搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称HALO掺杂栅交叠轻掺杂漏围栅MOSFET的解析模型

李聪 庄奕琪 韩茹 张丽 包军林

引用本文:
Citation:

非对称HALO掺杂栅交叠轻掺杂漏围栅MOSFET的解析模型

李聪, 庄奕琪, 韩茹, 张丽, 包军林

Analytical modeling of asymmetric HALO-doped surrounding-gate MOSFET with gate overlapped lightly-doped drain

Li Cong, Zhuang Yi-Qi, Han Ru, Zhang Li, Bao Jun-Lin
PDF
导出引用
  • 为抑制短沟道效应和热载流子效应, 提出了一种非对称HALO掺杂栅交叠轻掺杂漏围栅MOSFET新结构. 通过在圆柱坐标系中精确求解三段连续的泊松方程, 推导出新结构的沟道静电势、阈值电压以及亚阈值电流的解析模型. 结果表明, 新结构可有效抑制短沟道效应和热载流子效应, 并具有较小的关态电流. 此外, 分析还表明栅交叠区的掺杂浓度对器件的亚阈值电流几乎没有影响, 而栅电极功函数对亚阈值电流的影响较大. 解析模型结果和三维数值仿真工具ISE所得结果高度符合.
    A novel asymmetric HALO-doped surrounding-gate MOSFET with gate overlapped lightly-doped drain is presented. The performance of the new structure is studied by developing physics-based analytical models for surface potential, threshold voltage, and subthreshold current. It is found that the new structure can effectively suppress the short-channel effects and the hot-carrier effects, and simultaneously reduce the off-state current. It is also revealed that subthreshold current is a slight function of doping concentration of overlapped region, while work-function of gate electrode has a strong influence on subthreshold current. The accuracy of the analytical model is verified by its good agreement with the three-dimensional numerical device simulator ISE.
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: K50511250001)和国家自然科学基金(批准号: 61076101)资助的课题.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities (Grant No. K50511250001), and the National Nature Science Foundation of China (Grant No. 61076101).
    [1]

    Hu G, Gu J, Hu S, Ding Y, Liu R, Tang T A 2011 IEEE T. Electron Dev. Electron Dev. 58 1830

    [2]

    Chiang T K 2011 IEEE T. Electron Dev. 58 567

    [3]

    Yu T, Wang R, Huang R, Chen J, Zhuge J, Wang Y 2010 IEEE T. Electron Dev. 57 2864

    [4]

    Bian W, He J, Zhang L, Zhang J, Chan M 2009 Microelectron Reliab 49 897

    [5]

    Yu B, Yuan Y, Song J, Taur Y 2009 IEEE T. Electron Dev. 56 2357

    [6]

    Li Z C 2008 Chin. Phys. B 17 4312

    [7]

    Liu F, He J, Zhang L, Zhang J, Hu J, Ma C, Chan M A 2008 IEEE T. Electron Dev. 55 2187

    [8]

    Zhang L N, He J, Zhou W, Chen L, Xu Y W 2010 Chin. Phys. B 19 047306

    [9]

    Liu W L, Zhang K W, Zhong J X 2009 Chin. Phys. B 18 2920

    [10]

    Hamid A E, Iniguez B, Guitart J R 2007 IEEE T. Electron Dev. 54 572

    [11]

    Kaur R, Chaujar R, Saxena M, Gupta R 2007 Semicond Sci. Tech. 22 1097

    [12]

    Hueting R J, Heringa A 2006 IEEE T. Electron Dev. 53 1641

    [13]

    Buti T N, Ogura S, Rovedo N, Tobimatsu K 1991 IEEE T. Electron Dev. 38 1757

    [14]

    Ogura S, Tsang P J, Walker W W, Critchlow D L, Shepard J F 1980 IEEE T. ELectron Dev. 27 1359

    [15]

    Izawa R, Kure T, Takeda E 1988 IEEE T. Electron Dev. 35 2088

    [16]

    Yamaguchi Y, Iwamatsu T, Joachim H O, Oda H, Inoue Y, Nishimura T, Tsukamoto K 1994 IEEE T. Electron Dev. 41 1222

    [17]

    Bonfiglietti A, Cuscuna M, Valletta A, Mariucci L, Pecora A, Fortunato G, Brotherton S, Ayres J 2003 IEEE T. Electron Dev. 50 2425

    [18]

    Jimenez D, Saenz J, Iniguez B, Sune J, Marsal L, Pallares J 2004 IEEE Electr Device Lett. 25 314

    [19]

    Liang X, Taur Y 2004 IEEE T. Electron Dev. 51 1385

    [20]

    Arora N D, Hauser J R, Roulston D J 1982 IEEE T. Electron Dev. 29 292

  • [1]

    Hu G, Gu J, Hu S, Ding Y, Liu R, Tang T A 2011 IEEE T. Electron Dev. Electron Dev. 58 1830

    [2]

    Chiang T K 2011 IEEE T. Electron Dev. 58 567

    [3]

    Yu T, Wang R, Huang R, Chen J, Zhuge J, Wang Y 2010 IEEE T. Electron Dev. 57 2864

    [4]

    Bian W, He J, Zhang L, Zhang J, Chan M 2009 Microelectron Reliab 49 897

    [5]

    Yu B, Yuan Y, Song J, Taur Y 2009 IEEE T. Electron Dev. 56 2357

    [6]

    Li Z C 2008 Chin. Phys. B 17 4312

    [7]

    Liu F, He J, Zhang L, Zhang J, Hu J, Ma C, Chan M A 2008 IEEE T. Electron Dev. 55 2187

    [8]

    Zhang L N, He J, Zhou W, Chen L, Xu Y W 2010 Chin. Phys. B 19 047306

    [9]

    Liu W L, Zhang K W, Zhong J X 2009 Chin. Phys. B 18 2920

    [10]

    Hamid A E, Iniguez B, Guitart J R 2007 IEEE T. Electron Dev. 54 572

    [11]

    Kaur R, Chaujar R, Saxena M, Gupta R 2007 Semicond Sci. Tech. 22 1097

    [12]

    Hueting R J, Heringa A 2006 IEEE T. Electron Dev. 53 1641

    [13]

    Buti T N, Ogura S, Rovedo N, Tobimatsu K 1991 IEEE T. Electron Dev. 38 1757

    [14]

    Ogura S, Tsang P J, Walker W W, Critchlow D L, Shepard J F 1980 IEEE T. ELectron Dev. 27 1359

    [15]

    Izawa R, Kure T, Takeda E 1988 IEEE T. Electron Dev. 35 2088

    [16]

    Yamaguchi Y, Iwamatsu T, Joachim H O, Oda H, Inoue Y, Nishimura T, Tsukamoto K 1994 IEEE T. Electron Dev. 41 1222

    [17]

    Bonfiglietti A, Cuscuna M, Valletta A, Mariucci L, Pecora A, Fortunato G, Brotherton S, Ayres J 2003 IEEE T. Electron Dev. 50 2425

    [18]

    Jimenez D, Saenz J, Iniguez B, Sune J, Marsal L, Pallares J 2004 IEEE Electr Device Lett. 25 314

    [19]

    Liang X, Taur Y 2004 IEEE T. Electron Dev. 51 1385

    [20]

    Arora N D, Hauser J R, Roulston D J 1982 IEEE T. Electron Dev. 29 292

计量
  • 文章访问数:  6994
  • PDF下载量:  733
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-09-14
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-04-05

/

返回文章
返回