物理学报Acta Physica Sinica

Institute of Physics, CAS

FA_{1-x}Cs_xPbI_{3-v}Br_v钙钛矿材料优化及太阳电池性能计算

卢辉东 韩红静 刘杰

Simulation and property calculation for $FA_{1-x}Cs_xPbI_{3-v}Br_v$: Structures and optoelectronical properties

Lu Hui-Dong Han Hong-Jing Liu Jie

引用信息 Citation: Acta Physica Sinica, 70, 036301 (2021) DOI: 10.7498/aps.70.20201387 在线阅读 View online: https://doi.org/10.7498/aps.70.20201387 当期内容 View table of contents: http://wulixb.iphy.ac.cn

您可能感兴趣的其他文章

Articles you may be interested in

肖特基钙钛矿太阳电池结构设计与优化

Simulation and architectural design for Schottky structure perovskite solar cells 物理学报. 2020, 69(5): 057901 https://doi.org/10.7498/aps.69.20191891

钙钛矿太阳电池中的缓冲层研究进展

Progress in perovskite solar cells based on different buffer layer materials 物理学报. 2020, 69(13): 138401 https://doi.org/10.7498/aps.69.20200543

高效平面异质结有机--无机杂化钙钛矿太阳电池的质量管理

Quality management of high-efficiency planar heterojunction organic-inorganic hybrid perovskite solar cells 物理学报. 2018, 67(15): 158801 https://doi.org/10.7498/aps.67.20172600

钙钛矿电池纳米陷光结构的研究进展

Review of the research on nano-structure used as light harvesting in perovskite solar cells 物理学报. 2020, 69(7): 077101 https://doi.org/10.7498/aps.69.20191660

不同价态Mn掺杂InN电子结构、磁学和光学性质的第一性原理研究

First-principle study on electronic structures, magnetic, and optical properties of different valence Mn ions doped InN 物理学报. 2018, 67(8): 087501 https://doi.org/10.7498/aps.67.20172504

Ga_{1x}Cr_xSb (x = 0.25, 0.50, 0.75) 磁学和光学性质的第一性原理研究

First-principles calculations of magnetic and optical properties of $Ga_{1x}Cr_xSb$ (x = 0.25, 0.50, 0.75) 物理学报. 2019, 68(17): 176301 https://doi.org/10.7498/aps.68.20182305

$FA_{1-x}Cs_{x}PbI_{3-y}Br_{y}$ 钙钛矿材料优化 及太阳电池性能计算^{*}

卢辉东 韩红静† 刘杰

(青海大学,新能源光伏产业研究中心,西宁 810016)

(2020年8月24日收到; 2020年9月24日收到修改稿)

甲脒铅碘钙钛矿 (FAPbI₃) 因其优异的光电性能而成为新兴太阳电池最具潜力的候选材料, 但是稳定性 较差成为制约其发展的主要瓶颈. 通过离子掺杂可以有效地改善 FAPbI₃ 的稳定性, 如通过共掺杂 Cs⁺和 Br⁻形成 FA_{1-x}Cs_xPbI_{3-y}Br_y钙钛矿材料, 其耐热及耐水稳定性得到显著改善. 本文利用第一性原理计算了 FA_{1-x}Cs_xPbI_{3-y}Br_y(x = 0.125, y = 0-0.6)体系的几何结构、电子结构和光学性质. 通过分析发现 Cs⁺和 Br⁻的掺入使得体系能量降低, FA_{0.875}Cs_{0.125}PbI_{2.96} Br_{0.04} 最稳定. 利用等效光学导纳法模拟计算了平面结构钙钛 矿太阳电池的吸收率、载流子收集效率、外量子效率、短路电流密度、开路电压和伏安特性. 对于 FA_{1-x}Cs_xPb I_{3-y}Br_y钙钛矿太阳电池, 当x = 0.125, y = 0.04, 厚度为 0.5-1.0 µm 时, 电池的短路电流密度均为 24.7 mA·cm⁻², 开路电压为 1.06 V. 结果表明 Cs⁺和 Br⁻的共掺杂在没有降低电池短路电流的同时提高了体系的稳定性, 可为 实验上制备高效稳定的钙钛矿太阳电池提供理论参考.

关键词:第一性原理,电子结构,光电性质,钙钛矿太阳电池 PACS: 63.20.dk, 73.90.+f, 71.35.Cc, 88.40.hj

DOI: 10.7498/aps.70.20201387

1 引 言

有机-无机金属卤化物钙钛矿太阳电池具有光 电转换效率高、原材料成本低和可溶液加工等 优点,引起了学术界和产业界的广泛关注^[1-4].从 2009年至今,通过对钙钛矿材料性质、太阳电池器 件结构以及相关界面的不断深入研究,钙钛矿太阳 电池的光电转化效率从 3.8% 提升到了 25.2%^[5,6]. 最近,大面积钙钛矿太阳电池取得显著进步,1和 36 cm²的电池最高认证效率分别达到 20.9% 和 12.1%^[7,8].光伏技术在大规模应用之前必须解决高 效率、可大面积生产和高稳定性问题.目前,前面 两个问题已经取得巨大进展,而稳定性不足成为制 约钙钛矿太阳电池技术大规模应用的最大障碍. 有机-无机金属卤化物钙钛矿具有 ABX_3 型晶体结构,其中 A 位点通常为单价有机或无机阳离子,如甲胺离子 (MA⁺ = CH₃NH₃⁺)、甲脒离子 (FA⁺ = HC(NH₂)₂⁺)、铯离子 (Cs⁺)、铷离子 (Rb⁺) 等, B 位点通常为金属阳离子,如铅离子 (Pb²⁺),锡离子 (Sn²⁺)等, X 位点为卤素阴离子,包括氯 (Cl⁻)、溴 (Br⁻)、碘 (I⁻).常用的钙钛矿如 MAPbI₃, FAPbI₃等材料中的 MA⁺, Pb²⁺和 I 都是尺寸大带 电荷量少的离子,其晶格较软,对湿度、温度和光 照都比较敏感,致使钙钛矿太阳电池稳定性不足,制约其大规模应用.近几年来,随着研究的深入,钙钛矿太阳电池器件的温度和湿度稳定性研究取得了一定进展.理论和实验都发现 A, B和 X 位点 分别采用不同种类离子混合,具有更优良的光电特 性和稳定性 ^[9–11]. Lee 等 ^[12]在前驱体溶液中加入

