tacon M, Minola M, Blanco-Canosa S, Mazzoli C, Brookes N B, De Luca G M, Frano A, Hawthorn D G, He F 2012 Science 337 821
- [93] Joe Y I, Fang Y, Lee S, Sun S X L, de la Peña G A, Doriese W B, Morgan K M, Fowler J W, Vale L R, Rodolakis F, McChesney J L, Ullom J N, Swetz D S, Abbamonte P 2020 *Phys. Rev. Appl.* **13** 034026
- [94] Fullagar W, Uhlig J, Walczak M, Canton S, Sundström V 2008 Rev. Sci. Instrum. 79 103302
- [95] Yan D K 2019 Ph. D. Dissertation (Evanston, Illinois: Northwestern University)
- [96] Guruswamy T, Gades L, Miceli A, Patel U, Quaranta O 2021 IEEE Trans. Appl. Supercond. 31 2101605
- [97] Yamada S, Ichinohe Y, Tatsuno H, Hayakawa R, Suda H, Ohashi T, Ishisaki Y, Uruga T, Sekizawa O, Nitta K 2021 *Prev. Sci. Instrum.* 92 013103
- [98] Morgan K M, Becker D T, Bennett D A, Doriese W B, Gard J D, Irwin K D, Lee S J, Li D, Mates J A B, Pappas C G 2019 IEEE Trans. Appl. Supercond. 29 1
- [99] Miaja Avila L, O'Neil G C, Joe Y I, Morgan K M, Fowler J W, Doriese W B, Ganly B, Lu D, Ravel B, Swetz D S 2021 X Ray Spectrom. 50 9
- [100] George S J, Carpenter M H, Friedrich S, Cantor R 2020 J. Low Temp. Phys. 200 479
- [101] Palosaari M R J, Käyhkö M, Kinnunen K M, Laitinen M, Julin J, Malm J, Sajavaara T, Doriese W B, Fowler J, Reintsema C 2016 *Phys. Rev. Appl.* 6 024002
- [102] Käyhkö M, Laitinen M, Arstila K, Maasilta I J, Sajavaara T 2019 Nucl. Instrum. Methods Phys. Res., Sect. B 447 59
- [103] Szypryt P, O'Neil G C, Takacs E, Tan J N, Buechele S W, Naing A S, Bennett D A, Doriese W B, Durkin M, Fowler J W 2019 *Rev. Sci. Instrum.* **90** 123107
- [104] Cui W, Chen L B, Gao B, Guo F L, Jin H, Wang G L, Wang L, Wang J J, Wang W, Wang Z S 2020 J. Low Temp. Phys. 199 502
- [105] Porter F S, Almy R, Apodaca E, Figueroa-Feliciano E, Galeazzi M, Kelley R, McCammon D, Stahle C K, Szymkowiak A E, Sanders W T 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 444 175
- [106] Erickcek A L, Steinhardt P J, McCammon D, McGuire P C 2007 Phys. Rev. D 76 042007
- [107] Takahashi T, Mitsuda K, Kelley R, Aarts H, Aharonian F,

Akamatsu H, Akimoto F, Allen S, Anabuki N, Angelini L 2012 Proc. SPIE **8443** 84431Z

- [108] Goldfinger D C, Adams J S, Baker R, Bandler S R, Danowski M E, Doriese W B, Eckart M E, Figueroa-Feliciano E, Hilton G C, Hubbard A J F 2016 Proc. SPIE 9905 990548
- [109] Pajot F, Barret D, Lam-Trong T, Den Herder J W, Piro L, Cappi M, Huovelin J, Kelley R, Mas-Hesse J M, Mitsuda K 2018 J. Low Temp. Phys. 193 901
- [110] Bandler S R, Chervenak J A, Datesman A M, Devasia A M, DiPirro M J, Sakai K, Smith S J, Stevenson T R, Yoon W, Bennett D A 2019 J. Astron. Telesc. Instrum. Syst. 5 021017
- [111] Gaskin J A, Swartz D, Vikhlinin A A, Özel F, Gelmis K E E, Arenberg J W, Bandler S R, Bautz M W, Civitani M M, Dominguez A 2019 J. Astron. Telesc. Instrum. Syst. 5 021001
- [112] Redfern D, Nicolosi J, Höhne J, Weiland R, Simmnacher B, Hollerich C 2002 J. Res. Nat. Inst. Stand. Technol. 107 621
- [113] Wollman D A, Hilton G C, Irwin K D, Dulcie L L, Bergren N F, Newbury D E, Woo K S, Liu B Y H, Diebold A C, Martinis J M 1998 AIP Conf. Proc. 449 799

