搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑光子学研究进展

王洪飞 解碧野 詹鹏 卢明辉 陈延峰

引用本文:
Citation:

拓扑光子学研究进展

王洪飞, 解碧野, 詹鹏, 卢明辉, 陈延峰

Research progress of topological photonics

Wang Hong-Fei, Xie Bi-Ye, Zhan Peng, Lu Ming-Hui, Chen Yan-Feng
PDF
HTML
导出引用
  • 受凝聚态中拓扑相和拓扑相变概念的启发, 一种基于拓扑能带论的新的研究领域——拓扑光子学正在兴起, 它突破了传统基于实空间光场叠加原理和倒空间固体能带色散理论的光场调控思想, 提供了一种新颖的光场调控机制和丰富的输运和光操控性质. 例如, 背散射抑制且缺陷免疫的边界输运特性、自旋轨道依赖的选择传输特性、高维度的光场调控等. 本文将从拓扑光子体系的维度出发, 简要介绍不同维度中的拓扑模型、新奇物理现象以及相应的物理图像, 如SSH模型、光量子霍尔效应、光量子自旋霍尔效应、Floquet拓扑绝缘体、三维拓扑绝缘体等; 结合当前的研究热点, 对光子学领域的其他先进拓扑平台也进行了简要的讨论, 如高阶拓扑系统、非厄米拓扑系统、非线性拓扑系统等; 本文的最后, 对相关领域的发展现状、优势与挑战进行了相应的总结与展望.
    Inspired by topological phases and phase transitions in condensed matter, a new research field based on topological band theory, topological photonics, has emerged. It breaks through the traditional idea of light regulation by optical superposition principle of real space and energy band theory of solids of reciprocal space, providing a novel mechanism of optical regulation and rich properties of transport and light manipulation. Such as transmission properties of against backscattering and rubout to defects and disorders, selective transports dependent on spin-orbit coupling, and high dimensional manipulation of light. This review paper classifies different topological photonic systems by dimensions, briefly introducing the topological model, the novel physical phenomena, and the corresponding physical picture, such as SSH models, photonic quantum Hall effects, photonic quantum spin Hall effects, photonic Floquet topological insulator, and photonic three-dimensional topological insulator; other advanced platforms such as higher-order, non-Hermitian, and nonlinear topological platforms are also involved; a summary and outlook about the current development, advantages, and challenges of this field are present in the end.
      通信作者: 卢明辉, luminghui@nju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0306200, 2017YFA0303702)、国家自然科学基金(批准号: 11474158, 51732006, 11890700)和国家杰出青年科学基金(批准号: 11625418)资助的课题
      Corresponding author: Lu Ming-Hui, luminghui@nju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2018YFA0306200, 2017YFA0303702), the National Natural Science Foundation of China (Grant Nos. 11474158, 51732006, 11890700), and the National Science Fund for Distinguished Young Scholars of China (Grant No.11625418)
    [1]

    Haldane F D, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [2]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2008 Phys. Rev. Lett. 100 013905Google Scholar

    [3]

    Wang Z, Chong Y, Joannopoulos J D, Soljacic M 2009 Nature 461 772Google Scholar

    [4]

    Skirlo S A, Lu L, Igarashi Y, Yan Q, Joannopoulos J, Soljacic M 2015 Phys. Rev. Lett. 115 253901Google Scholar

    [5]

    Cheng X, Jouvaud C, Ni X, Mousavi S H, Genack A Z, Khanikaev A B 2016 Nat. Mater. 15 542Google Scholar

    [6]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901Google Scholar

    [7]

    Nalitov A V, Malpuech G, Tercas H, Solnyshkov D D 2015 Phys. Rev. Lett. 114 026803Google Scholar

    [8]

    Yang Y, Xu Y F, Xu T, Wang H X, Jiang J H, Hu X, Hang Z H 2018 Phys. Rev. Lett. 120 217401Google Scholar

    [9]

    Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233Google Scholar

    [10]

    Nathan F, Abanin D, Berg E, Lindner N H, Rudner M S 2019 Phys. Rev. B 99 195133Google Scholar

    [11]

    Leykam D, Rechtsman M C, Chong Y D 2016 Phys. Rev. Lett. 117 013902Google Scholar

    [12]

    Titum P, Lindner N H, Rechtsman M C, Refael G 2015 Phys. Rev. Lett. 114 056801Google Scholar

    [13]

    Leykam D, Chong Y D 2016 Phys. Rev. Lett. 117 143901Google Scholar

    [14]

    Mukherjee S, Spracklen A, Valiente M, Andersson E, Ohberg P, Goldman N, Thomson R R 2017 Nat. Commun. 8 13918Google Scholar

    [15]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196Google Scholar

    [16]

    Fang K, Yu Z, Fan S 2012 Nat. Photonics 6 782Google Scholar

    [17]

    Lumer Y, Plotnik Y, Rechtsman M C, Segev M 2013 Phys. Rev. Lett. 111 243905Google Scholar

    [18]

    Mukherjee S, Chandrasekharan H K, Ohberg P, Goldman N, Thomson R R 2018 Nat. Commun. 9 4209Google Scholar

    [19]

    Zhu B, Zhong H, Ke Y, Qin X, Sukhorukov A A, Kivshar Y S, Lee C 2018 Phys. Rev. A 98 013855Google Scholar

    [20]

    Chen W J, Jiang S J, Chen X D, Zhu B, Zhou L, Dong J W, Chan C T 2014 Nat. Commun. 5 5782Google Scholar

    [21]

    Chen Y, Chen H, Cai G 2018 Appl. Phys. Lett. 112 013504Google Scholar

    [22]

    Hafezi M, Lukin M D, Taylor J M 2013 New J. Phys. 15 063001Google Scholar

    [23]

