搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

La0.67Ca0.33MnO3(001)薄膜表面结构的扫描隧道显微术研究

刘锴 王兵

引用本文:
Citation:

La0.67Ca0.33MnO3(001)薄膜表面结构的扫描隧道显微术研究

刘锴, 王兵

Study of La0.67Ca0.33MnO3(001) thin film surfacestructure using scanning tunneling microscopy

Liu Kai, Wang Bing
PDF
导出引用
  • 利用Scanning Tunneling Microscope(STM)和Scanning Tunneling Spectroscopy(STS)技术研究了La0.67Ca0.33MnO3(001)表面性质,研究发现表面呈现多相分离现象,在锰氧终端面观察到了绝缘性的( 2 × 2 )R45°重构表面和金属性的(1×1)重构表面,在镧钙氧终端面,观察到了表面呈现条纹状结构.La0.67Ca0.33
    La0.67Ca0.33MnO3(001) thin films have been grown with pulsed laser deposition method, and the surface structures and electronic states have been characterized using scanning tunneling microscopy/spectroscopy (STM/STS). In the Mn-O terminated surface, insulating ( 2 × 2 )R45° reconstruction surface and metallic (1×1) reconstruction surface are observed. In the (La,Ca)-O terminated surface, the surface presents the stripe structure. The results obtained from the variable temperature STM/STS show that the ( 2 × 2 )R45° reconstructed surface persists in insulating phase in a temperature range of 144—300 K, which may shield the signal of possible insulator-metal transition occurred in bulk in STS measurements.
    • 基金项目: 国家自然科学基金(批准号: 60771006)资助的课题.
    [1]

    Jin S, Tiefel T H, McCormack M, Fastnacht R A, Ramesh R, Chen L H 1994 Science 264 413

    [2]

    Liu W, Cjem J P, Guan W, Xiong G C, Yan S S 2004 Acta Phys. Sin. 53 0601 (in Chinese) [刘 伟、陈晋平、管 炜、熊光成、阎守胜 2004 物理学报 53 0601]

    [3]

    Duan P, Chen Z H, Dai S Y, Zhou Y L, Lu H B 2006 Acta Phys. Sin. 55 1441 (in Chinese) [段 苹、陈正豪、戴守遇、周岳亮、吕惠宾 2006 物理学报 55 1441]

    [4]

    Zhang Y T, He M, Cheng Z Y, Lu H B 2009 Acta Phys. Sin. 58 2002 (in Chinese) [张营堂、何 萌、陈子瑜、吕惠宾 2009 物理学报 58 2002]

    [5]

    Renner C, Aeppli G, Kim B G, Soh Y A, Cheong S W 2002 Nature 416 518

    [6]

    Loudon J C, Mathur N D, Midgley P A 2002 Nature 420 1926

    [7]

    Tao J, Niebieskikwiat D, Varela M, Luo W 2009 Phys. Rev. Lett. 103 097202

    [8]

    Fath M, Freisam S, Menovski A A, Tomioka Y, Aarts J, Mydosh J A 1999 Science 285 1540

    [9]

    Mori S, Chen C H, Cheong S W 1998 Nature 392 473

    [10]

    Mori S, Chen C H, Cheong S W 1998 Phys. Rev. Lett. 81 3972

    [11]

    CoX S, Singleton J, Mcdonald R D, Migliori A, Littlewood P B 2008 Nature Materials 7 25

    [12]

    Nucara A, Maselli P, Calvani P, Sopracase R, Ortolani M 2008 Phys. Rev. Lett. 101 066407

    [13]

    Koster S A 2008 Phys. Rev. B 78 052404

    [14]

    Lu Q Y 1997 Science 276 2006

    [15]

    Murakami Y, Kasai H, Kim J J, Mamishin S, Shindo D, Mori S, Tonomura A 2010 Nature Nanotechnology 5 37

    [16]

    Zhang L W, Israel C, Biswas A, Greene R L, Lozanne A D 2002 Science 298 805

    [17]

    Becker T, Streng C, Luo Y, Moshnyaga V, Damaschke B, Shannon N, Samwer K 2002 Phys. Rev. Lett. 89 237203

    [18]

    Kiryukhin V, Casa D, Hill J P 1997 Nature 386 813

    [19]

    Fiebig M, Miyano K, Tomioka Y 1998 Science 280 1925

    [20]

    Ma J X, Gillapie D T, Plummer E W, Shen J 2005 Phys. Rev. Lett. 95 237210

    [21]

    Fuchiganmi K, Gai Z, Ward T Z, Yin L F, Snijders P C, Plummer E W, Shen J 2009 Phys. Rev. Lett. 102 066104

    [22]

