搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锰的硅化物薄膜在Si(100)-21表面生长的STM研究

李玮聪 邹志强 王丹 石高明

引用本文:
Citation:

锰的硅化物薄膜在Si(100)-21表面生长的STM研究

李玮聪, 邹志强, 王丹, 石高明

STM study of growth of manganese silicide thin films on a Si(100)-21 surface

Li Wei-Cong, Zou Zhi-Qiang, Wang Dan, Shi Gao-Ming
PDF
导出引用
  • 锰的硅化物在微电子器件、自旋电子学器件等领域具有良好的应用前景, 了解锰的硅化物薄膜在硅表面的生长规律是其走向实际应用的关键步骤之一. 本文采用分子束外延方法在Si(100)-21表面沉积了约4个原子层的锰薄膜, 并利用超高真空扫描隧道显微镜研究了该薄膜与硅衬底之间在250750℃范围内的固相反应情况. 室温下沉积在硅衬底表面的锰原子与衬底不发生反应, 薄膜由无序的锰团簇构成; 当退火温度高于290℃时, 锰原子与衬底开始发生反应, 生成外形不规则的枝晶状锰硅化物和富锰的三维小岛; 325℃时, 衬底上开始形成平板状的MnSi小岛; 525℃时, 枝晶状锰硅化物完全消失, 出现平板状的MnSi1.7大岛; 高于600℃时, 富锰的三维小岛和平板状的MnSi小岛全部消失, 仅剩下平板状的MnSi1.7大岛. 这些结果说明退火温度决定了薄膜的形态和结构. 在大约600℃退火时岛的尺寸随着退火时间的延长而逐渐增大, 表明岛的生长遵从扩散限制的Ostwald熟化机理.
    Manganese silicides are promising candidates for microelectronics and spintronics materials. A good understanding of their growth mechanisms is a crucial step toward their practical applications. In this paper, a Mn film of ~4 monolayer is deposited on a Si(100)-21 surface by molecular beam epitaxy. The solid reaction between the Mn film and the silicon substrate in a temperature range of 250750℃ is studied using scanning tunneling microscopy. At room temperature, the as-deposited Mn atoms do not react with the silicon atoms and the film consists of disordered Mn clusters. When the sample is annealed at a higher temperature than 290℃, the Mn begins to react with the Si and forms small three-dimensional (3D) islands of Mn-rich silicides and silicide islands of dendritic shapes. When the annealing temperature reaches 325℃, small tabular islands, which correspond to MnSi, start to grow on the Si substrate. At an annealing temperature of 525℃, silicide islands with dendritic shapes all disappear; meantime several large tabular islands, which correspond to MnSi1.7, are formed. When the annealing temperature is higher than 600℃, 3D islands and small tabular islands all disappear while large tabular islands remain there. These results demonstrate that the morphology and the structure of the film strongly depend on annealing temperature. The average size (area) of the remaining islands increases with the increase of annealing time. Time dependence of the averaged island area indicates that the growth of the islands follows the diffusion limited Ostwald ripening mechanism.
      通信作者: 邹志强, zqzou@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61176017) 和上海市教育委员会科研创新项目(批准号:12ZZ025) 资助的课题.
      Corresponding author: Zou Zhi-Qiang, zqzou@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.61176017) and the Innovation Program of ShanghaiMunicipal Education Commission,China (Grant No.12ZZ025).
    [1]

    Wang J L,Hirai M,Kusaka M,Iwami M 1997 Appl.Surf.Sci.113-114 53

    [2]
    [3]

    Tanaka M,Zhang Q,Takeguchi M,Furuya K 2003 Surf.Sci.532- 535 946

    [4]
    [5]

    Lippitz H,Paggel J J,Fumagalli P 2005 Surf.Sci.575 307

    [6]

    Kumar A,Tallarida M,Hansmann M,Starke U,Horn K 2004 J.Phys.D:Appl.Phys.37 1083

    [7]
    [8]
    [9]

    Lian Y C,Chen L J 1986 Appl.Phys.Lett.48 359

    [10]

    Hou Q R,Zhao W,Chen Y B,Liang D,Feng X,Zhang H Y,He Y J 2007 Phys.Status Solidi A 204 3429

    [11]
    [12]

    Hou Q R,Zhao W,Chen Y B,He Y J 2010 Mater.Chem.Phys.121 103

    [13]
    [14]
    [15]

    Teichert S,Sarkar D K,Schwendler S,Giesler H,Mogilatenko A,Falke M,Beddies G,Hinneberg H J 2001 Microelectron.Eng.55 227

    [16]