* 青海省科技计划(批准号: 2019-ZJ-937Q)和上海航天科技创新项目(批准号: SAST2017-139)资助的课题.

[†] 通信作者. E-mail: 2016990036@qhu.edu.cn

^{© 2021} 中国物理学会 Chinese Physical Society

适量二甲基亚砜 (DMSO) 或 N-甲基-2 吡咯烷酮 (NMP) 可以使 FAI 和 PbI2 形成更稳定的化合物 相,从而制备出高度均匀且可重复的 FAPbI3 钙 钛矿薄膜. 毕富珍等^[13]利用第一性原理研究了 $FA_{1-x}MA_xPbI_3$ 体系的结构和光电性质,发现组分 FA与MA的混合比为1:1时体系最稳定.周欢萍 课题组^[14]发现 FA_{0.85}MA_{0.15}PbI₃比 FA_{0.15}MA_{0.85} PbI₃具有更好的电荷输运特性,即电子和空穴的 迁移率比后者高.同年又给出 MA+, FA+和 Cs+混 合钙钛矿的成分-性质图[15],此外,她们系统地监测 了 FA_{1-x}Cs_xPbI₃ 体系钙钛矿太阳电池在不同老化 条件下的性能衰退过程,发现光照条件下太阳电池 器件宏观上的性能衰退与钙钛矿薄膜微观上的相 分离之间有紧密联系^[16], 为构建运行稳定的钙钛 矿太阳电池提供了重要的指导. Yi 等^[17]将 CsPbI₃ 与 FAPbI₃ 反应生成 FA_{1-r}Cs_rPbI₃ 钙钛矿,并通 过掺杂少量溴替代碘开发出 FA1-xCsxPbI3-yBry 钙 钛矿替代早期最常用的 MAPbI₃, 制备的钙钛矿太 阳电池在保持高效率的同时, 热稳定性得到显著提 高. 铅卤钙钛矿吸光层中的组分通常在器件加工和 工作期间会产生铅和碘缺陷,不仅降低器件效率, 而且加速器件的降解. 严纯华课题组[18] 提出了一 种通过在钙钛矿吸光层中引入具有氧化还原活性 的 Eu³⁺-Eu²⁺的离子对, 实现了寿命周期内的本征 缺陷的消除,从而大大提升了电池的长期稳定性. 黄维课题组^[19]报道了在 MAPbI₃ 中掺入含量 1% 的三价铑 (Rh³⁺) 可以有效地钝化钙钛矿薄膜晶 界缺陷、助力钙钛矿薄膜生长、延长载流子寿命 MAPbI3: xRh (1%) 薄膜应用于钙钛矿太阳电池,器 件效率由 19.09% 提高到 20.71%, 无明显的迟滞现 象,同时提高了器件稳定性.未封装器件存放于干 燥空气中 500 h 后仍保持最初效率的 92%. Correa-Baena 等^[20]利用纳米 X 射线荧光成像技术发现了 在混合卤化物钙钛矿中引入碘化铯(铷)可使卤素 分布更加均匀, 卤素的均质化会提高薄膜的载流子 寿命,优化载流子空间动力学,有益于获得优异的 光伏器件.

由于立方 FAPbI₃ (α -FAPbI₃)的禁带宽度比 MAPbI₃ 的禁带宽度更接近 Shockley-Queisser 极 限 1.34 eV,与光谱匹配度更好.虽然 FAPbI₃比 MAPbI₃ 稳定,但在室温下仍容易发生相变,形成 非钙钛矿结构的黄色 δ -FAPbI₃. Charles 等^[21]发现 用 Cs+取代 FAPbI₃ 中的 FA+形成 Cs₄FA₁₋₄PbI₃, 当 x < 0.15 时在 300 K 下可合成大量稳定的立方 相,所以我们将晶体结构限制为立方晶系.本文利 用第一性原理来计算 Cs⁺和 Br⁻共掺杂 FA_{1-x}Cs_x PbI_{3-y}Br_y的稳定性、电子结构和光学性质,利用等 效光学导纳方法计算钙钛矿太阳电池的光电特性.

2 计算方法

采用 VASP (Vienna *ab initio* Simulation Package) 软件包来完成 FAPbI₃ 以及 Cs, Br 掺杂 FA PbI₃ 超晶胞的结构优化、电子结构和光学性质的 计算.应用基于密度泛函理论 (DFT) 的能带的第 一性原理计算方法,原子核与价电子之间的相互作 用采用投影缀加平面波赝势,电子间相互作用的 交换-关联能采用广义梯度近似的 Perdew-Burke-Ernzerhof (PBE) 泛函形式,布里渊区的积分采用 $4 \times 4 \times 4$ 的 k点,平面波截断能为 400 eV,总能 量收敛标准为 1×10^{-6} eV/atom,原子间的相互作 用力最大为 1×10^{-2} eV/Å.

