搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准矩形截面强流相对论带状电子束的传输

杜广星 钱宝良

引用本文:
Citation:

准矩形截面强流相对论带状电子束的传输

杜广星, 钱宝良

Propagation of the intense relativistic sheet electron beam with a quasi-rectangular cross section

Du Guang-Xing, Qian Bao-Liang
PDF
导出引用
  • 提出利用准矩形截面带状电子束传输强电流.相对于目前广泛采用的椭圆形截面带状电子束,在大横纵比,即电子束的宽度(横向)远大于厚度(纵向)的情况下,其厚度沿横向更加均匀,利用冷阴极爆炸发射容易产生.该电子束利于高功率微波发生器中腔体模式的控制和束波作用效率的提高,如果利用模块化的结构还可使阴极及聚焦磁铁在宽度上的扩展更加容易.首先给出了准矩形截面带状电子束空间电荷场的典型分布,然后根据该分布和束匹配的方法对相互独立的周期会切磁铁和边聚焦磁铁分别进行了设计.其中边聚焦磁铁的磁化方向与以往的纵向不同,为横向磁化,
    The sheet electron beam with a quasi-rectangular cross section has been proposed to carry intense current. Obviously different from the elliptical sheet electron beam with the same high aspect ratio, this kind of beam is almost uniform in thickness, and can be generated by the cold metal cathode. Besides, the uniform thickness leads to uniform beam power in the horizontal direction, implying less modes but better counteraction between the beam and microwave. In addition, the uniform thickness make the width of the propagation system,including the cold cathode, the microwave cavities and the focusing magnets,easily changed. Firstly,the space-charge electric field of the sheet electron beam was analyzed numerically, then the focusing magnets, including the periodic cusped magnets and quadrupole magnets, were designed according to the space-charge electric field for beam matching. To validate the above theoretical analysis, particle-in-cell simulation was performed, which shows that the 300 keV, 3 kA sheet electron beam can be well focused by the 0.163 T periodic cusped magnetic fields with the 0.064 T quadrupole magnetic fields. More than 98% of the total current has been propagated through the distance of 300 mm.
    • 基金项目: 国家高技术研究发展计划资助的课题.
    [1]

    Kyhl R L, Webster H F 1956 IEEE Trans. Electron Dev. ED-3 172

    [2]

    Webster H F 1955 J. Appl. Phys. 26 1386

    [3]

    Davidson R C, Tsang K T, Uhm H S 1988 Phys. Fluids 31 1727

    [4]

    Uhm H S, Shahar B M, Yu D 1994 Phys. Plasmas 1 3686

    [5]

    Booske J H, McVey B D, Antonsen Jr T M 1993 J. Appl. Phys. 73 4140

    [6]

    Read M E, Jabotinski V, Miram G, Ives L 2005 IEEE Trans. Plasma Sci. 33 647

    [7]

    Cheng S, Destler W W, Granatstein V L, Antonsen Jr T M, Levush B, Rodgers J, Zhang Z X 1996 IEEE Trans. Plasma Sci. 24 750

    [8]

    Booske J H, Radack D J, Antonsen Jr T M, Bidwell S W, Carmel Y, Destler W W, Freund H P, Granatstein V L, Latham P E, Levush B, Mayergoyz I D, Serbeto A 1990 IEEE Trans. Plasma Sci. 18 399

    [9]

    Carlsten B E, Earley L M, Haynes W B, Wheat R M 2002 AIP Conf. Proc. 625 117

    [10]

    Wang S Z, Wang Y, Ding Y G, Ruan C J 2007 High Power Laser and Particle Beams 19 1517 (in Chinese) [王树忠、王 勇、丁耀根、阮存军 2007 强激光与粒子束 19 1517]

    [11]

    Scheitrum G 2006 AIP Conf. Proc. 807 120

    [12]

    Danly B G,Petillo J J,Qiu J X,Levush B 2006 IEEE International Vacuum Electronics Conference,Held Jointly with 2006 IEEE International Vacuum Electron Sources pp115, 116

