搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有分离门的电抽运多层石墨烯负动态电导率的理论研究

张玉萍 张洪艳 尹贻恒 刘陵玉 张晓 高营 张会云

引用本文:
Citation:

具有分离门的电抽运多层石墨烯负动态电导率的理论研究

张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云

Theory research of negative dynamic conductivity in electrically pumped multiple graphene layer structures with split gates

Zhang Yu-Ping, Zhang Hong-Yan, Yin Yi-Heng, Liu Ling-Yu, Zhang Xiao, Gao Ying, Zhang Hui-Yun
PDF
导出引用
  • 本文提出了具有分离门的电抽运多层石墨烯结构, 建立了电诱导n-i-p结的理论模型, 计算了集居数反转的条件下与带内和带间跃迁相关的动态电导率, 讨论了偏置电压、门电压、石墨烯层数以及动量弛豫时间对动态电导率的影响. 结果表明, 在一定条件下, 动态电导率的实部在太赫兹范围内可以是负的, 即带间辐射大于带内吸收, 论证了电抽运多层石墨烯结构作为产生太赫兹相干光源的激活物质的可行性.
    The negative dynamic conductivity of graphene in THz range makes it to be a promise medium in THz radiation and amplification. This paper proposes electrically pumped multiple graphene layer structures with split gates, sets up the theory model of electrically induced n-i-p junction, calculates the ac conductivity associated with the interband and intraband transitions under the conditions of population inversion, discusses the bias voltage, gate voltage, number of graphene layers and the momentum relaxation time dependences of ac conductivity. It is shown that the real part of dynamic conductivity within terahertz range can be negative in certain conditions, namely, interband radiation is greater than the intraband absorption, which demonstrates the feasibility of taking electrically pumped multiple graphene layer structures with split gates as an active medium in radiating terahertz coherent source.
    • 基金项目: 国家自然科学基金(批准号:61001018), 山东省自然科学基金(批准号:ZR2011FM009), 山东科技大学杰出青年科学基金(批准号:2010KYJQ103), 山东省高等学校科技计划项目(批准号:J11LG20), 青岛市科技计划(批准号: 11-2-4-4-(8)-jch,10-3-4-2-1-jcj) 和山东科技大学科技创新基金(批准号: YCB110084)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61001018), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2011FM009), the Research Fund of Shandong University of Science and Technology (SDUST), China (Grant No. 2010KYJQ103), the project of Shandong Province Higher Educational Science and Technology Program( Grant No. J11LG20), the Qingdao Science and Technology Program (Grant No. 11-2-4-4-(8)-jch,10-3-4-2-1-jcj), and the Shandong University of Science and Technology Foundation, China (Grant No. YCB110084).
    [1]

    Zhang Y, Tan Y W, Stormer H L, Kim P. 2005 Nature (London) 438 201

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Dubonos S V, Firsov A A 2005 Nature (London) 438 197

    [3]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [4]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [5]

    Ryzhii V Ryzhii M, Otsuji T 2007 J. Appl. Phys. 101 083114

    [6]

    Kang C Y, Tang J, Li L M 2011 Acta Phys. Sin. 047302 (in Chinese) [康朝阳, 唐军, 李利民 2011 {物理学报 60 047302]

    [7]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞, 童国平, 蒋永进 2009 {物理学报 58 8537]

    [8]

    Pan H Z, Xu M, Chen L 2010 Acta Phys. Sin. 59 6443 (in Chinese) [潘洪哲, 徐明, 陈丽 2010 {物理学报 59 6443]

    [9]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese)

    [10]

    Ryzhii M, Ryzhii V 2007 Jpn. J. Appl. Phys. 46 L151

    [11]

    Ryzhii V, Ryzhii M, Satou A, Otsuji T, Dubinov A A, Ya Aleshkin V 2007 J. Appl. Phys. 106 0908

    [12]

    Ryzhii M, Ryzhii V, Otsuji T, Mitin V, Shur M S 2010 Phys. Rev. B 82 075419

    [13]

    Neugebauer P, Orlita M, Faugeras C, Barra A L, PotemskiM2009 Phys. Rev. Lett. 103 136403

    [14]

    Orlita M, Potemski M 2010 Semicond. Sci. Technol. 25 063001

    [15]