光生载流子的有效质量与导带底和价带顶附近的二阶导数密切相关,利用二次函数方程进行拟合来计算载流子的有效质量 *m*^{*},根据如下公式:

$$m^* = \left(\frac{1}{\hbar^2} \frac{\mathrm{d}^2 E}{\mathrm{d} \mathbf{k}^2}\right)^{-1}.$$
 (1)

式中, E是由能带结构图拟合得到的色散关系函 数, k是倒空间矢量, \hbar 是约化普朗克常数. 钙钛矿 太阳电池通常采用层状结构,当入射光从电池表面 进入钙钛矿时各层间都会反射光波能量. Nakane^[22] 等利用等效光学导纳方法定量测定了基于外量子 效率分析的薄膜光电器件中光损耗和复合损耗.该 方法可以计算任意多层薄膜的反射、透射和吸收. 等效光学导纳方法是将任意一个多界面的薄膜系 统等效地看作是一个具有一定折射率和相位延迟 的单层膜,将入射介质 (空气)和等效介质 (钙钛矿 太阳电池)之间的界面称为等效界面. 设各层薄 膜的复折射率用 $N_j = n_j - i\kappa_j$ 表示, n是折射率, κ 是消光系数. d_i , Y_i 和 δ_i 分别表示第 j层的厚度、 光学导纳和薄膜的相位厚度. 光学导纳Y = H/E, H和 E分别是光波的磁场强度和电场强度,在 可见光波段 Y = N,薄膜的相位厚度都是 $\delta_i =$ $\frac{2\pi}{\lambda}N_{j}d_{j}$, 第 *j* 层和第 *j*+1 层界面的光学导纳为*Y_j* = N_i/N_{i+1} , 第 j 层膜的特征矩阵为

$$\begin{bmatrix} B \\ C \end{bmatrix} = \begin{bmatrix} \cos \delta_j & \frac{i}{N_j} \sin \delta_j \\ iN_j \sin \delta_j & \cos \delta_j \end{bmatrix} \begin{bmatrix} 1 \\ Y_j \end{bmatrix}.$$
(2)

第 j-1 层和第 j 层界面的光学导纳为

$$Y_{j-1} = \frac{C}{B} = \frac{Y_j \cos \delta_j + iN_j \sin \delta_j}{\cos \delta_j + iY_j \sin \delta_j/N_j}.$$
 (3)

入射介质的光学导纳取 1,等效介质具有等效光学 导纳 Y₀,Y₀为空气和钙钛矿太阳电池上界面的光 学导纳.因此,薄膜系统的反射率就是等效导纳界 面的反射率,得到钙钛矿太阳电池表面对垂直照射 光波的能量反射率公式为

$$R = |1 - Y_0|^2 / |1 + Y_0|^2.$$
(4)

透过电池基底片的透射率公式为

$$T = 4Re(Y_{j+1})/|(B+C)|^2.$$
 (5)

通过计算电池上表面的反射率和背面的透射率,便 可得到电池的吸收率为

$$A = 1 - R - T. \tag{6}$$

载流子的收集效率受钙钛矿厚度的限制,厚度为 Δz的钙钛矿对载流子的收集效率为

$$H(\lambda) = 1 - e^{-\alpha(\omega) \cdot \Delta z}.$$
 (7)

式中, $\alpha(\omega)$ 是钙钛矿对频率为 ω 的入射光吸收 系数.外量子效率 (external quantum efficiency, EQE) 是表征光电器件性能的主要指标之一, 理论 计算公式为

$$EQE = AH(\lambda).$$
(8)

最终计算钙钛矿太阳电池的短路电流密度公式 为^[23]

$$J_{\rm sc} = \frac{e}{hc} \int_{\lambda_{\rm min}}^{\lambda_{\rm max}} EQE(\lambda) \cdot S(\lambda) \cdot \lambda d\lambda, \qquad (9)$$

其中 e 是元电荷, $S(\lambda)$ 是 AM1.5G 光谱. 钙钛矿太 阳电池伏安特性曲线公式为^[24]

$$J(V) = J_{\rm sc} - J_0[e^{(eV/nkT)} - 1], \qquad (10)$$

其中 *k* 为玻尔兹曼常数, *T* 为电池工作温度, *n* 为 理想因子, *J*₀ 是流过 PN 结的暗电流密度. 当 *J*=0 时得到开路电压公式^[25]

$$V_{\rm oc} = \left(\frac{nkT}{q}\right) \ln\left(\frac{J_{\rm sc}}{J_0} + 1\right). \tag{11}$$

3 结果讨论

3.1 几何结构

Weller 等^[26] 的实验研究表明, 在室温下 FA PbI_3 属于立方晶系, 空间群为 pm3m, 晶格常数 a =6.362 Å. Kato 等^[27] 理论计算的 FAPbI₃ 呈正交晶 系,空间群为 pmm2,称为赝立方.利用 PBE 泛函 对 α -FAPbI₃ 结构优化后的晶格常数 a = 6.361 Å, b = 6.508 Å, c = 6.323 Å, $\alpha = \beta = \gamma = 90^{\circ}$, $\overline{\&}$ 示为正交晶系,和理论计算的相符.这是由于有机 分子导致晶体结构对称性降低,为了和实验值进行 比较,通常取三者的平均值 a = 6.397 Å, 与实验 值的相对误差仅为 0.55%. 在电子结构和光学性质 计算时,按正交晶系选择高对称 K点.图 1(a)所 示为 $2 \times 2 \times 2$ 的 α -FAPbI₃ 超胞, 图 1(b) 为正交 晶系的第一布里渊区,路径为 Γ-Z-T-Y-S-R-U-X-Γ-Y, 图 1(c) 给出了使用该路径的能带结构和态密 度,计算的禁带宽度 $E_{g} = 1.480 \text{ eV}$,与实验方法 得到的禁带宽度相同[28,29]. 钙钛矿太阳电池通常采 用层状结构如图 1(d) 所示, 典型结构包括 FTO 导 电层/电子收集层/钙钛矿/空穴收集层/金属导电

