搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于多目标约束的互连线宽和线间距优化模型

朱樟明 万达经 杨银堂

引用本文:
Citation:

一种基于多目标约束的互连线宽和线间距优化模型

朱樟明, 万达经, 杨银堂

An optimization model of wire size for multi-objective constraint

Zhu Zhang-Ming, Wan Da-Jing, Yang Yin-Tang
PDF
导出引用
  • 优化线宽和线间距已经成为改善系统芯片性能的关键技术.本文基于互连线线宽和线间距对互连延时、功耗、面积和带宽的影响,提出了基于多目标优化方法实现优化线宽和线间距的思路,并利用曲线拟合方法得到了多目标约束的解析模型.Hspice验证结果显示,该解析模型精度较高,平均误差不超过5%,算法简单,能有效弥补应用品质因数方法的缺陷,可以应用于纳米级互补金属氧化物半导体系统芯片的计算机辅助设计.
    The optimization of wire size has become a key technology for improving the chip system performance. Based on the influence of the wire size of interconnects on the delay, power, area and bandwidth, we propose an idea of optimal wire size based on multi-objective optimization method and obtain a multi-objective constrained analytical model by curve-fitting approach. The Hspice verification shows that the analytical model presented in this paper has a high precision and the average error is less than 5%. The algorithm is simple and can effectively compensate for deficiencies in application of quality factor approach and it can be applied to computer-aided design of nano-scale complementary metal-oxide semiconductor (CMOS) system chips.
    • 基金项目: 国家自然科学基金(批准号:60725415,60971066)和国家高技术研究发展计划(批准号:2009AA01Z258,2009AA01Z260)资助的课题.
    [1]

    Shannon C 1948 Bell System Technology Journal 27 356

    [2]

    Semiconductor Industry Assocaition 2007 International Technology Roadmap for Semiconductors

    [3]

    Magdy A E 2003 13th ACM Great Lakes Symposium on VLSI Washington, DC, USA, April 28—29, 2003 p65

    [4]

    Mui M L, Banerjee K, Mehrotra A 2004 IEEE Trans. Electron Devices 51 195

    [5]

    Li X C 2005 IEEE Trans. Electron Devices 52 2272

    [6]

    Banerjee K, Mehrotra A 2001 IEEE Symposium on VLSI Circuits Tokyo, Japan, June 14—16, 2001 p195

    [7]

    Banerjee K, Mehrotra A 2002 IEEE Trans. Computer-Aided Design 21 904

    [8]

    Banerjee K, Mehrotra A 2002 IEEE Trans. Electron Devices 49 2001

    [9]

    Renatas J, Friedman E G 2009 The 19th ACM Great Lakes Symposium on VLSI Boston, USA, May 10—12 2009 p15

    [10]

    Rajeev K D, Alyssa B A 2009 The 19th ACM Great Lakes Symposium on VLSI Boston, USA, May 10—12 2009 p275

    [11]

    Avinash K K, Ashwini S 2009 The 14th Asia and South Pacific Design Automation Conference Yokohama, Japan, January 19—22, 2009 p1

    [12]

    Zhang H B, Martin D F, Deng L 2009 The 2009 International Symposium on Physical Design San Diego, California, USA, March 29—April 1, 2009 p131

    [13]

    Lee E, Lemieux G, Mirabbasi S 2008 Journal of Signal Processing Systems 56 57

    [14]

    Carloni L, Andrew B K 2008 The 13th Asia and South Pacific Design Automation Conference Seoul, Korea, January 21—24, 2008 p258

    [15]

    Ho Y J, Mak W K 2008 IEEE 2008 International Symposium on VLSI Design, Automation and Test Hsinchu, Taiwan, April 28—30, 2008 p287

    [16]

    Chen G Q, Chen H 2007 The 2nd International Conference on Nano-Networks Catania, Italy, September 24—26, 2007 p22

    [17]

    Zhu Z M, Qian L B, Yang Y T 2009 Chin. Phys. B 18 1188

    [18]