    Miller D L, Kubista K D, Rutter G M, Ruan M, deHeerWA, First P N, Stroscio J A 2009 Science 324 924

    [16]

    Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, TalebIbrahimi A, Le F`evre P, Bertran F, Vizzini S, Enriquez H, Chiang S, Soukiassian P, Berger C, de HeerWA, Lanzara A, Conrad E H 2009 Phys. Rev. Lett. 103 226803

    [17]

    Ryzhii V, Ryzhii M, Satou A, Otsuji T, Dubinov A A, Ya Aleshkin V 2009 J. Appl. Phys. 106 084507

    [18]

    Ryzhii V, Dubinov A A, Otsuji T, Mitin V, Shur M S 2010 J.Appl. Phys. 107 054505

    [19]

    Ryzhii V, Ryzhii M, Mitin V, Otsuji T 2010 J. Appl. Phys. 107 054512

    [20]

    Zheng Y, Ando T 2002 Phys. Rev. B 65 245420

    [21]

    Gusynin V P, Sharapov S G 2006 Phys. Rev. B 73 245411

    [22]

    Falkovsky L A 2006 Phys. Rev. B 75 033409

    [23]

    Falkovsky L A, Varlamov A A 2007 EPJ B 56 4

  • [1]

    Zhang Y, Tan Y W, Stormer H L, Kim P. 2005 Nature (London) 438 201

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Dubonos S V, Firsov A A 2005 Nature (London) 438 197

    [3]

    Katsnelson M I, Novoselov K S, Geim A K 2006 Nat. Phys. 2 620

    [4]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183

    [5]

    Ryzhii V Ryzhii M, Otsuji T 2007 J. Appl. Phys. 101 083114

    [6]

    Kang C Y, Tang J, Li L M 2011 Acta Phys. Sin. 047302 (in Chinese) [康朝阳, 唐军, 李利民 2011 {物理学报 60 047302]

    [7]

    Jin Z F, Tong G P, Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese) [金子飞, 童国平, 蒋永进 2009 {物理学报 58 8537]

    [8]

    Pan H Z, Xu M, Chen L 2010 Acta Phys. Sin. 59 6443 (in Chinese) [潘洪哲, 徐明, 陈丽 2010 {物理学报 59 6443]

    [9]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese)

    [10]

    Ryzhii M, Ryzhii V 2007 Jpn. J. Appl. Phys. 46 L151

    [11]

    Ryzhii V, Ryzhii M, Satou A, Otsuji T, Dubinov A A, Ya Aleshkin V 2007 J. Appl. Phys. 106 0908

    [12]

    Ryzhii M, Ryzhii V, Otsuji T, Mitin V, Shur M S 2010 Phys. Rev. B 82 075419

    [13]

    Neugebauer P, Orlita M, Faugeras C, Barra A L, PotemskiM2009 Phys. Rev. Lett. 103 136403

    [14]

    Orlita M, Potemski M 2010 Semicond. Sci. Technol. 25 063001

    [15]

    Miller D L, Kubista K D, Rutter G M, Ruan M, deHeerWA, First P N, Stroscio J A 2009 Science 324 924

    [16]

    Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, TalebIbrahimi A, Le F`evre P, Bertran F, Vizzini S, Enriquez H, Chiang S, Soukiassian P, Berger C, de HeerWA, Lanzara A, Conrad E H 2009 Phys. Rev. Lett. 103 226803

    [17]

    Ryzhii V, Ryzhii M, Satou A, Otsuji T, Dubinov A A, Ya Aleshkin V 2009 J. Appl. Phys. 106 084507

    [18]

    Ryzhii V, Dubinov A A, Otsuji T, Mitin V, Shur M S 2010 J.Appl. Phys. 107 054505

    [19]

    Ryzhii V, Ryzhii M, Mitin V, Otsuji T 2010 J. Appl. Phys. 107 054512

    [20]

    Zheng Y, Ando T 2002 Phys. Rev. B 65 245420

    [21]

    Gusynin V P, Sharapov S G 2006 Phys. Rev. B 73 245411

    [22]

    Falkovsky L A 2006 Phys. Rev. B 75 033409

    [23]

