搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nb-Ti-Al合金高温氧化机理电子理论研究

刘贵立 杨杰

引用本文:
Citation:

Nb-Ti-Al合金高温氧化机理电子理论研究

刘贵立, 杨杰

Electronic theory study on high temperature oxidation mechanism of Nb-Ti-Al alloy

Liu Gui-Li, Yang Jie
PDF
导出引用
  • 采用递归法计算了Nb合金的电子态密度、原子镶嵌能、亲和能和团簇能等电子结构参数,研究Nb合金高温氧化机理.研究表明,氧在Nb合金表面的吸附能较低,易在合金表面吸附,并逐渐扩散到Nb合金的基体中.氧在合金基体中镶嵌能为负值,氧的态密度和Nb相似,在Nb中具有很高的溶解度.Ti,Al在合金晶内的镶嵌能均高于各自在合金表面的镶嵌能,Ti,Al从合金内部向合金表面扩散,最终在Nb合金表面偏聚,形成富Ti,Al的表层.团簇能计算结果表明Nb合金表面的Ti,Al原子各自均有聚集倾向,分别形成Ti和Al原子团.氧与合金
    The electronic structure parameters of density of electronic states, atoms embedding energy, affinity energy and cluster energy of Nb alloy have been calculated using the recursive method. The high-temperature oxidation mechanism of Nb alloy was investigated. Studies show that the oxygen adsorption on Nb alloy surface can lower the adsorption energy, so oxygen is easily adsorbed on the alloy surface, and gradually diffuses into the Nb alloy matrix. Oxygen has a high solubility in the Nb alloy matrix because of the negative atom embedding energy, and it has similar density of states to Nb. Because the atom embedding energies of Ti and Al in the alloy matrix are higher than that on the alloy surface, Ti and Al atoms diffuse from the alloy matrix to the alloy surface and segregate on the alloy surface, ultimately making the Nb surface rich in Ti and Al. The clustering energy calculation shows that Ti and Al atom tend to gather on their own area, forming Ti and Al atom clusters respectively. Oxygen can interact with Nb, Ti and Al because of the negative affinity energy with Nb, Ti and Al on Nb alloy surface, to generate the Nb2O5, TiO2 and Al2O3 mixed oxide film which has protective effect on Nb alloy.
    • 基金项目: 国家自然科学基金(批准号: 50671069)、辽宁省教育厅科学研究计划(批准号: 2008511,20060807,2007T165)和沈阳市科技计划(批准号: 1072026100)资助的课题.
    [1]

    Subramanian P R, Mendiratta M G, Dimiduk D M 1996 J. Miner. Met. Mater. Soc. 1 33

    [2]

    Qu S Y, Wang R M, Han Y F 2002 Materials Review 16 31(in Chinese) [曲士昱、王荣明、韩雅芳 2002 材料导报 16 31]

    [3]

    Sims C T 1984 High Temp. Technol. 2 185

    [4]

    Sheftel E N, Bannykh O A 1993 Int. J. Refract. Met. Hard Mater. 12 303

    [5]

    Haydock R 1980 Solid State Physics (New York:Academic Press) p216

    [6]

    Liu G L 2009 Acta Phys. Sin. 58 3319 (in Chinese) [刘贵立 2009 物理学报 58 3319]

    [7]

    Liu G L 2009 Acta Phys. Sin. 58 4872 (in Chinese) [刘贵立 2009 物理学报 58 4872]

    [8]

    Slater J C, Koster G F 1954 Phys. Rev. 94 14986

    [9]

    Harrison W A 1980 Electronic Structure and the Properties of Solids (San Francisco: Freeman) p551

    [10]

    Liu G L 2007 Acta Metall. Sin. 43 249 (in Chinese) [刘贵立 2007 金属学报 43 249]

    [11]

    Liu G L 2008 Acta Phys. Sin. 57 434 (in Chinese) [刘贵立 2008 物理学报 57 434]

    [12]

    Liu G L, Li R D 2006 Acta Phys. Sin. 55 776 (in Chinese) [刘贵立、李荣德 2006 物理学报 55 776]

    [13]

    Morinaga M, Nasu S, Adachi H 1991 J. Phys. Condens. Matter. 3 6817

    [14]

    Keith J 2000 Intermetallics 8 1257

    [15]

    Yi D Q, Zhang X, Li J 2005 Corrosion Sci. Protect. Technol. 17 94 (in Chinese) [易丹青、张 霞、李 荐 2005 腐蚀科学与防护 17 94]

    [16]

    Meier G H, Pitti F S 1992 Mater. Sci. Eng. A 153 548

  • [1]

    Subramanian P R, Mendiratta M G, Dimiduk D M 1996 J. Miner. Met. Mater. Soc. 1 33

    [2]

    Qu S Y, Wang R M, Han Y F 2002 Materials Review 16 31(in Chinese) [曲士昱、王荣明、韩雅芳 2002 材料导报 16 31]

    [3]

    Sims C T 1984 High Temp. Technol. 2 185

    [4]

    Sheftel E N, Bannykh O A 1993 Int. J. Refract. Met. Hard Mater. 12 303

    [5]

    Haydock R 1980 Solid State Physics (New York:Academic Press) p216

    [6]

    Liu G L 2009 Acta Phys. Sin. 58 3319 (in Chinese) [刘贵立 2009 物理学报 58 3319]

    [7]

    Liu G L 2009 Acta Phys. Sin. 58 4872 (in Chinese) [刘贵立 2009 物理学报 58 4872]

    [8]

    Slater J C, Koster G F 1954 Phys. Rev. 94 14986

    [9]

    Harrison W A 1980 Electronic Structure and the Properties of Solids (San Francisco: Freeman) p551