    Harder G, Bartley T J, Lita A E, Nam S W, Gerrits T, Silberhorn C 2016 Phys. Rev. Lett. 116 143601Google Scholar

    [24]

    Barik S, Karasahin A, Flower C, Cai T, Miyake H, DeGottardi W, Hafezi M, Waks E 2018 Science 359 666Google Scholar

    [25]

    Klitzing K v, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [26]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [27]

    Kohmoto M 1985 Ann. Phys. 160 343Google Scholar

    [28]

    Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106802Google Scholar

    [29]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [30]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [31]

    Vocke D, Roger T, Marino F, Wright E M, Carusotto I, Clerici M, Faccio D 2015 Optica 2 484Google Scholar

    [32]

    Goldman N, Budich J C, Zoller P 2016 Nat. Phys. 12 639Google Scholar

    [33]

    Hafezi M, Demler E A, Lukin M D, Taylor J M 2011 Nat. Phys. 7 907Google Scholar

    [34]

    Kraus Y E, Lahini Y, Ringel Z, Verbin M, Zilberberg O 2012 Phys. Rev. Lett. 109 106402Google Scholar

    [35]

    Lee T E 2016 Phys. Rev. Lett. 116 133903Google Scholar

    [36]

    Kawabata K, Shiozaki K, Ueda M 2018 Phys. Rev. B 98 165148Google Scholar

    [37]

    Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phys. Rev. Lett. 121 026808Google Scholar

    [38]

    Wang H F, Gupta S K, Zhu X Y, Lu M H, Liu X P, Chen Y F 2018 Phys. Rev. B 98 214101Google Scholar

    [39]

    Qi B, Zhang L, Ge L 2018 Phys. Rev. Lett. 120 093901Google Scholar

    [40]

    Yao S, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar

    [41]

    Feng L, El-Ganainy R, Ge L 2017 Nat. Photonics 11 752Google Scholar

    [42]

    Midya B, Zhao H, Feng L 2018 Nat. Commun. 9 2674Google Scholar

    [43]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2018 Nat. Phys. 14 11Google Scholar

    [44]

    Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M, Szameit A 2015 Phys. Rev. Lett. 115 040402Google Scholar

    [45]

    Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L, Liu X P, Chen Y F 2018 arXiv preprint arXiv: 1803.00794

    [46]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167Google Scholar

    [47]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [48]

    Shen H, Zhen B, Fu L 2018 Phys. Rev. Lett. 120 146402Google Scholar

    [49]

    Lieu S 2018 Phys. Rev. B 97 045106Google Scholar

    [50]

    Malzard S, Poli C, Schomerus H 2015 Phys. Rev. Lett. 115 200402Google Scholar

    [51]

    Soljačić M, Joannopoulos J D 2004 Nat. Mater. 3 211Google Scholar

    [52]

    Dobrykh D A, Yulin A V, Slobozhanyuk A P, Poddubny A N, Kivshar Y S 2018 Phys. Rev. Lett. 121 163901Google Scholar

    [53]

    Haddad L H, Weaver C M, Carr L D 2015 New J. Phys. 17 063033Google Scholar

    [54]

    Soljačić M, Luo C, Joannopoulos J D, Fan S 2003 Opt. Lett. 28 637Google Scholar

    [55]

    Berger V 1998 Phys. Rev. Lett. 81 4136Google Scholar

    [56]

    Adair R, Chase L L, Payne S A 1989 Phys. Rev. B 39 3337Google Scholar

    [57]

    Fleischer J W, Segev M, Efremidis N K, Christodoulides D N 2003 Nature 422 147Google Scholar

    [58]

    Zhou X, Wang Y, Leykam D, Chong Y D 2017 New J. Phys. 19 095002Google Scholar

    [59]

    Rajesh C, Georgios T 2019 arXiv: 1904.09466 v1

    [60]

    Hadad Y, Khanikaev A B, Alù A 2016 Phys. Rev. B 93 155112Google Scholar

    [61]

    Mingaleev S F, Kivshar Y S 2001 Phys. Rev. Lett. 86 5474Google Scholar

    [62]

    Chen X D, Deng W M, Shi F L, Zhao F L, Chen M, Dong J W 2018 arXiv: 1812.08326

    [63]

    Hu H, Huang B, Zhao E, Liu W V 2019 arXiv: 1905.03727 v1

    [64]

    Ezawa M 2018 Phys. Rev. B 98 201402Google Scholar

    [65]

    Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S, Bernevig B A, Neupert T 2018 Sci. Adv. 4 eaat0346Google Scholar

    [66]

    Ezawa M 2018 Phys. Rev. Lett. 120 026801Google Scholar

    [67]

    Khalaf E 2018 Phys. Rev. B 97 205136Google Scholar

    [68]

    van Miert G, Ortix C 2018 Phys. Rev. B 98 081110Google Scholar

    [69]

    Călugăru D, Juričić V, Roy B 2019 Phys. Rev. B 99 041301Google Scholar

    [70]

    Kunst F K, van Miert G, Bergholtz E J 2018 Phys. Rev. B 97 241405Google Scholar

    [71]

    Ezawa M 2018 Phys. Rev. B 97 155305Google Scholar

    [72]

    Ezawa M 2018 Phys. Rev. B 98 045125Google Scholar

    [73]

    Yasutomo O, Feng L, Ryota K, Katsuyuki W, Katsunori W, Yasuhiko A, Satoshi I 2018 arXiv: 1812.10171

    [74]

    Peterson C W, Benalcazar W A, Hughes T L, Bahl G 2018 Nature 555 346Google Scholar

    [75]

    Xie B Y, Wang H F, Wang H X, Zhu X Y, Jiang J H, Lu M H, Chen Y F 2018 Phys. Rev. B 98 205147Google Scholar