    Teichert S,Schwendler S,Sarkar D K,Mogilatenko A,Falke M,Beddies G,Kleint C,Hinneberg H J 2001 J.Cryst.Growth 227- 228 882

    [17]
    [18]
    [19]

    Krause M R,Stollenwerk A J,Licurse M,LaBella V P 2007 Appl.Phys.Lett.91 041903

    [20]

    Wang J L,Su W F,Xu R,Fan Y L,Jiang Z M 2009 J.Raman Spectrosc.40 335

    [21]
    [22]
    [23]

    Zou Z Q,Wang H,Wang D,Wang Q K 2007 Appl.Phys.Lett.90 133111

    [24]

    Zou Z Q,Wang D,Sun J J,Liang J M 2010 J.Appl.Phys.107 014302

    [25]
    [26]

    Wang D,Zou Z Q 2009 Nanotechnology 20 275607

    [27]
    [28]
    [29]

    Ren P,Liu Z L,Ye J,Jiang Y,Liu J F,SunY,Xu P S,Sun ZH,Pan Z Y,Yan WS,Wei S Q 2008 Acta Phys.Sin.57 4322 (in Chinese)[任鹏,刘忠良,叶剑,姜泳,刘金锋,孙玉,徐彭寿,孙治湖,潘志云,闫文盛,韦世强 2008 物理学报 57 4322]

    [30]

    Qiu Y F,Du W H,Wang B 2011 Acta Phys.Sin.60 036801 (in Chinese) [邱云飞,杜文汉,王兵 2011 物理学报 60 036801]

    [31]
    [32]

    Yang J J,Du W H 2011 Acta Phys.Sin.60 037301 (in Chinese)[杨景景,杜文汉 2011 物理学报 60 037301]

    [33]
    [34]

    Wu H,Hortamani M,Kratzer P,Scheffler M 2004 Phys.Rev.Lett.92 237202

    [35]
    [36]
    [37]

    Hortamani M,Wu H,Kratzer P,Scheffler M 2006 Phys.Rev.B 74 205305

    [38]
    [39]

    Wang D Y,Wu H Y,Chen L J,HeW,Zhan Q F,Cheng Z H,2006 J.Phys.:Condens.Mat.18 6357

    [40]

    Wang J Z,Jia J F,Xiong Z H,Xue Q K 2008 Phys.Rev.B 78 045424

    [41]
    [42]
    [43]

    Fitting L,Zeman M C,Yang W C,Nemanich R J 2003 J.Appl.Phys.93 4180

    [44]

    Theis W,Bartelt N C,Tromp R M 1995 Phys.Rev.Lett.75 3328

    [45]
  • [1]

    Wang J L,Hirai M,Kusaka M,Iwami M 1997 Appl.Surf.Sci.113-114 53

    [2]
    [3]

    Tanaka M,Zhang Q,Takeguchi M,Furuya K 2003 Surf.Sci.532- 535 946

    [4]
    [5]

    Lippitz H,Paggel J J,Fumagalli P 2005 Surf.Sci.575 307

    [6]

    Kumar A,Tallarida M,Hansmann M,Starke U,Horn K 2004 J.Phys.D:Appl.Phys.37 1083

    [7]
    [8]
    [9]

    Lian Y C,Chen L J 1986 Appl.Phys.Lett.48 359

    [10]

    Hou Q R,Zhao W,Chen Y B,Liang D,Feng X,Zhang H Y,He Y J 2007 Phys.Status Solidi A 204 3429

    [11]
    [12]

    Hou Q R,Zhao W,Chen Y B,He Y J 2010 Mater.Chem.Phys.121 103

    [13]
    [14]
    [15]

    Teichert S,Sarkar D K,Schwendler S,Giesler H,Mogilatenko A,Falke M,Beddies G,Hinneberg H J 2001 Microelectron.Eng.55 227

    [16]

    Teichert S,Schwendler S,Sarkar D K,Mogilatenko A,Falke M,Beddies G,Kleint C,Hinneberg H J 2001 J.Cryst.Growth 227- 228 882

    [17]
    [18]
    [19]

    Krause M R,Stollenwerk A J,Licurse M,LaBella V P 2007 Appl.Phys.Lett.91 041903

    [20]

    Wang J L,Su W F,Xu R,Fan Y L,Jiang Z M 2009 J.Raman Spectrosc.40 335

    [21]
    [22]
    [23]

    Zou Z Q,Wang H,Wang D,Wang Q K 2007 Appl.Phys.Lett.90 133111

    [24]