- [114] Szypryt P, Bennett D A, Boone W J, Dagel A L, Dalton G, Doriese W B, Durkin M, Fowler J W, Garboczi E J, Gard J D 2021 IEEE Trans. Appl. Supercond. 31 1
- [115] Uehara S, Takai Y, Shirose Y, Fujii Y 2012 J. Mineral. Petrol. Sci. 107 105
- [116] Hara T, Tanaka K, Maehata K, Mitsuda K, Yamasaki N Y, Ohsaki M, Watanabe K, Yu X, Ito T, Yamanaka Y 2010 J. Electron Microsc. 5 9
- [117] Maehata K, Hara T, Mitsuda K, Hidaka M, Tanaka K, Yamanaka Y 2016 J. Low Temp. Phys. 184 5
- [118] Yamada K, Kawakami N, Moronaga T, Hayashi K, Ichihara C, Hara T 2020 Appl. Phys. Express 13 082008
- [119] Bockhorn L, Paulsen M, Beyer J, Kossert K, Loidl M, Nähle O J, Ranitzsch P O, Rodrigues M 2020 J. Low Temp. Phys. 199 298
- [120] Kang C S, Jeon J A, Jo H S, Kim G B, Kim H L, Kim I, Kim S R, Kim Y H, Kwon D H, Lee C 2017 Supercond. Sci. Technol. 30 084011
- [121] Eliseev S, Blaum K, Block M, Chenmarev S, Dorrer H, Düllmann C E, Enss C, Filianin P E, Gastaldo L, Goncharov M 2015 Phys. Rev. Lett. 115 062501

YOUNG SCIENTISTS' FORUM

Development of basic theory and application of cryogenic Xray spectrometer in light sources and X-ray satellite^{*}

Zhang Shuo¹⁾ Cui Wei²⁾ Jin Hai²⁾ Chen Liu-Biao³⁾ Wang Jun-Jie³⁾

 $\label{eq:Wu-constraint} Wu \ Wen-Tao^{|4\rangle} \qquad Wu \ Bing-Jun^{|4\rangle} \qquad Xia \ Jing-Kai^{|1\rangle} \qquad Song \ Yan-Ru^{|1\rangle}$

Yang Jin-Ping¹⁾ Weng Tsu-Chien¹⁾ Liu Zhi^{1)4)†}

1) (Center for Transformative Science, Shanghai Tech University, Shanghai 201210, China)

2) (Department of Astronomy, Tsinghua University, Beijing 201203, China)

3) (Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China)

4) (Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China)

(Received 23 February 2021; revised manuscript received 9 April 2021)

Abstract

Cryogenic X-ray spectrometers are advantageous in the spectrum research for weak and diffusive X-ray source due to their high energy resolution, high detection efficiency, low noise level and non-dead-layer properties. Their energy resolution independent of the incident X-ray direction also makes them competitive in diffusion source detection. The requirements for X-ray spectrometers have heightened in recent years with the rapid development of large scientific facilities where X-ray detection is demanded, including beamline endstations in synchrotron and X-ray free electron laser facilities, accelerators, highly charged ion traps, X-ray space satellites, etc. Because of their excellent performances, cryogenic X-ray detectors are introduced into these facilities, typical examples of which are APS, NSLS, LCLS-II, Spring-8, SSNL, ATHENA, HUBS. In this paper, we review the cryogenic X-ray spectrometers, from the working principle and classification, system structure, major performance characteristics to the research status and trend in large scientific facilities in the world.

Keywords: synchrotron radiation instrumentation, X-ray telescopes, X-ray spectrometers, cryogenic detectorsPACS: 07.85.Qe, 95.55.Ka, 07.85.Nc, 07.20.McDOI: 10.7498/aps.70.20210350

^{*} Project supported by the Special Fund for Research on National Major Research Instrument and Facilities of the National Natural Science Fundation of China (Grant No. 11927805), the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 12005134, 11803014), and the Shanghai Pujiang Program, China (Grant No. 20PJ1410900).

[†] Corresponding author. E-mail: liuzhi@shanghaitech.edu.cn