    Rnnow H M, Renner C, Aeppli G, Kimura T, Tokura Y 2006 Nature 440 1025

    [23]

    Mitra J, Paranjape M, Raychaudhuri A K 2005 Phys. Rev. B 71 094426

    [24]

    Seiro S, Fasano Y, MaggiO A I, Koller E, Kuffer O 2008 Phys. Rev. B 77 020407

    [25]

    Singh U R, Chaudhuri S, Choudhary S K, Budhani R C, Gupta A K 2008 Phys. Rev. B 77 014404

    [26]

    Koster S A, Moshnyaga V, Damaschke B, Samwer K 2008 Phys. Rev. B 78 052404

    [27]

    Kawasaki M 1994 Science 266 1540

    [28]

    Weil J Y T, Yehl N C, Vasquez R P 1997 Phys. Rev. Lett. 79 5150

    [29]

    Dagotto E, Hotta T, Moreo A 2004 Physics Reports 344 1

  • [1]

    Jin S, Tiefel T H, McCormack M, Fastnacht R A, Ramesh R, Chen L H 1994 Science 264 413

    [2]

    Liu W, Cjem J P, Guan W, Xiong G C, Yan S S 2004 Acta Phys. Sin. 53 0601 (in Chinese) [刘 伟、陈晋平、管 炜、熊光成、阎守胜 2004 物理学报 53 0601]

    [3]

    Duan P, Chen Z H, Dai S Y, Zhou Y L, Lu H B 2006 Acta Phys. Sin. 55 1441 (in Chinese) [段 苹、陈正豪、戴守遇、周岳亮、吕惠宾 2006 物理学报 55 1441]

    [4]

    Zhang Y T, He M, Cheng Z Y, Lu H B 2009 Acta Phys. Sin. 58 2002 (in Chinese) [张营堂、何 萌、陈子瑜、吕惠宾 2009 物理学报 58 2002]

    [5]

    Renner C, Aeppli G, Kim B G, Soh Y A, Cheong S W 2002 Nature 416 518

    [6]

    Loudon J C, Mathur N D, Midgley P A 2002 Nature 420 1926

    [7]

    Tao J, Niebieskikwiat D, Varela M, Luo W 2009 Phys. Rev. Lett. 103 097202

    [8]

    Fath M, Freisam S, Menovski A A, Tomioka Y, Aarts J, Mydosh J A 1999 Science 285 1540

    [9]

    Mori S, Chen C H, Cheong S W 1998 Nature 392 473

    [10]

    Mori S, Chen C H, Cheong S W 1998 Phys. Rev. Lett. 81 3972

    [11]

    CoX S, Singleton J, Mcdonald R D, Migliori A, Littlewood P B 2008 Nature Materials 7 25

    [12]

    Nucara A, Maselli P, Calvani P, Sopracase R, Ortolani M 2008 Phys. Rev. Lett. 101 066407

    [13]

    Koster S A 2008 Phys. Rev. B 78 052404

    [14]

    Lu Q Y 1997 Science 276 2006

    [15]

    Murakami Y, Kasai H, Kim J J, Mamishin S, Shindo D, Mori S, Tonomura A 2010 Nature Nanotechnology 5 37

    [16]

    Zhang L W, Israel C, Biswas A, Greene R L, Lozanne A D 2002 Science 298 805

    [17]

    Becker T, Streng C, Luo Y, Moshnyaga V, Damaschke B, Shannon N, Samwer K 2002 Phys. Rev. Lett. 89 237203

    [18]

    Kiryukhin V, Casa D, Hill J P 1997 Nature 386 813

    [19]

    Fiebig M, Miyano K, Tomioka Y 1998 Science 280 1925

    [20]

    Ma J X, Gillapie D T, Plummer E W, Shen J 2005 Phys. Rev. Lett. 95 237210

    [21]

    Fuchiganmi K, Gai Z, Ward T Z, Yin L F, Snijders P C, Plummer E W, Shen J 2009 Phys. Rev. Lett. 102 066104

    [22]

    Rnnow H M, Renner C, Aeppli G, Kimura T, Tokura Y 2006 Nature 440 1025

    [23]

    Mitra J, Paranjape M, Raychaudhuri A K 2005 Phys. Rev. B 71 094426

    [24]

    Seiro S, Fasano Y, MaggiO A I, Koller E, Kuffer O 2008 Phys. Rev. B 77 020407

    [25]

    Singh U R, Chaudhuri S, Choudhary S K, Budhani R C, Gupta A K 2008 Phys. Rev. B 77 014404

    [26]

    Koster S A, Moshnyaga V, Damaschke B, Samwer K 2008 Phys. Rev. B 78 052404

    [27]

    Kawasaki M 1994 Science 266 1540

    [28]