    [10]

    Liu G L 2007 Acta Metall. Sin. 43 249 (in Chinese) [刘贵立 2007 金属学报 43 249]

    [11]

    Liu G L 2008 Acta Phys. Sin. 57 434 (in Chinese) [刘贵立 2008 物理学报 57 434]

    [12]

    Liu G L, Li R D 2006 Acta Phys. Sin. 55 776 (in Chinese) [刘贵立、李荣德 2006 物理学报 55 776]

    [13]

    Morinaga M, Nasu S, Adachi H 1991 J. Phys. Condens. Matter. 3 6817

    [14]

    Keith J 2000 Intermetallics 8 1257

    [15]

    Yi D Q, Zhang X, Li J 2005 Corrosion Sci. Protect. Technol. 17 94 (in Chinese) [易丹青、张 霞、李 荐 2005 腐蚀科学与防护 17 94]

    [16]

    Meier G H, Pitti F S 1992 Mater. Sci. Eng. A 153 548

  • [1] 吴明宇, 弭光宝, 李培杰. 近α型高温钛合金起燃机理研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240003
    [2] 糜晓磊, 胡亮, 武博文, 龙强, 魏炳波. 钆含量对Fe-B-Nb-Gd非晶合金磁学性能和氧化机制的影响规律. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20232040
    [3] 吴明宇, 弭光宝, 李培杰, 黄旭. 600 ℃高温钛合金燃烧组织演变及机理. 物理学报, 2023, 72(16): 166102. doi: 10.7498/aps.72.20230396
    [4] 吕梦甜, 李金临, 孙九栋, 王镇华, 王清, 董闯. 低密度Co-Ni-Al-Mo-Cr-Ti/Nb/Ta系列高温合金方形γ/γ′共格组织设计及其稳定性. 物理学报, 2022, 71(11): 118102. doi: 10.7498/aps.71.20212444
    [5] 何晓珣, 李炳生, 刘瑞, 张桐民, 曹兴忠, 陈黎明, 徐帅. Ti含量对TiB2-SiC-Ti材料制备和性能的影响. 物理学报, 2022, 71(19): 192801. doi: 10.7498/aps.71.20220530
    [6] 丁翠, 刘充, 张庆华, 龚冠铭, 汪恒, 刘效治, 孟繁琦, 杨好好, 武睿, 宋灿立, 李渭, 何珂, 马旭村, 谷林, 王立莉, 薛其坤. 单层FeSe薄膜/氧化物界面高温超导. 物理学报, 2018, 67(20): 207415. doi: 10.7498/aps.67.20181681
    [7] 李晓娜, 郑月红, 李震, 王苗, 张坤, 董闯. 基于团簇模型设计的Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe) 合金抗高温氧化研究. 物理学报, 2014, 63(2): 028102. doi: 10.7498/aps.63.028102
    [8] 刘贵立, 李勇. 钛铝合金高温氧化机理电子理论研究. 物理学报, 2012, 61(17): 177101. doi: 10.7498/aps.61.177101
    [9] 刘贵立. Nb-Al合金高温氧化机理. 物理学报, 2010, 59(1): 499-503. doi: 10.7498/aps.59.499
    [10] 刘贵立. Fe-Cr-Al合金高温氧化行为电子理论研究. 物理学报, 2010, 59(1): 494-498. doi: 10.7498/aps.59.494
    [11] 张国英, 李丹, 梁婷. 铌合金电子结构及其高温氧化行为. 物理学报, 2010, 59(11): 8031-8036. doi: 10.7498/aps.59.8031
    [12] 刘红, 王西涛, 陈冷. 含Nb微合金钢应变诱导析出的模拟. 物理学报, 2009, 58(13): 151-S155. doi: 10.7498/aps.58.151
    [13] 刘贵立. 递归法研究Pt对Ti合金腐蚀影响. 物理学报, 2009, 58(5): 3359-3363. doi: 10.7498/aps.58.3359
    [14] 张国英, 张辉, 方戈亮, 罗志成. Fe-Cr-Al合金氧化膜形成机理电子理论研究. 物理学报, 2009, 58(9): 6441-6445. doi: 10.7498/aps.58.6441
    [15] 李虹, 王绍青, 叶恒强. Nb掺杂对γ-TiAl抗氧化能力影响的第一性原理研究. 物理学报, 2009, 58(13): 224-S229. doi: 10.7498/aps.58.224
    [16] 刘贵立. 钛金属应力腐蚀机理电子理论研究. 物理学报, 2006, 55(4): 1983-1986. doi: 10.7498/aps.55.1983
    [17] 靳惠明, Felix Adriana, Aroyave Majorri. 离子注钇对镍900℃高温氧化行为及氧化膜性能的影响研究. 物理学报, 2006, 55(11): 6157-6162. doi: 10.7498/aps.55.6157
    [18] 严辉, 马黎君, 陈光华, 黄世平, 文华杰, 郭伟明. 金属Sn薄膜的高温氧化与表面特征. 物理学报, 1997, 46(8): 1658-1664. doi: 10.7498/aps.46.1658
    [19] 戴礼智, 王俊健, 侯德惠. Ni—Fe—Nb及Ni—Fe—Nb—Al合金磁性和结构的初步研究. 物理学报, 1978, 27(3): 260-268. doi: 10.7498/aps.27.260
    [20] 王其闵, 王遂福, 窦仲伟, 郭懋端. 铝-镁合金的高温变形机构. 物理学报, 1965, 21(9): 1681-1688. doi: 10.7498/aps.21.1681
计量
  • 文章访问数:  6574
  • PDF下载量:  708
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-10-10
  • 修回日期:  2009-11-04
  • 刊出日期:  2010-07-15

/

返回文章
返回