    [76]

    Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F 2019 Phys. Rev. Lett. 122 233903Google Scholar

    [77]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [78]

    Zak J 1989 Phys. Rev. Lett. 62 2747Google Scholar

    [79]

    Malkova N, Hromada I, Wang X, Bryant G, Chen Z 2009 Opt. Lett. 34 1633Google Scholar

    [80]

    Poli C, Bellec M, Kuhl U, Mortessagne F, Schomerus H 2015 Nat. Commun. 6 6710Google Scholar

    [81]

    Keil R, Zeuner J M, Dreisow F, Heinrich M, Tunnermann A, Nolte S, Szameit A 2013 Nat. Commun. 4 1368

    [82]

    Schomerus H 2013 Opt. Lett. 38 1912Google Scholar

    [83]

    Meier E J, An F A, Gadway B 2016 Nat. Commun. 7 13986Google Scholar

    [84]

    Ling C W, Xiao M, Chan C T, Yu S F, Fung K H 2015 Opt. Express 23 2021Google Scholar

    [85]

    Slobozhanyuk A P, Poddubny A N, Miroshnichenko A E, Belov P A, Kivshar Y S 2015 Phys. Rev. Lett. 114 123901Google Scholar

    [86]

    Parto M, Wittek S, Hodaei H, Harari G, Bandres M A, Ren J, Rechtsman M C, Segev M, Christodoulides D N, Khajavikhan M 2018 Phys. Rev. Lett. 120 113901Google Scholar

    [87]

    Zhao H, Miao P, Teimourpour M H, Malzard S, El-Ganainy R, Schomerus H, Feng L 2018 Nat. Commun. 9 981Google Scholar

    [88]

    St-Jean P, Goblot V, Galopin E, Lemaître A, Ozawa T, Le Gratiet L, Sagnes I, Bloch J, Amo A 2017 Nat. Photonics 11 651Google Scholar

    [89]

    Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Aspuru-Guzik A, Demler E, White A G 2012 Nat. Commun. 3 882Google Scholar

    [90]

    Tarasinski B, Asbóth J K, Dahlhaus J P 2014 Phys. Rev. A 89 042327Google Scholar

    [91]

    Barkhofen S, Nitsche T, Elster F, Lorz L, Gábris A, Jex I, Silberhorn C 2017 Phys. Rev. A 96 033846Google Scholar

    [92]

    Cardano F, D'Errico A, Dauphin A, Maffei M, Piccirillo B, de Lisio C, De Filippis G, Cataudella V, Santamato E, Marrucci L, Lewenstein M, Massignan P 2017 Nat. Commun. 8 15516Google Scholar

    [93]

    Yannopapas V 2011 Phys. Rev. B 84 195126Google Scholar

    [94]

    Minkov M, Savona V 2016 Optica 3 200Google Scholar

    [95]

    Liu K, Shen L, He S 2012 Opt. Lett. 37 4110Google Scholar

    [96]

    Umucalılar R O, Carusotto I 2011 Phys. Rev. A 84 043804Google Scholar

    [97]

    He C, Sun X C, Liu X P, Lu M H, Chen Y, Feng L, Chen Y F 2016 Proc. Natl. Acad. Sci. U S A 113 4924Google Scholar

    [98]

    Hafezi M, Mittal S, Fan J, Migdall A, Taylor J M 2013 Nat. Photonics 7 1001Google Scholar

    [99]

    Pasek M, Chong Y D 2014 Phys. Rev. B 89 075113Google Scholar

    [100]

    Lu L, Fu L, Joannopoulos J D, Soljačić M 2013 Nat. Photonics 7 294Google Scholar

    [101]

    Lu L, Wang Z, Ye D, Ran L, Fu L, Joannopoulos J D, Soljačić M 2015 Science 349 622Google Scholar

    [102]

    Yang B, Guo Q, Tremain B, Liu R, Barr L E, Yan Q, Gao W, Liu H, Xiang Y, Chen J 2018 Science 359 1013Google Scholar

    [103]

    Dubcek T, Kennedy C J, Lu L, Ketterle W, Soljacic M, Buljan H 2015 Phys. Rev. Lett. 114 225301Google Scholar

    [104]

    Roy S, Kolodrubetz M, Goldman N, Grushin A G 2018 2D Mater. 5 024001

    [105]

    Gao W, Yang B, Lawrence M, Fang F, Beri B, Zhang S 2016 Nat. Commun. 7 12435Google Scholar

    [106]

    Xiao M, Lin Q, Fan S 2016 Phys. Rev. Lett. 117 057401Google Scholar

    [107]

    Lin Q, Xiao M, Yuan L, Fan S 2016 Nat. Commun. 7 13731Google Scholar

    [108]

    Kawakami T, Hu X 2017 Phys. Rev. B 96 235307Google Scholar

    [109]

    Yan Q, Liu R, Yan Z, Liu B, Chen H, Wang Z, Lu L 2018 Nat. Phys. 14 461Google Scholar

    [110]

    Yan Z, Bi R, Shen H, Lu L, Zhang S C, Wang Z 2017 Phys. Rev. B 96 041103Google Scholar

    [111]

    Bi R, Yan Z, Lu L, Wang Z 2017 Phys. Rev. B 96 201305Google Scholar

    [112]

    Lu L, Gao H, Wang Z 2018 Nat. Commun. 9 5384Google Scholar

    [113]

    Slobozhanyuk A P, Khanikaev A B, Filonov D S, Smirnova D A, Miroshnichenko A E, Kivshar Y S 2016 Sci. Rep. 6 22270Google Scholar

    [114]

    Slobozhanyuk A, Mousavi S H, Ni X, Smirnova D, Kivshar Y S, Khanikaev A B 2016 Nat. Photonics 11 130

    [115]