    Zhu Z M, Qian L B, Yang Y T 2009 Acta Phys. Sin. 58 2631 (in Chinese) [朱樟明、钱利波、杨银堂 2009 物理学报 58 2631] 〖19] Li C, Liao H L and Huang R 2008 Chin. Phys. B 17 2730

    [19]

    He L, Du L, Zhuang Y Q 2007 Acta Phys. Sin. 56 7176(in Chinese) [何 亮、杜 磊、庄奕琪 2007 物理学报 56 7176]

  • [1]

    Shannon C 1948 Bell System Technology Journal 27 356

    [2]

    Semiconductor Industry Assocaition 2007 International Technology Roadmap for Semiconductors

    [3]

    Magdy A E 2003 13th ACM Great Lakes Symposium on VLSI Washington, DC, USA, April 28—29, 2003 p65

    [4]

    Mui M L, Banerjee K, Mehrotra A 2004 IEEE Trans. Electron Devices 51 195

    [5]

    Li X C 2005 IEEE Trans. Electron Devices 52 2272

    [6]

    Banerjee K, Mehrotra A 2001 IEEE Symposium on VLSI Circuits Tokyo, Japan, June 14—16, 2001 p195

    [7]

    Banerjee K, Mehrotra A 2002 IEEE Trans. Computer-Aided Design 21 904

    [8]

    Banerjee K, Mehrotra A 2002 IEEE Trans. Electron Devices 49 2001

    [9]

    Renatas J, Friedman E G 2009 The 19th ACM Great Lakes Symposium on VLSI Boston, USA, May 10—12 2009 p15

    [10]

    Rajeev K D, Alyssa B A 2009 The 19th ACM Great Lakes Symposium on VLSI Boston, USA, May 10—12 2009 p275

    [11]

    Avinash K K, Ashwini S 2009 The 14th Asia and South Pacific Design Automation Conference Yokohama, Japan, January 19—22, 2009 p1

    [12]

    Zhang H B, Martin D F, Deng L 2009 The 2009 International Symposium on Physical Design San Diego, California, USA, March 29—April 1, 2009 p131

    [13]

    Lee E, Lemieux G, Mirabbasi S 2008 Journal of Signal Processing Systems 56 57

    [14]

    Carloni L, Andrew B K 2008 The 13th Asia and South Pacific Design Automation Conference Seoul, Korea, January 21—24, 2008 p258

    [15]

    Ho Y J, Mak W K 2008 IEEE 2008 International Symposium on VLSI Design, Automation and Test Hsinchu, Taiwan, April 28—30, 2008 p287

    [16]

    Chen G Q, Chen H 2007 The 2nd International Conference on Nano-Networks Catania, Italy, September 24—26, 2007 p22

    [17]

    Zhu Z M, Qian L B, Yang Y T 2009 Chin. Phys. B 18 1188

    [18]

    Zhu Z M, Qian L B, Yang Y T 2009 Acta Phys. Sin. 58 2631 (in Chinese) [朱樟明、钱利波、杨银堂 2009 物理学报 58 2631] 〖19] Li C, Liao H L and Huang R 2008 Chin. Phys. B 17 2730

    [19]

    He L, Du L, Zhuang Y Q 2007 Acta Phys. Sin. 56 7176(in Chinese) [何 亮、杜 磊、庄奕琪 2007 物理学报 56 7176]