图 1 (a) α-FAPbI₃的赝立方 2 × 2 × 2 超胞; (b) 正交晶格的第一布里渊区中各对称点和对称轴的记号示意图; (c) 利用 图 (b) 中 *k* 空间路径得到 α-FAPbI₃ 的 2 × 2 × 2 超胞的能带图和态密度; (d) 钙钛矿太阳电池结构示意图

Fig. 1. (a) Pseudocubic crystal structures of α -FAPbI₃ with 2 × 2 × 2 supercell; (b) the first Brillouin zone for the orthorhombic lattice of α -FAPbI₃ and the *k*-path (red line) used to plot the band structure in the present paper; (c) band structure and DOS of α -FAPbI₃ calculated using 2 × 2 × 2 supercell; (d) schematic diagram of perovskite solar cell structure.

层的正装结构或者将其中的电子收集层与空穴收 集层位置对调的反装结构^[30,31].导电玻璃包括 FTO, ITO等,电子传输材料包括 TiO₂^[32], SnO₂^[33], TiO₂和非晶 SnO₂组成的双层电子传输层^[34]等, 空穴传输材料包括 PTAA^[32], Spiro-OMeTAD^[33] 等,金属电极蒸镀靶材包括金和银等.

为了研究 FA_{1-r}Cs_rPbI_{3-v}Br_v 钙钛矿体系的稳 定性,分析了 Cs⁺和 Br⁻掺杂前后能量的变化 ΔE . 如图 2 所示: Br-掺入后 ΔE 均大于 0 eV, 比例越 高, ΔE 越大, 说明体系越不稳定; Cs+掺入比例为 0.125时 ΔE 小于 0 eV; Cs⁺和 Br⁻共掺杂 FA_{1-r} $Cs_xPbI_{3-y}Br_y$ 的所有 ΔE 均小于 0 eV, 当 x=0.125, y = 0 时, $\Delta E = -0.041$ eV, x = 0.125, y = 0.04时, $\Delta E = -0.040$ eV, 对应的 FA_{0.875}Cs_{0.125}PbI₃ 和 FA_{0.875}Cs_{0.125}PbI_{2.96}Br_{0.04}晶体结构最稳定. Cs+掺 入比例为0和0.125, Br 掺入比例为0-0.55 时超 胞体积随溴的增加线性减少. 这是因为 FA+, Cs+, I-和 Br-的半径依次为 2.79, 1.67, 2.20 和 1.96 Å, Cs+和 Br-的半径都小于 FA+和 I-的半径, 掺入后 Pb²⁺周围电荷分布发生偏移, 晶体内部 Cs-Pb, Cs-Br, Br-Pb离子之间的化学键键能增大.导致八面 体收缩扭曲, 晶格常数降低.

图 2 $Cs^+ n Br^- 不同掺杂比例前后能量的变化 \Delta E n 2 × 2 × 2 超胞体积.$

Fig. 2. Calculated total energy change ΔE and $2 \times 2 \times 2$ supercell volume for different doping ratio of Cs and Br.

3.2 电子结构

为了让 $FA_{1-x}Cs_xPbI_{3-y}Br_y$ 钙钛矿材料在室温 下保持赝立方相, Cs^+ 的含量应在 x = 0—0.15, Br^- 含量在 y = 0—0.6 之间 ^[35]. 本文计算了 2 × 2 × 2 超胞 $FAPbI_3 \oplus 1 \uparrow FA^+$ 被 Cs^+ 取代, 1—14 $\uparrow I^-$ 被 Br^- 取代 (y = 0.042, 0.083, 0.125, 0.167, 0.208, 0.250, 0.292, 0.333, 0.375, 0.417, 0.458, 0.500, 0.250, 0.292, 0.333, 0.375, 0.417, 0.458, 0.500, 0.250, 0.500, 0.250 0.542, 0.583) 的电学性质. FA_{1-x}Cs_xPbI_{3-y}Br_y的禁 带宽度 E_g 、电子有效质量 m_e^* 和空穴有效质量 m_h^* 如图 3 所示,可以看出不同 Br 含量下理论计算的 禁带宽度和实验得到的基本一致,由于计算量的限 制, Cs⁺取代 8 个 FA⁺中的 1 个,比例为 0.125 达 不到实验的 0.1,从已有的理论和实验结果可知 Cs⁺含量越高, FAPbI₃ 的禁带宽度越大^[36]. 所以可 以预测实验制备的 FACs_{0.125}PbI₃ 应该和理论计算 的一致. x = 0.125, y = 0—0.6 变化时, m_h^* 的值从 0.228 m_0 线性增加至 0.291 m_0 (m_0 为电子静止质 量), m_e^* 在 y = 0和 0.04 时有最小值 0.783 m_0 ,在 y = 0.292 时最大值为 2.306 m_0 ,之后逐渐减小.可 见, x = 0.125, y = 0.04 时光生电子和空穴有效质 量最小,意味着有高的电导率,利于载流子的分离 和运输.