    Yang Y, Gao Z, Xue H, Zhang L, He M, Yang Z, Singh R, Chong Y, Zhang B, Chen H 2019 Nature 565 622Google Scholar

    [116]

    Lu L, Fang C, Fu L, Johnson S G, Joannopoulos J D, Soljačić M 2016 Nat. Phys. 12 337Google Scholar

    [117]

    Fu L 2011 Phys. Rev. Lett. 106 106802Google Scholar

    [118]

    Ochiai T 2017 Phys. Rev. A 96 043842Google Scholar

    [119]

    Xu Y, Wang S T, Duan L M 2016 Phys. Rev. Lett. 118 045701

    [120]

    Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S L, Joannopoulos J D, Soljacic M 2015 Nature 525 354Google Scholar

    [121]

    Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C, Szameit A 2017 Nat. Mater. 16 433Google Scholar

    [122]

    Zhao H, Qiao X, Wu T, Midya B, Longhi S, Feng L 2019 Science 365 1163Google Scholar

    [123]

    Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S, Ueda M 2018 Phys. Rev. X 8 031079

    [124]

    Martinez Alvarez V M, Barrios Vargas J E, Berdakin M, Foa Torres L E F 2018 Eur. Phys. J. Spec. Top. 227 1295Google Scholar

    [125]

    Cerjan A, Raman A, Fan S 2016 Phys. Rev. Lett. 116 203902Google Scholar

    [126]

    Pan M, Zhao H, Miao P, Longhi S, Feng L 2018 Nat. Commun. 9 1308Google Scholar

    [127]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [128]

    Kleinman D A 1962 Phys. Rev. 126 1977Google Scholar

    [129]

    Adler E 1964 Phys. Rev. 134 A728Google Scholar

    [130]

    Lumer Y, Plotnik Y, Rechtsman M C, Segev M 2013 Phys. Rev. Lett. 111 263901Google Scholar

    [131]

    Jia N, Schine N, Georgakopoulos A, Ryou A, Clark L W, Sommer A, Simon J 2018 Nat. Phys. 14 550Google Scholar

    [132]

    Roushan P, Neill C, Megrant A, Chen Y, Babbush R, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Fowler A, Jeffrey E, Kelly J, Lucero E, Mutus J, O’Malley P J J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Kapit E, Neven H, Martinis J 2016 Nat. Phys. 13 146

    [133]

    Reinhard A, Volz T, Winger M, Badolato A, Hennessy K J, Hu E L, Imamoğlu A 2011 Nat. Photonics 6 93

    [134]

    Tai M E, Lukin A, Rispoli M, Schittko R, Menke T, Dan B, Preiss P M, Grusdt F, Kaufman A M, Greiner M 2017 Nature 546 519Google Scholar

    [135]

    Chen X D, Deng W M, Shi F L, Zhao F L, Chen M, Dong J W 2019 Phys. Rev. Lett. 122 233902Google Scholar

    [136]

    Ota Y, Liu F, Katsumi R, Watanabe K, Wakabayashi K, Arakawa Y, Iwamoto S 2019 Optica 6 786Google Scholar

  • 图 1  SSH模型示意图, 每个元胞包含两个格点

    Fig. 1.  Schematic of the SSH model, there are two sites in each unit cell.

    图 2  (a) 微纳加工(SSH 模型)的SEM图; (b) 单个柱子的模式; (c) 不同能带中的态及存在的边界态; (d) 利用波导环形阵列实现SSH模型

    Fig. 2.  (a) SEM image of the coupled micropillars; (b) Modes of single micropillars; (c) Different modes of the micropillar array and edge states; (d) SSH microring array.

    图 3  (a) 旋磁光子晶体的示意图; (b) 向前向后的传输谱以及具有手性边界态的投影能带; (c) 大陈数光子晶体结构图; (d) 能带的带隙及其陈数

    Fig. 3.  (a) Schematic of the gyromagnetic photonic crystal; (b) forward and backward spectra, and projected band structures with chiral edge states; (c) the diagram of large Chern number photonic crystals; (d) the band gap map and their Chern number.

    图 4  (a) Poincaré球上的LCP和RCP, 以及由PE和PM材料构成的光子晶体; (b) 没有赝自旋耦合以及具有赝自旋耦合的能带以及后者的投影能带; (c) 通过调节金属柱子实现赝自旋的耦合

    Fig. 4.  (a) The polarization of LCP and RCP on the Poincaré sphere, and the photonic crystal consisting of PE and PM superlattices; (b) band structures without coupling between dseudospin states and with their coupling, and the projected band structures for the latter case; (c) photonic crystals consisting of metallic rods and collars at different positions, and their band strucutres.

    图 5  (a) 全介质光子晶体结构; (b) 收缩、高对称以及扩张晶格所对应的能带; (c) 赝自旋依赖的边界态的实验观测

    Fig. 5.  (a) Schematic of all-dielectric photonic crystals; (b) band structures of shrinking and expanding lattices; (c) visualization of pseudospin-dependent edge states.

    图 6  (a) 谐振腔耦合单元; (b) 周期排布形成的耦合阵列

    Fig. 6.  (a) Two coupled resonators in one unit cell; (b) a periodic array arranged by unit cells.

    图 7  (a) 光学谐振腔阵列的动态调制; (b) 激光直写波导系统的拓扑绝缘体构型; (c) 四种耦合组成的周期构型

    Fig. 7.  (a) The resonator lattice with dynamic modulation; (b) floquet topological insulators using the femtosecond laser writing method; (c) four different bonds with different coupling.

    图 8  (a) 能够产生Weyl点以及节线的双螺旋光子晶体; (b) 具有Weyl点的金属夹杂的光子晶体

    Fig. 8.  (a) Photonic crystals with two gyroid structures in one unit cell, and their band structures with Weyl points or nodal-line; (b) schematic of photonic crystals with the saddle-shaped metallic inclusion, and their Weyl points.