  • [1] 戴忠华, 周穗华, 张晓兵. 多目标优化的舰船磁场建模方法. 物理学报, 2021, 70(16): 164101. doi: 10.7498/aps.70.20210334
    [2] 肖廷辉, 于洋, 李志远. 石墨烯-硅基混合光子集成电路. 物理学报, 2017, 66(21): 217802. doi: 10.7498/aps.66.217802
    [3] 李佳蔚, 鹿力成, 郭圣明, 马力. warping变换提取单模态反演海底衰减系数. 物理学报, 2017, 66(20): 204301. doi: 10.7498/aps.66.204301
    [4] 杨晓阔, 张斌, 崔焕卿, 李伟伟, 王森. 基于多铁逻辑的铁磁耦合互连线磁化动态模拟. 物理学报, 2016, 65(23): 237502. doi: 10.7498/aps.65.237502
    [5] 郭羽泉, 段书凯, 王丽丹. 纳米级尺寸参数对钛氧化物忆阻器的特性影响. 物理学报, 2015, 64(10): 108502. doi: 10.7498/aps.64.108502
    [6] 高洪元, 李晨琬. 膜量子蜂群优化的多目标频谱分配. 物理学报, 2014, 63(12): 128802. doi: 10.7498/aps.63.128802
    [7] 张岩, 董刚, 杨银堂, 王宁, 王凤娟, 刘晓贤. 考虑自热效应的互连线功耗优化模型. 物理学报, 2013, 62(1): 016601. doi: 10.7498/aps.62.016601
    [8] 钱利波, 朱樟明, 杨银堂. 一种考虑硅通孔电阻-电容效应的三维互连线模型. 物理学报, 2012, 61(6): 068001. doi: 10.7498/aps.61.068001
    [9] 王玉玲, 孙以泽, 彭乐乐, 徐洋. 基于Lambert W函数的太阳能电池组件参数确定法. 物理学报, 2012, 61(24): 248402. doi: 10.7498/aps.61.248402
    [10] 张金松, 吴懿平, 王永国, 陶媛. 集成电路微互连结构中的热迁移. 物理学报, 2010, 59(6): 4395-4402. doi: 10.7498/aps.59.4395
    [11] 朱樟明, 郝报田, 李儒, 杨银堂. 一种基于延时和带宽约束的纳米级互连线优化模型. 物理学报, 2010, 59(3): 1997-2003. doi: 10.7498/aps.59.1997
    [12] 李鑫, Wang Janet M., 唐卫清. 工艺参数扰动下互连线时延的随机点匹配评估算法. 物理学报, 2009, 58(6): 3603-3610. doi: 10.7498/aps.58.3603
    [13] 周文, 刘红侠. 有丢失物缺陷的铜互连线中位寿命的定量研究. 物理学报, 2009, 58(11): 7716-7721. doi: 10.7498/aps.58.7716
    [14] 朱樟明, 钟波, 郝报田, 杨银堂. 一种考虑温度的分布式互连线功耗模型. 物理学报, 2009, 58(10): 7124-7129. doi: 10.7498/aps.58.7124
    [15] 朱樟明, 郝报田, 钱利波, 钟波, 杨银堂. 考虑通孔效应和边缘传热效应的纳米级互连线温度分布模型. 物理学报, 2009, 58(10): 7130-7135. doi: 10.7498/aps.58.7130
    [16] 朱樟明, 钱利波, 杨银堂. 一种基于纳米级CMOS工艺的互连线串扰RLC解析模型. 物理学报, 2009, 58(4): 2631-2636. doi: 10.7498/aps.58.2631
    [17] 王俊忠, 吉 元, 王晓冬, 刘志民, 罗俊锋, 李志国. Al互连线和Cu互连线的显微结构. 物理学报, 2007, 56(1): 371-375. doi: 10.7498/aps.56.371
    [18] 肖 夏, 尤学一, 姚素英. 表征超大规模集成电路互连纳米薄膜硬度特性的声表面波的频散特性. 物理学报, 2007, 56(4): 2428-2433. doi: 10.7498/aps.56.2428
    [19] 张文杰, 易万兵, 吴 瑾. 铝互连线的电迁移问题及超深亚微米技术下的挑战. 物理学报, 2006, 55(10): 5424-5434. doi: 10.7498/aps.55.5424
    [20] 宗兆翔, 杜 磊, 庄奕琪, 何 亮, 吴 勇. 超大规模集成电路互连电迁移自由体积电阻模型. 物理学报, 2005, 54(12): 5872-5878. doi: 10.7498/aps.54.5872
计量
  • 文章访问数:  6796
  • PDF下载量:  588
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-09-01
  • 修回日期:  2009-11-11
  • 刊出日期:  2010-07-15

/

返回文章
返回