图 3 禁带宽度、电子和空穴有效质量 Fig. 3. Band gap and effective masses of electron and hole versus different Bromine content.

图 4(a)—(c) 分别是 $FA_{0.875}Cs_{0.125}PbI_3$ (x = 0.125), $\text{FAPbI}_{2.96}\text{Br}_{0.04}$ (y = 0.04), $\text{FA}_{0.875}\text{Cs}_{0.125}$ $PbI_{2.96}Br_{0.04}$ (x = 0.125, y = 0.04)的能带图.由 于 Cs⁺和 Br⁻的共掺杂导致晶格常数 $\alpha = 90.0115^{\circ}$, 晶体对称性由正交晶系进一步降低为单斜晶系,第 一布里渊区路径为 Γ-Z-C-Y-Γ-B-D-E0-A0-Y. 由 图 4(a)—(c) 可以看出导带底和价带顶均位于同一 高对称点 Γ ,都属于直接带隙半导体,禁带宽度分 别为 1.526, 1.482 和 1.503 eV. 为进一步深入分析 电子占据分子轨道的情况,图 4(d)—(f)给出了对 应体系的总态密度和分态密度.由图 4(d)—(f)可 以看出,未掺杂体系的导带底由 Pb-6p 轨道和部 分 I-5p 轨道电子杂化而成, 价带顶由 I-5p 轨道电 子组成. 当掺入 x = 0.125 的 Cs⁺后, 导带中出现 Cs-5p 轨道电子, Pb-6p 轨道电子与 Cs-5p 轨道电 子发生了相互作用, 使得导带底 Pb-6p 电子的态

图 4 $FA_{1-x}Cs_xPbI_{3-y}Br_y$ 的能带结构、总态密度和分态密度 (a), (d) $FA_{0.875}Cs_{0.125}PbI_3$; (b), (e) $FAPbI_{2.96}Br_{0.04}$; (c), (f) $FA_{0.875}Cs_{0.125}PbI_3$; (b), (e) $FAPbI_{2.96}Br_{0.04}$; (c) $FAPbI_{2$

Fig. 4. Band structure, total and partial density of states of α perovskite phase: (a), (d) $FA_{0.875}Cs_{0.125}PbI_3$; (b), (e) $FAPbI_{2.96}Br_{0.04}$; (c), (f) $FA_{0.875}Cs_{0.125}PbI_{2.96}Br_{0.04}$.

密度峰向高能区移动,因此禁带宽度变大. 当掺入 y = 0.04的 Br⁻后,离价带顶较远的低能区出现 Br-4p 轨道电子,对禁带宽度的影响不大. 当掺入 x = 0.125的 Cs⁺和 y = 0.04的 Br⁻后, Br-4p 轨道 电子与 I-5p, Pb-6p 以及 Cs-5p 轨道电子发生相互 作用,使得价带顶 I-5p 电子的态密度峰向高能区 移动,导带底 Pb-6p 电子的态密度峰向高能区 移动,导带底 Pb-6p 电子的态密度峰向高能区 移动,体系禁带宽度介于 Br⁻和 Cs⁺单独掺杂时禁带 宽度之间. 虽然 FA_{0.875}Cs_{0.125}PbI₃和 FA_{0.875}Cs_{0.125} PbI_{2.96}Br_{0.04}体系的稳定性基本一样, 但禁带宽度 后者更接近 1.34 eV.

3.3 光学性质

吸收系数是描述材料光学属性最主要参数之一,作为太阳电池材料,希望吸收系数越大且和AM.5G的光谱越匹配越好.图5所示为利用DFT计算的FA_{1-x}Cs_xPbI_{3-y}Br_y对不同波长的吸收系数,可以看出在300—750nm范围内有明显的光吸收,FAPbI₃和FAPbI_{2.96}Br_{0.04}吸收系数曲线的形状接近,FA_{0.875}Cs_{0.125}PbI₃和FA_{0.875}Cs_{0.125}PbI₃

图 5 $FA_{1-x}Cs_xPbI_{3-y}Br_y$ 的光吸收谱 Fig. 5. Absorption spectra of $FA_{1-x}Cs_xPbI_{3-y}Br_y$.

3.4 电池性质

为了和文献 [32] 实验制备的钙钛矿太阳电池 进行对比,利用 (6)—(11) 式理论计算了文献中钙 钛矿太阳电池的吸收率、载流子收集效率、外量子 效率、短路电流密度和伏安特性曲线.图 6(a) 给出 了 AM1.5 G 的光谱和 FAPbI₃ 的吸收系数,可以 看出在近紫外和可见光短波区域较符合,在可见光 的长波区域和近红外部分钙钛矿的吸收系数下降 迅速,和光谱的匹配度较差.图 6(b) 所示为玻璃/ SnO₂:F/TiO₂/α-FAPbI₃/HTL/Au形式的钙钛矿 太阳电池在不同钙钛矿厚度下的吸收率.载流子的 收集效率跟光吸收系数和电池薄膜的厚度有关,考

图 6 FAPbI₃ 钙钛矿太阳电池的光电性能参数 (a) 吸收系数和 AM1.5 G 光谱; (b) 不同厚度的 FAPbI₃ 的吸收率; (c) 由 FAPbI₃ 的吸收系数 $\alpha(\omega)$ 计算不同载流子收集长度 (ΔZ) 下载流子的收集效率 $H(\lambda)$; (d) 外量子效率; (e) 积分电流密度; (f) *J*-*V*特性 Fig. 6. Photovoltaic performance parameters of FAPbI₃ perovskite solar cell: (a) Absorption coefficient and AM1.5 G illumination; (b) absorptance spectra of the FAPbI₃ layer; (c) carrier collection efficiency $H(\lambda)$ calculated from the $\alpha(\omega)$ of the FAPbI₃ using different values of carrier collection length (ΔZ); (d) external quantum efficiency spectrum; (e) integrated current density; (f) *J*-*V* curves.