    图 9  (a) 三维全介质与双各向异性光子晶体; (b) 两种构型的光子晶体对应的能带; (c) 通过引入磁场破缺Dirac点的光子晶体构型

    Fig. 9.  (a) 3 D all-dielectric and bianisotropic metacrystals; (b) band structures corresponding to two structures in (a); (c) photonic crystals with opened Dirac points when magnetization is applied on rods.

    图 10  (a) 动量空间中的奇异点以及具有增益损耗的紧束缚模型; (b) 具有增益损耗的波导阵列; (c) 具有奇异环的光子晶体板结构

    Fig. 10.  (a) Exceptional points in momentum space, and the tight-binding model with gain and loss for αi and βi; (b) the waveguide array with gain and loss; (c) photonic crystal slabs with the ring of exceptional points.

    图 11  (a) 非线性SSH模型; (b) 与光强度相关的环绕数(贝利相位); (c) 将量子比特与它们的耦合器铺成二维格子的示意图; (d) 包含三个超导量子比特的超导回路

    Fig. 11.  (a) The nonlinear SSH model; (b) the winding number (Berry phase) changed by intensity; (c) schematic diagram of qubits and their couplers in 2 D lattice; (d) the superconducting circuit including three qubits.

    图 12  (a) 介质柱构成的二维SSH模型的光子晶体; (b) 收缩、高对称与扩张晶格构型的能带结构; (c) 由收缩区域包围扩张区域构成的整体结构, 解的序号与本征频率的关系; (d) 实验中放于一个角的源激发的拐角态

    Fig. 12.  (a) Photonic crystals of the 2D SSH model consisting of dielectric pillars; (b) band structures of shrinking, high symmetry and expending structures; (c) shrinking supercells contain expanding supercells, and the relationship between solution numbers and eigenfrequencies; (d) experimentally measured corner states when the source is placed at the corner.

  • [1]

    Haldane F D, Raghu S 2008 Phys. Rev. Lett. 100 013904Google Scholar

    [2]

    Wang Z, Chong Y D, Joannopoulos J D, Soljacic M 2008 Phys. Rev. Lett. 100 013905Google Scholar

    [3]

    Wang Z, Chong Y, Joannopoulos J D, Soljacic M 2009 Nature 461 772Google Scholar

    [4]

    Skirlo S A, Lu L, Igarashi Y, Yan Q, Joannopoulos J, Soljacic M 2015 Phys. Rev. Lett. 115 253901Google Scholar

    [5]

    Cheng X, Jouvaud C, Ni X, Mousavi S H, Genack A Z, Khanikaev A B 2016 Nat. Mater. 15 542Google Scholar

    [6]

    Wu L H, Hu X 2015 Phys. Rev. Lett. 114 223901Google Scholar

    [7]

    Nalitov A V, Malpuech G, Tercas H, Solnyshkov D D 2015 Phys. Rev. Lett. 114 026803Google Scholar

    [8]

    Yang Y, Xu Y F, Xu T, Wang H X, Jiang J H, Hu X, Hang Z H 2018 Phys. Rev. Lett. 120 217401Google Scholar

    [9]

    Khanikaev A B, Mousavi S H, Tse W K, Kargarian M, MacDonald A H, Shvets G 2013 Nat. Mater. 12 233Google Scholar

    [10]

    Nathan F, Abanin D, Berg E, Lindner N H, Rudner M S 2019 Phys. Rev. B 99 195133Google Scholar

    [11]

    Leykam D, Rechtsman M C, Chong Y D 2016 Phys. Rev. Lett. 117 013902Google Scholar

    [12]

    Titum P, Lindner N H, Rechtsman M C, Refael G 2015 Phys. Rev. Lett. 114 056801Google Scholar

    [13]

    Leykam D, Chong Y D 2016 Phys. Rev. Lett. 117 143901Google Scholar

    [14]

    Mukherjee S, Spracklen A, Valiente M, Andersson E, Ohberg P, Goldman N, Thomson R R 2017 Nat. Commun. 8 13918Google Scholar

    [15]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196Google Scholar

    [16]

    Fang K, Yu Z, Fan S 2012 Nat. Photonics 6 782Google Scholar

    [17]

    Lumer Y, Plotnik Y, Rechtsman M C, Segev M 2013 Phys. Rev. Lett. 111 243905Google Scholar

    [18]

    Mukherjee S, Chandrasekharan H K, Ohberg P, Goldman N, Thomson R R 2018 Nat. Commun. 9 4209Google Scholar

    [19]

    Zhu B, Zhong H, Ke Y, Qin X, Sukhorukov A A, Kivshar Y S, Lee C 2018 Phys. Rev. A 98 013855Google Scholar

    [20]

    Chen W J, Jiang S J, Chen X D, Zhu B, Zhou L, Dong J W, Chan C T 2014 Nat. Commun. 5 5782Google Scholar

    [21]

    Chen Y, Chen H, Cai G 2018 Appl. Phys. Lett. 112 013504Google Scholar

    [22]

    Hafezi M, Lukin M D, Taylor J M 2013 New J. Phys. 15 063001Google Scholar

    [23]

    Harder G, Bartley T J, Lita A E, Nam S W, Gerrits T, Silberhorn C 2016 Phys. Rev. Lett. 116 143601Google Scholar

    [24]

    Barik S, Karasahin A, Flower C, Cai T, Miyake H, DeGottardi W, Hafezi M, Waks E 2018 Science 359 666Google Scholar

    [25]

    Klitzing K v, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [26]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [27]

    Kohmoto M 1985 Ann. Phys. 160 343Google Scholar

    [28]

    Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106802Google Scholar

    [29]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [30]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [31]

    Vocke D, Roger T, Marino F, Wright E M, Carusotto I, Clerici M, Faccio D 2015 Optica 2 484Google Scholar

    [32]

    Goldman N, Budich J C, Zoller P 2016 Nat. Phys. 12 639Google Scholar

    [33]

    Hafezi M, Demler E A, Lukin M D, Taylor J M 2011 Nat. Phys. 7 907Google Scholar

    [34]

    Kraus Y E, Lahini Y, Ringel Z, Verbin M, Zilberberg O 2012 Phys. Rev. Lett. 109 106402Google Scholar

    [35]

    Lee T E 2016 Phys. Rev. Lett. 116 133903Google Scholar

    [36]

    Kawabata K, Shiozaki K, Ueda M 2018 Phys. Rev. B 98 165148Google Scholar

    [37]

    Kunst F K, Edvardsson E, Budich J C, Bergholtz E J 2018 Phys. Rev. Lett. 121 026808Google Scholar

    [38]

    Wang H F, Gupta S K, Zhu X Y, Lu M H, Liu X P, Chen Y F 2018 Phys. Rev. B 98 214101Google Scholar

    [39]

    Qi B, Zhang L, Ge L 2018 Phys. Rev. Lett. 120 093901Google Scholar

    [40]

    Yao S, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar

    [41]

    Feng L, El-Ganainy R, Ge L 2017 Nat. Photonics 11 752Google Scholar

    [42]

    Midya B, Zhao H, Feng L 2018 Nat. Commun. 9 2674Google Scholar

    [43]

    El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, Christodoulides D N 2018 Nat. Phys. 14 11Google Scholar

    [44]

    Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M, Szameit A 2015 Phys. Rev. Lett. 115 040402Google Scholar

    [45]

    Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L, Liu X P, Chen Y F 2018 arXiv preprint arXiv: 1803.00794

    [46]

    Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, Peschel U 2012 Nature 488 167Google Scholar

    [47]

    Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [48]

    Shen H, Zhen B, Fu L 2018 Phys. Rev. Lett. 120 146402Google Scholar

    [49]

    Lieu S 2018 Phys. Rev. B 97 045106Google Scholar

    [50]

    Malzard S, Poli C, Schomerus H 2015 Phys. Rev. Lett. 115 200402Google Scholar

    [51]

    Soljačić M, Joannopoulos J D 2004 Nat. Mater. 3 211Google Scholar

    [52]

    Dobrykh D A, Yulin A V, Slobozhanyuk A P, Poddubny A N, Kivshar Y S 2018 Phys. Rev. Lett. 121 163901Google Scholar

    [53]

    Haddad L H, Weaver C M, Carr L D 2015 New J. Phys. 17 063033Google Scholar

    [54]

    Soljačić M, Luo C, Joannopoulos J D, Fan S 2003 Opt. Lett. 28 637Google Scholar

    [55]

    Berger V 1998 Phys. Rev. Lett. 81 4136Google Scholar

    [56]

    Adair R, Chase L L, Payne S A 1989 Phys. Rev. B 39 3337Google Scholar

    [57]

    Fleischer J W, Segev M, Efremidis N K, Christodoulides D N 2003 Nature 422 147Google Scholar

    [58]

    Zhou X, Wang Y, Leykam D, Chong Y D 2017 New J. Phys. 19 095002Google Scholar

    [59]

    Rajesh C, Georgios T 2019 arXiv: 1904.09466 v1

    [60]

    Hadad Y, Khanikaev A B, Alù A 2016 Phys. Rev. B 93 155112Google Scholar

    [61]

    Mingaleev S F, Kivshar Y S 2001 Phys. Rev. Lett. 86 5474Google Scholar

    [62]

    Chen X D, Deng W M, Shi F L, Zhao F L, Chen M, Dong J W 2018 arXiv: 1812.08326

    [63]

    Hu H, Huang B, Zhao E, Liu W V 2019 arXiv: 1905.03727 v1

    [64]

    Ezawa M 2018 Phys. Rev. B 98 201402Google Scholar

    [65]

    Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S, Bernevig B A, Neupert T 2018 Sci. Adv. 4 eaat0346Google Scholar

    [66]

    Ezawa M 2018 Phys. Rev. Lett. 120 026801Google Scholar

    [67]

    Khalaf E 2018 Phys. Rev. B 97 205136Google Scholar

    [68]

    van Miert G, Ortix C 2018 Phys. Rev. B 98 081110Google Scholar

    [69]

    Călugăru D, Juričić V, Roy B 2019 Phys. Rev. B 99 041301Google Scholar

    [70]

    Kunst F K, van Miert G, Bergholtz E J 2018 Phys. Rev. B 97 241405Google Scholar

    [71]

    Ezawa M 2018 Phys. Rev. B 97 155305Google Scholar

    [72]

    Ezawa M 2018 Phys. Rev. B 98 045125Google Scholar

    [73]

    Yasutomo O, Feng L, Ryota K, Katsuyuki W, Katsunori W, Yasuhiko A, Satoshi I 2018 arXiv: 1812.10171

    [74]

    Peterson C W, Benalcazar W A, Hughes T L, Bahl G 2018 Nature 555 346Google Scholar

    [75]

    Xie B Y, Wang H F, Wang H X, Zhu X Y, Jiang J H, Lu M H, Chen Y F 2018 Phys. Rev. B 98 205147Google Scholar

    [76]

    Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F 2019 Phys. Rev. Lett. 122 233903Google Scholar

    [77]

    Su W P, Schrieffer J R, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar

    [78]

    Zak J 1989 Phys. Rev. Lett. 62 2747Google Scholar

    [79]