    Falkovsky L A, Varlamov A A 2007 EPJ B 56 4

  • [1] 李翰楠, 彭滟. 激光脉冲啁啾影响双色激光场诱导气体产生太赫兹辐射特性的理论研究. 物理学报, 2024, 73(6): 060701. doi: 10.7498/aps.73.20231806
    [2] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. 碳化硅基底覆多层石墨烯力学强化性能分子动力学模拟. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20232031
    [3] 李高芳, 殷文, 黄敬国, 崔昊杨, 叶焓静, 高艳卿, 黄志明, 褚君浩. 太赫兹时域光谱技术研究S掺杂GaSe晶体的电导率特性. 物理学报, 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [4] 魏高帅, 张慧, 吴晓君, 张洪瑞, 王春, 王博, 汪力, 孙继荣. 飞秒激光泵浦LaAlO3/SrTiO3异质结产生太赫兹波辐射. 物理学报, 2022, 71(9): 090702. doi: 10.7498/aps.71.20201139
    [5] 蔡潇潇, 罗国语, 李志强, 贺言. 转角双层石墨烯在应变下的光电导率. 物理学报, 2021, 70(18): 187301. doi: 10.7498/aps.70.20210110
    [6] 李晓璐, 白亚, 刘鹏. 激光等离子体光丝中太赫兹频谱的调控. 物理学报, 2020, 69(2): 024205. doi: 10.7498/aps.69.20191200
    [7] 宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨. Y3Fe5O12(YIG)/Pt异质结构中基于超快自旋塞贝克效应产生太赫兹相干辐射研究. 物理学报, 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [8] 张帆, 许涌, 柳洋, 程厚义, 张晓强, 杜寅昌, 吴晓君, 赵巍胜. 磁控溅射法生长Bi2Te3/CoFeB双层异质结太赫兹发射. 物理学报, 2020, 69(20): 200705. doi: 10.7498/aps.69.20200634
    [9] 陶泽华, 董海明, 段益峰. 太赫兹辐射场下的石墨烯光生载流子和光子发射. 物理学报, 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [10] 王伟民, 张亮亮, 李玉同, 盛政明, 张杰. 激光在大气中驱动的强太赫兹辐射的理论和实验研究. 物理学报, 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [11] 杜一帅, 康维, 郑瑞伦. 外延石墨烯电导率和费米速度随温度变化规律研究. 物理学报, 2017, 66(1): 014701. doi: 10.7498/aps.66.014701
    [12] 李书磊, 刘磊, 高太长, 黄威, 胡帅. 太赫兹波被动遥感卷云微物理参数的敏感性试验分析. 物理学报, 2016, 65(13): 134102. doi: 10.7498/aps.65.134102
    [13] 朱卫卫, 张秋菊, 张延惠, 焦扬. 电子在激光驻波场中运动产生的太赫兹及X射线辐射研究. 物理学报, 2015, 64(12): 124104. doi: 10.7498/aps.64.124104
    [14] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [15] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [16] 张铠云, 杜海伟, 陈民, 盛政明. 基于光场离化电流机制产生强太赫兹辐射的参数优化研究. 物理学报, 2012, 61(16): 160701. doi: 10.7498/aps.61.160701
    [17] 祁春超, 欧阳征标. 基于600—2000 nm抽运源的太赫兹相干光源的最新进展. 物理学报, 2011, 60(9): 090704. doi: 10.7498/aps.60.090704
    [18] 钟凯, 姚建铨, 徐德刚, 张会云, 王鹏. 级联差频产生太赫兹辐射的理论研究. 物理学报, 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [19] 黄楠, 李雪峰, 刘红军, 夏彩鹏. 增益饱和对光学差频产生太赫兹辐射的功率和稳定性的影响. 物理学报, 2009, 58(12): 8326-8331. doi: 10.7498/aps.58.8326
    [20] 邓玉强, 郎利影, 邢岐荣, 曹士英, 于 靖, 徐 涛, 李 健, 熊利民, 王清月, 张志刚. Gabor小波分析太赫兹波时间-频率特性的研究. 物理学报, 2008, 57(12): 7747-7752. doi: 10.7498/aps.57.7747
计量
  • 文章访问数:  6692
  • PDF下载量:  432
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-12
  • 修回日期:  2011-10-19
  • 刊出日期:  2012-02-05

/

返回文章
返回