虑到载流子寿命和自由程问题, 计算模拟 FAPbI₃ 的厚度在 0.1—1.0 μm 范围内进行. 图 6(c) 所示为 不同钙钛矿厚度下的载流子收集效率, 可以看出当 厚度为 0.3 μm 时对光波在 300—600 nm 范围内 有 100% 的吸收; 当厚度在 0.5—1.0 μm 时对光波 在 300—750 nm 范围内有 100% 的吸收. 太阳电池 的外量子效率跟载流子的收集效率和电池对光 的吸收率有关. 图 6(d) 为电池的外量子效率, α-FAPbI₃ 的厚度为 0.59 μm 时, 入射光波波长在 400—780 nm 之间实验测量的 EQE 曲线 (紫色 线) 比较平滑, 理论计算的曲线 (粉色线) 波动较 大, 原因是实验制备的 FAPbI₃ 表面存在着褶皱, 对部分波段的光具有陷光作用, 为了简化计算, 采 用等效光学导纳法模拟计算的模型为平板式,在 400—780 nm之间实验测得的 EQE 平均值为 89.3%,理论计算的平均值为 85.3%,相对误差为 4.7%. 图 6(e) 所示为同一电池实验测量和理论计 算的短路电流,其值分别为 24.7 和 25.2 mA·cm⁻², 相对误差仅为 2.0%. 图 6(f) 为 *J*-V曲线,已知 理想因子 n = 1.62 和反向饱和电流 $J_0 = 9.74 \times$ 10^{-10} mA·cm⁻² 的数值的情况下,利用 (10) 式得到 钙钛矿厚度为 0.59 µm 时的开路电压和实验值相 符. 通过图 6(a)—(f) 实验和理论计算结果的对比, 证明采用本文计算方法研究太阳电池是可行的, 为研究 FA_{1-x}Cs_xPbI_{3-y}Br_y 钙钛矿太阳电池提供了 依据.

Table 1. Photovoltaic parameters of the pure FA and the dopes Cs and Br perovskite solar cells.				
Composition	$J_{ m sc}/({ m mA}{\cdot}{ m cm}^{-2})$	$V_{\rm oc}/{ m V}$	FF/%	$\eta/\%$
$FAPbI_3$ (experiment)	24.7	1.06	77.5	20.3
FAPbI_3	25.2	1.06	81.2	21.7
${\rm FA}_{0.875}{\rm Cs}_{0.125}{\rm PbI}_{3}$	23.6	1.06	82.2	20.6
$\mathrm{FAPbI}_{2.96}\mathrm{Br}_{0.04}$	25.3	1.06	78.8	21.1
$\rm FA_{0.875}Cs_{0.125}PbI_{2.96}Br_{0.04}$	24.7	1.06	82.4	21.6

表 1 FA_{1-x}Cs_xPbI_{3-y}Br_y太阳电池的电学参数

虽然 FA_{1-x}Cs_xPbI_{3-y}Br_y钙钛矿层的吸收性能 是影响电池性能的重要因素,但仍不能忽略载流子 寿命和自由程问题.作为太阳电池,除了 FA_{1-x}Cs_x PbI_{3-y}Br_y的吸收所决定的载流子产生效率外,还 有载流子的收集效率和传输效率,后二者都跟载流 子的平均自由程相关.为平衡载流子寿命、自由程 和载流子收集效率,计算了不同钙钛矿厚度下电池 的短路电流密度(图 7).在不考虑器件加工和工作 期间产生的铅和碘缺陷的情况下,单独 Cs+掺杂使 晶体的禁带宽度变大,电池的短路电流密度变小, 少量 Br 掺杂使晶体的禁带宽度变化很小,电池的 短路电流密度变化不大,Cs+和 Br 的共掺杂时, FA_{0.875}Cs_{0.125}PbI_{2.96}Br_{0.04}厚度大于 0.5 μm 时电池 短路电流密度几乎趋于最大恒定值 24.7 mA·cm⁻².

表1列出了钙钛矿厚度为0.59 µm 的电学参数, FA_{0.875}Cs_{0.125}I_{2.96}Br_{0.04} 的短路电流密度不是最大, 但是填充因子最高, 转换效率和纯 FAPbI₃ 几 乎相等.

图 7 短路电流密度随 $FA_{1-x}Cs_xPbI_{3-y}Br_y$ 厚度的变化 Fig. 7. Variation of the short circuit current density with the perovskite film thickness.

4 结 论

本文通过第一性原理计算研究了 $FA_{1-x}Cs_xPb$ $I_{3-y}Br_y$ 的几何结构、电子结构和吸收系数,采用等 效光学导纳法计算了基于 FA_{1-x}Cs_xPbI_{3-y}Br_y的太阳电池吸收率,利用薄膜厚度、吸收系数、载流子收集效率、吸收率、外量子效率以及短路电流密度和开路电压之间的关系,计算得到不同厚度钙钛矿薄膜电池的外量子效率、短路电流密度、*J-V*曲线并与实验上已制备的太阳电池器件的外量子效率、短路电流密度、*J-V*曲线进行对比,各量的相对误差都在 5% 以内.结果表明: Cs⁺的掺入使甲脒铅碘钙钛矿体系更加稳定,Br⁻的掺入使得 Pb-I 离子间键长减小,键能增强,禁带宽度变大,吸收光谱随 y 的增加蓝移.当 x = 0.125, y = 0.04 时光生电子和空穴有效质量最小,在太阳电池器件中具有高的电导率,有利于载流子的分离和运输.计算结果为 实验上制备高效、高稳定性有机-无机金属卤化物钙钛矿太阳电池提供了理论依据和数据.