    Malkova N, Hromada I, Wang X, Bryant G, Chen Z 2009 Opt. Lett. 34 1633Google Scholar

    [80]

    Poli C, Bellec M, Kuhl U, Mortessagne F, Schomerus H 2015 Nat. Commun. 6 6710Google Scholar

    [81]

    Keil R, Zeuner J M, Dreisow F, Heinrich M, Tunnermann A, Nolte S, Szameit A 2013 Nat. Commun. 4 1368

    [82]

    Schomerus H 2013 Opt. Lett. 38 1912Google Scholar

    [83]

    Meier E J, An F A, Gadway B 2016 Nat. Commun. 7 13986Google Scholar

    [84]

    Ling C W, Xiao M, Chan C T, Yu S F, Fung K H 2015 Opt. Express 23 2021Google Scholar

    [85]

    Slobozhanyuk A P, Poddubny A N, Miroshnichenko A E, Belov P A, Kivshar Y S 2015 Phys. Rev. Lett. 114 123901Google Scholar

    [86]

    Parto M, Wittek S, Hodaei H, Harari G, Bandres M A, Ren J, Rechtsman M C, Segev M, Christodoulides D N, Khajavikhan M 2018 Phys. Rev. Lett. 120 113901Google Scholar

    [87]

    Zhao H, Miao P, Teimourpour M H, Malzard S, El-Ganainy R, Schomerus H, Feng L 2018 Nat. Commun. 9 981Google Scholar

    [88]

    St-Jean P, Goblot V, Galopin E, Lemaître A, Ozawa T, Le Gratiet L, Sagnes I, Bloch J, Amo A 2017 Nat. Photonics 11 651Google Scholar

    [89]

    Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Aspuru-Guzik A, Demler E, White A G 2012 Nat. Commun. 3 882Google Scholar

    [90]

    Tarasinski B, Asbóth J K, Dahlhaus J P 2014 Phys. Rev. A 89 042327Google Scholar

    [91]

    Barkhofen S, Nitsche T, Elster F, Lorz L, Gábris A, Jex I, Silberhorn C 2017 Phys. Rev. A 96 033846Google Scholar

    [92]

    Cardano F, D'Errico A, Dauphin A, Maffei M, Piccirillo B, de Lisio C, De Filippis G, Cataudella V, Santamato E, Marrucci L, Lewenstein M, Massignan P 2017 Nat. Commun. 8 15516Google Scholar

    [93]

    Yannopapas V 2011 Phys. Rev. B 84 195126Google Scholar

    [94]

    Minkov M, Savona V 2016 Optica 3 200Google Scholar

    [95]

    Liu K, Shen L, He S 2012 Opt. Lett. 37 4110Google Scholar

    [96]

    Umucalılar R O, Carusotto I 2011 Phys. Rev. A 84 043804Google Scholar

    [97]

    He C, Sun X C, Liu X P, Lu M H, Chen Y, Feng L, Chen Y F 2016 Proc. Natl. Acad. Sci. U S A 113 4924Google Scholar

    [98]

    Hafezi M, Mittal S, Fan J, Migdall A, Taylor J M 2013 Nat. Photonics 7 1001Google Scholar

    [99]

    Pasek M, Chong Y D 2014 Phys. Rev. B 89 075113Google Scholar

    [100]

    Lu L, Fu L, Joannopoulos J D, Soljačić M 2013 Nat. Photonics 7 294Google Scholar

    [101]

    Lu L, Wang Z, Ye D, Ran L, Fu L, Joannopoulos J D, Soljačić M 2015 Science 349 622Google Scholar

    [102]

    Yang B, Guo Q, Tremain B, Liu R, Barr L E, Yan Q, Gao W, Liu H, Xiang Y, Chen J 2018 Science 359 1013Google Scholar

    [103]

    Dubcek T, Kennedy C J, Lu L, Ketterle W, Soljacic M, Buljan H 2015 Phys. Rev. Lett. 114 225301Google Scholar

    [104]

    Roy S, Kolodrubetz M, Goldman N, Grushin A G 2018 2D Mater. 5 024001

    [105]

    Gao W, Yang B, Lawrence M, Fang F, Beri B, Zhang S 2016 Nat. Commun. 7 12435Google Scholar

    [106]

    Xiao M, Lin Q, Fan S 2016 Phys. Rev. Lett. 117 057401Google Scholar

    [107]

    Lin Q, Xiao M, Yuan L, Fan S 2016 Nat. Commun. 7 13731Google Scholar

    [108]

    Kawakami T, Hu X 2017 Phys. Rev. B 96 235307Google Scholar

    [109]

    Yan Q, Liu R, Yan Z, Liu B, Chen H, Wang Z, Lu L 2018 Nat. Phys. 14 461Google Scholar

    [110]

    Yan Z, Bi R, Shen H, Lu L, Zhang S C, Wang Z 2017 Phys. Rev. B 96 041103Google Scholar

    [111]

    Bi R, Yan Z, Lu L, Wang Z 2017 Phys. Rev. B 96 201305Google Scholar

    [112]

    Lu L, Gao H, Wang Z 2018 Nat. Commun. 9 5384Google Scholar

    [113]

    Slobozhanyuk A P, Khanikaev A B, Filonov D S, Smirnova D A, Miroshnichenko A E, Kivshar Y S 2016 Sci. Rep. 6 22270Google Scholar

    [114]

    Slobozhanyuk A, Mousavi S H, Ni X, Smirnova D, Kivshar Y S, Khanikaev A B 2016 Nat. Photonics 11 130

    [115]

    Yang Y, Gao Z, Xue H, Zhang L, He M, Yang Z, Singh R, Chong Y, Zhang B, Chen H 2019 Nature 565 622Google Scholar

    [116]