    Weil J Y T, Yehl N C, Vasquez R P 1997 Phys. Rev. Lett. 79 5150

    [29]

    Dagotto E, Hotta T, Moreo A 2004 Physics Reports 344 1

  • [1] 马孟宇, 蔚翠, 何泽召, 郭建超, 刘庆彬, 冯志红. 氢终端金刚石薄膜生长及其表面结构研究. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240053
    [2] 邢雨菲, 任泽阳, 张金风, 苏凯, 丁森川, 何琦, 张进成, 张春福, 郝跃. 氢终端单晶金刚石反相器特性. 物理学报, 2022, 71(8): 088102. doi: 10.7498/aps.71.20211447
    [3] 房晓南, 危芹, 隋娜娜, 孔志勇, 刘静, 杜颜伶. 间隔层调控SrVO3/SrTiO3超晶格铁磁半金属-铁磁绝缘体转变. 物理学报, 2022, 71(23): 237301. doi: 10.7498/aps.71.20221765
    [4] 房晓南, 杜颜伶, 吴晨雨, 刘静. (SrVO3)5/(SrTiO3)1(111)异质结金属-绝缘体转变和磁性调控的第一性原理研究. 物理学报, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [5] 苏玉凤, 彭金璋, 杨红, 黄勇刚. 金属纳米柱的端面修饰对自发辐射增强特性的影响. 物理学报, 2022, 71(16): 166802. doi: 10.7498/aps.71.20220439
    [6] 李云, 鲁文建. 掺杂维度和浓度调控的δ掺杂的La:SrTiO3超晶格结构金属-绝缘体转变. 物理学报, 2021, 70(22): 227102. doi: 10.7498/aps.70.20210830
    [7] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [8] 王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄. 电触发二氧化钒纳米线发生金属-绝缘体转变的机理. 物理学报, 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [9] 胡丽娜, 赵茜, 张春芝. 金属玻璃液体中的强脆转变现象. 物理学报, 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [10] 唐华杰, 张晋敏, 金浩, 邵飞, 胡维前, 谢泉. 溅射功率对金属锰膜光学性质的影响. 物理学报, 2013, 62(24): 247803. doi: 10.7498/aps.62.247803
    [11] 王昌雷, 田震, 邢岐荣, 谷建强, 刘丰, 胡明列, 柴路, 王清月. 硅基VO2纳米薄膜光致绝缘体—金属相变的THz时域频谱研究. 物理学报, 2010, 59(11): 7857-7862. doi: 10.7498/aps.59.7857
    [12] 隋成华, 蔡萍根, 陈乃波, 魏高尧, 许晓军, 周红. 蓝宝石光纤端面上ZnO薄膜的制备及其温变光学特性. 物理学报, 2009, 58(4): 2792-2796. doi: 10.7498/aps.58.2792
    [13] 刘峰斌, 汪家道, 陈大融. 氢、氧终端掺硼金刚石薄膜的电子结构. 物理学报, 2008, 57(2): 1171-1176. doi: 10.7498/aps.57.1171
    [14] 郭 峰, 蒋益明, 谢亨博, 万星拱, 胡敬平, 李 劲. PEN薄膜阻抗转变规律研究. 物理学报, 2005, 54(3): 1396-1399. doi: 10.7498/aps.54.1396
    [15] 曹晓晖, 黄荣芳, 闻立时, 师昌绪. 金属微粒-绝缘媒质复合体的远红外吸收. 物理学报, 1996, 45(1): 101-106. doi: 10.7498/aps.45.101
    [16] 刘让苏, 李基永. 液态金属高温结构转变特性的模拟研究. 物理学报, 1995, 44(10): 1582-1587. doi: 10.7498/aps.44.1582
    [17] 赵勇, 诸葛向彬, 何业冶. Y1-xCaxBa2Cu3O6系统中空穴掺杂诱导的绝缘体-金属转变和超导电性. 物理学报, 1992, 41(7): 1151-1156. doi: 10.7498/aps.41.1151
    [18] 杨永宏, 邢定钰, 龚昌德. YBa2Cu3O7-x的金属-绝缘体转变. 物理学报, 1992, 41(1): 136-143. doi: 10.7498/aps.41.136
    [19] 章立源. 关于非晶态过渡金属的超导转变温度. 物理学报, 1979, 28(6): 877-882. doi: 10.7498/aps.28.877
    [20] 朱宰万, 徐济安. 金属氢——转变压力和物理性质. 物理学报, 1979, 28(6): 865-871. doi: 10.7498/aps.28.865
计量
  • 文章访问数:  6686
  • PDF下载量:  782
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-20
  • 修回日期:  2010-07-21
  • 刊出日期:  2011-02-05

/

返回文章
返回