参考文献

- Burschka J, Pellet N, Moon S J, Humphry B R, Gao P, Nazeeruddin M K, Gratzel M 2013 *Nature* 499 316
- [2] Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L, Huang J S 2015 Science 347 967
- [3] Wang C H, Zhang C J, Tong S C, Shen J Q, Wang C, Li Y Z, Xiao S, He J, Zhang J, Gao Y L, Yang J L 2017 J. Phys. Chem. C 121 6575
- [4] Zhang W H, Xiong J, Jiang L, Wang J Y, Mei T, Wang X B, Gu H S, Daoud W A, Li J H 2017 Appl. Mater. Interfaces 9 38467
- [5] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
- [6] Park N G, Zhu K 2020 Nat. Rev. Mater. 5 333
- [7] Green M A, Dunlop E D, Levi D H, Hohl-Ebinger J, Yoshita M, Ho-Baillie A W Y 2019 Prog. Photovolt. Res. Appl. 27 565
- [8] Chen H, Ye F, Tang W T, He J J, Yin M S, Wang Y B, Xie F X, Bi E B, Yang X D, Gratzel M, Han L Y 2017 Nature 550 92
- [9] Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z G, You J B 2019 Nat. Photonics 13 460
- [10] Mellouhi F E, Bentria E T, Rashkeev S N, Kais S, Alharbi F H 2016 Sci. Rep. 6 30305
- [11] Lin R X, Xiao K, Qin Z Y, Han Q L, Zhang C F, Wei M Y, Saidaminov M I, Gao Y, Xu J, Xiao M, Li A D, Zhu J,

Sargent E H, Tan H R 2019 Nat. Energy 4 864

- [12] Lee J W, Dai Z Z, Lee C, Lee H M, Han T H, Marco N D, Lin O, Choi C S, Dunn B S, Koh J, Carlo D D, Ko J H, Maynard H D, Yang Y 2018 J. Am. Chem. Soc. 140 6317
- [13] Bi F Z, Zheng X, Reng Z Y 2019 Acta Phys.-Chim. Sin. 35 69 (in Chinese) [毕富珍, 郑晓, 任志勇 2019 物理化学学报 35 69]
- [14] Huang Y, Li L, Liu Z H, Jiao H Y, He Y Q, Wang X G, Zhu R, Wang D, Sun J L, Chen Q, Zhou H P 2017 J. Mater. Chem. A 5 8537
- [15] Li L, Liu N, Xu Z Q, Chen Q, Wang X D, Zhou H P 2017 ACS Nano 11 8804
- [16] Li N X, Luo Y Q, Chen Z H, Niu X X, Zhang X, Lu J Z, Kumar R S, Jiang J K, Liu H F, Guo X, Lai B, Brocks G, Chen Q, Tao S X, Fenning D P, Zhou H P 2020 Joule 4 1
- [17] Yi C Y, Luo J S, Meloni S, Boziki A, Astani N A, Gratzel C, Zakeeruddin S M, Rothlisberger U, Gratzel M 2016 Energy Environ. Sci. 9 656
- [18] Wang L G, Zhou H P, Hu J N, Huang B L, Sun M Z, Dong B W, Zheng J G H, Huang Y, Chen Y H, LI L, Xu Z Q, Li N G, Liu Z, Chen Q, Sun L D, Yan C H 2019 *Science* 363 265
- [19] Liu W, Liu N J, Ji S L, Hua H F, Ma Y H, Hu R Y, Zhang J, Chu L, Li X A, Huang W 2020 Nano-Micro Lett. 12 119
- [20] Correa-Baena J B, Luo Y Q, Brenner T M, Snaider J, Sun S J, Li X Y, Jensen M A, Hartono N P T, Nienhaus L, Wieghold S, Poindexter J R, Wang S, Meng Y S, Wang T, Lai B, Holt M V, Cai Z H, Bawendi M G, Huang L B, Buonassisi T, Fenning D P 2019 *Science* 363 627
- [21] Charles B, Weller M T, Rieger S, Hatcher L E, Henry P F, Feldmann J, Wolverson D, Wilson C C 2020 Chem. Mater. 32 2282
- [22] Nakane A, Tampo H, Tamakoshi M, Fujimoto S, Kim K M, Kim S, Shibata H, Niki S, Fujiwara H 2016 J. Appl. Phys. 120 064505
- [23] Dewan R, Vasilev I, Jovanov V, Knipp D 2011 J. Appl. Phys. 110 013101
- [24] Shi J J, Wei H Y, Zhu L F, Xu X, Xu Y Z, Lü S T, Wu H J, Luo Y H, Li D M, Bo M Q 2015 Acta Phys. Sin. 64 038402

(in Chinese) [石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波 2015 物理学报 **64** 038402]