    Lu L, Fang C, Fu L, Johnson S G, Joannopoulos J D, Soljačić M 2016 Nat. Phys. 12 337Google Scholar

    [117]

    Fu L 2011 Phys. Rev. Lett. 106 106802Google Scholar

    [118]

    Ochiai T 2017 Phys. Rev. A 96 043842Google Scholar

    [119]

    Xu Y, Wang S T, Duan L M 2016 Phys. Rev. Lett. 118 045701

    [120]

    Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S L, Joannopoulos J D, Soljacic M 2015 Nature 525 354Google Scholar

    [121]

    Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, Makris K G, Segev M, Rechtsman M C, Szameit A 2017 Nat. Mater. 16 433Google Scholar

    [122]

    Zhao H, Qiao X, Wu T, Midya B, Longhi S, Feng L 2019 Science 365 1163Google Scholar

    [123]

    Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S, Ueda M 2018 Phys. Rev. X 8 031079

    [124]

    Martinez Alvarez V M, Barrios Vargas J E, Berdakin M, Foa Torres L E F 2018 Eur. Phys. J. Spec. Top. 227 1295Google Scholar

    [125]

    Cerjan A, Raman A, Fan S 2016 Phys. Rev. Lett. 116 203902Google Scholar

    [126]

    Pan M, Zhao H, Miao P, Longhi S, Feng L 2018 Nat. Commun. 9 1308Google Scholar

    [127]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [128]

    Kleinman D A 1962 Phys. Rev. 126 1977Google Scholar

    [129]

    Adler E 1964 Phys. Rev. 134 A728Google Scholar

    [130]

    Lumer Y, Plotnik Y, Rechtsman M C, Segev M 2013 Phys. Rev. Lett. 111 263901Google Scholar

    [131]

    Jia N, Schine N, Georgakopoulos A, Ryou A, Clark L W, Sommer A, Simon J 2018 Nat. Phys. 14 550Google Scholar

    [132]

    Roushan P, Neill C, Megrant A, Chen Y, Babbush R, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Fowler A, Jeffrey E, Kelly J, Lucero E, Mutus J, O’Malley P J J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Kapit E, Neven H, Martinis J 2016 Nat. Phys. 13 146

    [133]

    Reinhard A, Volz T, Winger M, Badolato A, Hennessy K J, Hu E L, Imamoğlu A 2011 Nat. Photonics 6 93

    [134]

    Tai M E, Lukin A, Rispoli M, Schittko R, Menke T, Dan B, Preiss P M, Grusdt F, Kaufman A M, Greiner M 2017 Nature 546 519Google Scholar

    [135]

    Chen X D, Deng W M, Shi F L, Zhao F L, Chen M, Dong J W 2019 Phys. Rev. Lett. 122 233902Google Scholar

    [136]

    Ota Y, Liu F, Katsumi R, Watanabe K, Wakabayashi K, Arakawa Y, Iwamoto S 2019 Optica 6 786Google Scholar

  • [1] 王子尧, 陈福家, 郗翔, 高振, 杨怡豪. 非互易拓扑光子学. 物理学报, 2024, 73(6): 064201. doi: 10.7498/aps.73.20231850
    [2] 谢向男, 李成, 曾俊炜, 周珅, 江天. 本征磁性拓扑绝缘体MnBi2Te4研究进展. 物理学报, 2023, 72(18): 187101. doi: 10.7498/aps.72.20230704
    [3] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展. 物理学报, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [4] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [5] 黄月蕾, 单寅飞, 杜灵杰, 杜瑞瑞. 拓扑激子绝缘体的实验进展. 物理学报, 2023, 72(17): 177101. doi: 10.7498/aps.72.20230634
    [6] 郭思嘉, 李昱增, 李天梓, 范喜迎, 邱春印. 二维各向异性SSH模型的拓扑性质研究. 物理学报, 2022, 71(7): 070201. doi: 10.7498/aps.71.20211967
    [7] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子. 物理学报, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [8] 裴东亮, 杨洮, 陈猛, 刘宇, 徐文帅, 张满弓, 姜恒, 王育人. 基于复合蜂窝结构的宽带周期与非周期声拓扑绝缘体. 物理学报, 2020, 69(2): 024302. doi: 10.7498/aps.69.20191454
    [9] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [10] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展. 物理学报, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [11] 梅宇涵, 邵越, 杭志宏. 基于紧束缚模型的拓扑物理微波实验验证平台的开发. 物理学报, 2019, 68(22): 227803. doi: 10.7498/aps.68.20191452
    [12] 严忠波. 高阶拓扑绝缘体和高阶拓扑超导体简介. 物理学报, 2019, 68(22): 226101. doi: 10.7498/aps.68.20191101
    [13] 高艺璇, 张礼智, 张余洋, 杜世萱. 二维有机拓扑绝缘体的研究进展. 物理学报, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [14] 敬玉梅, 黄少云, 吴金雄, 彭海琳, 徐洪起. 三维拓扑绝缘体antidot阵列结构中的磁致输运研究. 物理学报, 2018, 67(4): 047301. doi: 10.7498/aps.67.20172346
    [15] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落. 物理学报, 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [16] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [17] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [18] 张小明, 刘国栋, 杜音, 刘恩克, 王文洪, 吴光恒, 柳忠元. 半Heusler型拓扑绝缘体LaPtBi能带调控的研究. 物理学报, 2012, 61(12): 123101. doi: 10.7498/aps.61.123101
    [19] 曾伦武, 宋润霞. 点电荷在拓扑绝缘体和导体中感应磁单极. 物理学报, 2012, 61(11): 117302. doi: 10.7498/aps.61.117302
    [20] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射. 物理学报, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
计量
  • 文章访问数:  25980
  • PDF下载量:  1970
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-20
  • 修回日期:  2019-10-28
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-20

/

返回文章
返回