    [13]

    Department of Energy, Washington, DC 2005 NTIS Accession: DE2005831150

    [14]

    Zhao D 2010 Acta Phys. Sin. 59 1712 (in Chinese) [赵 鼎 2010 物理学报 59 1712]

    [15]

    Du G X, Qian B L 2009 High Power Laser and Particle Beams 21 889 (in Chinese) [杜广星、钱宝良 2009 强激光与粒子束 21 889]

    [16]

    Du G X, Qian B L 2009 Acta Phys. Sin.59 1726 (in Chinese) [杜广星、钱宝良 2009 物理学报 59 1726]

    [17]

    Booske J H, Basten M A, Kumbasar A H, Antonsen Jr T M, Bidwell S W, Carmel Y, Destler W W, Granatstein V L, Radack D J 1994 Phys. Plasmas 1 1714

    [18]

    Basten M A, Booske J H 1999 J. Appl. Phys. 85 6313

  • [1]

    Kyhl R L, Webster H F 1956 IEEE Trans. Electron Dev. ED-3 172

    [2]

    Webster H F 1955 J. Appl. Phys. 26 1386

    [3]

    Davidson R C, Tsang K T, Uhm H S 1988 Phys. Fluids 31 1727

    [4]

    Uhm H S, Shahar B M, Yu D 1994 Phys. Plasmas 1 3686

    [5]

    Booske J H, McVey B D, Antonsen Jr T M 1993 J. Appl. Phys. 73 4140

    [6]

    Read M E, Jabotinski V, Miram G, Ives L 2005 IEEE Trans. Plasma Sci. 33 647

    [7]

    Cheng S, Destler W W, Granatstein V L, Antonsen Jr T M, Levush B, Rodgers J, Zhang Z X 1996 IEEE Trans. Plasma Sci. 24 750

    [8]

    Booske J H, Radack D J, Antonsen Jr T M, Bidwell S W, Carmel Y, Destler W W, Freund H P, Granatstein V L, Latham P E, Levush B, Mayergoyz I D, Serbeto A 1990 IEEE Trans. Plasma Sci. 18 399

    [9]

    Carlsten B E, Earley L M, Haynes W B, Wheat R M 2002 AIP Conf. Proc. 625 117

    [10]

    Wang S Z, Wang Y, Ding Y G, Ruan C J 2007 High Power Laser and Particle Beams 19 1517 (in Chinese) [王树忠、王 勇、丁耀根、阮存军 2007 强激光与粒子束 19 1517]

    [11]

    Scheitrum G 2006 AIP Conf. Proc. 807 120

    [12]

    Danly B G,Petillo J J,Qiu J X,Levush B 2006 IEEE International Vacuum Electronics Conference,Held Jointly with 2006 IEEE International Vacuum Electron Sources pp115, 116

    [13]

    Department of Energy, Washington, DC 2005 NTIS Accession: DE2005831150

    [14]

    Zhao D 2010 Acta Phys. Sin. 59 1712 (in Chinese) [赵 鼎 2010 物理学报 59 1712]

    [15]

    Du G X, Qian B L 2009 High Power Laser and Particle Beams 21 889 (in Chinese) [杜广星、钱宝良 2009 强激光与粒子束 21 889]

    [16]

    Du G X, Qian B L 2009 Acta Phys. Sin.59 1726 (in Chinese) [杜广星、钱宝良 2009 物理学报 59 1726]

    [17]

    Booske J H, Basten M A, Kumbasar A H, Antonsen Jr T M, Bidwell S W, Carmel Y, Destler W W, Granatstein V L, Radack D J 1994 Phys. Plasmas 1 1714

    [18]

    Basten M A, Booske J H 1999 J. Appl. Phys. 85 6313

计量
  • 文章访问数:  6554
  • PDF下载量:  607
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-29
  • 修回日期:  2009-10-26
  • 刊出日期:  2010-07-15

/

返回文章
返回