- [25] Kato Y, Fujimoto S, Kozawa M, Fujiwara H 2019 *Phys. Rev. Appl.* **12** 024039
- [26] Weller M T, Weber O J, Frost J M, Walsh A 2015 J. Phys. Chem. Lett. 6 3209
- [27] Kato M, Fujiseki T, Miyadera T, Sugita T, Fujimoto S, Tamakoshi M, Chikamatsu M, Fujiwara H 2017 J. Appl. Phys. 121 115501
- [28] Eperon G E, Stranks S D, Menelaou S, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982
- [29] Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019
- [30] Chai L, Zhong M 2016 Acta Phys. Sin. 65 237902 (in Chinese) [柴磊, 钟敏 2016 物理学报 65 237902]
- [31] Wang F Z, Tan Z A, Dai S Y, Li Y F 2015 Acta Phys. Sin.
 64 038401 (in Chinese) [王福芝, 谭占鳌, 戴松元, 李永舫 2015 物理学报 64 038401]
- [32] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 *Science* 348 1234
- [33] Pham N D, Zhang C M, Tiong V T, Zhang S L, Will G, Bou A, Bisquert J, Shaw P E, Du A J, Wilson G J, Wang H X 2019 Adv. Funct. Mater. 29 1806479
- [34] Tavakoli M M, Yadav P, Tavakoli R, Kong J 2018 Adv. Energy Mater. 1800794
- [35] Nazarenko O, Yakunin S, Morad V, Cherniukh I, Kovalenko V 2017 NPG Asia Mater. 9 e373
- [36] Liu N, Wei Y, Ma X G, Xu G W, Chu L, Huang C Y 2017 *Acta Phys. Sin.* 66 057103 (in Chinese) [刘娜, 危阳, 马新国, 祝林, 徐国旺, 楚亮, 黄楚云 2017 物理学报 66 057103]
- [37] Jiang B, Chen S L, Cui X L, Hu Z T, Li Y, Zhang X Z, Wu K J, Wang W Z, Jiang Z M, Hong F, Ma Z Q, Zhao L, Xu F, Xu R, Zhan Y Q 2019 *Acta Phys. Sin.* 68 246801 (in Chinese) [蒋泵, 陈思良, 崔晓磊, 胡紫婷, 李跃, 张笑铮, 吴康敬, 王文贞, 蒋最敏, 洪峰, 马忠权, 赵磊, 徐飞, 徐闰, 詹义强 2019 物理学报 68 246801]

Simulation and property calculation for $FA_{1-x}Cs_xPbI_{3-y}Br_y$: Structures and optoelectronical properties^{*}

Lu Hui-Dong Han Hong-Jing[†] Liu Jie

(New Energy (Photovoltaic) Industry Research Center, Qinghai University, Xining 810016, China)
 (Received 24 August 2020; revised manuscript received 24 September 2020)

Abstract

Formamdinium lead triiodide (FAPbI₃) perovskite has developed as a promising candidate in solar cells for its excellent optoelectronic property. However, the poor environmental stability is still a critical hurdle for its further commercial application. Element doping is an effective method of improving the stability of $FAPbI_3$ materials. It has been reported that the $FA_{1-x}Cs_xPbI_{3-y}Br_y$ stability for heat and water resistance were greatly improved by Cs cations and Br anions co-doping. In this study, we perform first-principles calculations to systematically investigate the crystal structures, electronic structures, and optical properties of $FA_{1-x}Cs_xPbI_{3-y}Br_y$. We obtain several stable crystal structures of $FA_{1-x}Cs_xPbI_{3-y}Br_y$ (x = 0.125, y = 0-0.6) in the cubic phase for different ratios of Cs cations to Br anions. By analyzing the structures of these mixed ion perovskites, it is revealed that the lattice parameters decrease linearly with the increase of concentration of Cs cations and Br anions, which is consistent with previous experimental result. In this work, the formation energy difference (ΔE) is calculated and our results show that the mixing of Cs cations and Br anions could increase the thermodynamic stability compared with pure FAPbI₃. The $FA_{0.875}Cs_{0.125}PbI_{2.96}Br_{0.04}$ is found to be the most stable in all composites investigated. Furthermore, the band gap, hole and electron effective mass increase with increasing proportion of Br anions, indicating an effective strategy for extending the absorption range of $FAPbI_3$ perovskites into the ultraviolet of the solar spectrum, thereby affecting the carrier transport mechanism in this material. Density of states (DOS) analysis indicates that the DOS of valence band edge increases with increasing proportion of Br anions and enhancing transitions between the valence and conduction bands. Finally, the absorption rate, carrier collection efficiency, external quantum efficiency, short-circuit current density, open circuit voltage and volt-ampere characteristics for the planar structure perovskite solar cell are analyzed by the equivalent optical admittance method. For the $FA_{1-x}Cs_xPbI_{3-y}Br_y$ (x = 0.125, y = 0.04, thickness = $0.5-1.0 \ \mu\text{m}$) solar cell, the short-circuit current density and the open circuit voltage are estimated at about 24.7 mA·cm⁻² and 1.06 V. It is demonstrated that the co-doping Cs cations and Br anions can improve the stability of the system without reducing short-circuit current density, which may provide some theoretical guidance in preparing the perovskite solar cells with high efficiency and excellent stability.

Keywords: first-principle calculations, electronic structure theory, optical properties, perovskite solar cellPACS: 63.20.dk, 73.90.+f, 71.35.Cc, 88.40.hjDOI: 10.7498/aps.70.20201387

^{*} Project supported by the Science and Technology Planning Project of Qinghai Province, China (Grant No. 2019-ZJ-937Q) and the Shanghai Aerospace Science and Technology Innovation Fund, China (Grant No. SAST2017-139).

[†] Corresponding author. E-mail: 2016990036@qhu.edu.cn