    Zou Z Q,Wang D,Sun J J,Liang J M 2010 J.Appl.Phys.107 014302

    [25]
    [26]

    Wang D,Zou Z Q 2009 Nanotechnology 20 275607

    [27]
    [28]
    [29]

    Ren P,Liu Z L,Ye J,Jiang Y,Liu J F,SunY,Xu P S,Sun ZH,Pan Z Y,Yan WS,Wei S Q 2008 Acta Phys.Sin.57 4322 (in Chinese)[任鹏,刘忠良,叶剑,姜泳,刘金锋,孙玉,徐彭寿,孙治湖,潘志云,闫文盛,韦世强 2008 物理学报 57 4322]

    [30]

    Qiu Y F,Du W H,Wang B 2011 Acta Phys.Sin.60 036801 (in Chinese) [邱云飞,杜文汉,王兵 2011 物理学报 60 036801]

    [31]
    [32]

    Yang J J,Du W H 2011 Acta Phys.Sin.60 037301 (in Chinese)[杨景景,杜文汉 2011 物理学报 60 037301]

    [33]
    [34]

    Wu H,Hortamani M,Kratzer P,Scheffler M 2004 Phys.Rev.Lett.92 237202

    [35]
    [36]
    [37]

    Hortamani M,Wu H,Kratzer P,Scheffler M 2006 Phys.Rev.B 74 205305

    [38]
    [39]

    Wang D Y,Wu H Y,Chen L J,HeW,Zhan Q F,Cheng Z H,2006 J.Phys.:Condens.Mat.18 6357

    [40]

    Wang J Z,Jia J F,Xiong Z H,Xue Q K 2008 Phys.Rev.B 78 045424

    [41]
    [42]
    [43]

    Fitting L,Zeman M C,Yang W C,Nemanich R J 2003 J.Appl.Phys.93 4180

    [44]

    Theis W,Bartelt N C,Tromp R M 1995 Phys.Rev.Lett.75 3328

    [45]
  • [1] 张沐安, 王进卿, 吴睿, 冯致, 詹明秀, 徐旭, 池作和. 多孔介质内气泡Ostwald熟化特性三维孔网数值模拟. 物理学报, 2023, 72(16): 164701. doi: 10.7498/aps.72.20230695
    [2] 陈效鹏, 冯君鹏, 胡海豹, 杜鹏, 王体康. 基于格子Boltzmann方法的二维气泡群熟化过程模拟. 物理学报, 2022, 71(11): 110504. doi: 10.7498/aps.70.20212183
    [3] 陈效鹏, 冯君鹏, 胡海豹, 杜鹏, 王体康. 基于格子Boltzmann方法的二维汽泡群熟化过程模拟. 物理学报, 2022, (): . doi: 10.7498/aps.71.20212183
    [4] 戴昊光, 查访星, 陈平平. InGaAs(110)解理面的扫描隧道谱的理论诠释. 物理学报, 2021, 70(19): 196801. doi: 10.7498/aps.70.20210419
    [5] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [6] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [7] 徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋. 铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究. 物理学报, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [8] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [9] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [10] 冯卫, 赵爱迪. 钴原子及其团簇在Rh(111)和Pd(111)表面的扫描隧道显微学研究. 物理学报, 2012, 61(17): 173601. doi: 10.7498/aps.61.173601
    [11] 王锋, 王月燕, 黄伟伟, 张小婷, 李珊瑜. 固相反应法制备的CoxZn1-xO磁性能的研究. 物理学报, 2012, 61(15): 157503. doi: 10.7498/aps.61.157503
    [12] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [13] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散. 物理学报, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [14] 刘学超, 施尔畏, 宋力昕, 张华伟, 陈之战. 固相反应法制备Co掺杂ZnO的磁性和光学性能研究. 物理学报, 2006, 55(5): 2557-2561. doi: 10.7498/aps.55.2557
    [15] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子. 物理学报, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [16] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究. 物理学报, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [17] 谢二庆, 王文武, 姜宁, 贺德衍. 锰硅化物的固相反应生长研究. 物理学报, 2002, 51(4): 873-876. doi: 10.7498/aps.51.873
    [18] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [19] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
    [20] 唐新峰, 陈立东, 後藤 孝, 平井 敏雄, 袁润章. 填充式skutterudite化合物:BayFexCo4-xSb12的多步固相反应合成及结构. 物理学报, 2000, 49(11): 2196-2200. doi: 10.7498/aps.49.2196
计量
  • 文章访问数:  7002
  • PDF下载量:  639
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-02
  • 修回日期:  2011-06-03
  • 刊出日期:  2012-03-05

/

返回文章
返回