搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

倒装芯片塑料球栅阵列封装器件在外应力下的失效机理

林晓玲 肖庆中 恩云飞 姚若河

引用本文:
Citation:

倒装芯片塑料球栅阵列封装器件在外应力下的失效机理

林晓玲, 肖庆中, 恩云飞, 姚若河

Failure mechanism of FC-PBGA devices under external stress

Lin Xiao-Ling, Xiao Qing-Zhong, En Yun-Fei, Yao Ruo-He
PDF
导出引用
  • 倒装芯片塑料球栅阵列(FC-PBGA)封装形式独特而被广泛应用, 分析研究其在实际应用过程中, 在高温、电、水汽等多种综合环境应力条件作用下的失效机理对提高其应用可靠性有重要意义. 本文对0.13 μm 6层铜布线工艺的FC-PBGA FPGA器件, 通过暴露器件在以高温回流焊过程中的热-机械应力为主的综合外应力作用下的失效模式, 分析与失效模式相对应的失效机理. 研究结果表明, FC-PBGA器件组装时的内外温差及高温回流焊安装过程中所产生的热-机械应力是导致失效的根本原因, 在该应力作用下, 芯片上的焊球会发生再熔融、桥接相邻焊球致器件短路失效; 芯片与基板之间的填充料会发生裂缝分层、倒装芯片焊球开裂/脱落致器件开路失效; 芯片内部的铜/低k互连结构的完整性受损伤而影响FC-PBGA器件的使用寿命.
    Flip chip plastic ball grid array (FC-PBGA) is unique and has been widely used. During FC-PBGA's practical application, the analysis of its failure mechanisms under high temperature, electricity, water vapor and other comprehensive environmental stress conditions is very important for improving its application reliability. In this paper, with 0.13-μm m/6-level copper-based FPGA with FC-PBGA package, failure mode of the device is exposed under external stress, which is dominated with thermal-mechanical stress generated by high temperature thermal reflow process. And the failure mechanism corresponding to the failure mode is analyzed. Results show that the basic cause of the failure is the thermal-mechanical stress, which is induced by the combination of internal and external reflow temperature difference and high temperature reflow process when assembled. The thermal-mechanical stress makes the solder bumps on the flip chip melt again and bridges the adjacent solder bumps to lead to the device short failure. It also induces crack or delamination in the underfill, crack in solder bump or solder bump fallen off to lead to device open failure. The residual stress on Cu/low-k interconnect structures damages the structure integrity and affects the reliability of FC-PBGA packages.
    • 基金项目: 电子元器件可靠性物理及其应用技术重点实验室基金资助项目(批准号: 9140C03010408DZ15).
    • Funds: Project supported by the Science and Technology on Reliability Physics and Application of Electronic Component Laboratory(Grant No. 9140C03010408DZ15).
    [1]

    Shimoto T, Kikuchi K 2003 NEC Research & Development 44 213

    [2]

    Wang G T, Groothuis S, Ho P S 2003 Proceeding of the Electronic Components and Technology Conf., New Orleans, May27- 30, 2003 p727

    [3]

    Ho P S, Wang G T, Ding M, Zhao J H, Dai X 2004 Microelectronics Reliability 44 719

    [4]

    Banijamali B, Mohammed I, Savalia P 2009 Proceeding of the Electronic Components and Technology Conf., San Diego, May26-29, 2009 p293

    [5]

    Wang G T, Groothuis S, Ho P S 2004 Proceeding of the 42nd Annual Int. Reliability Physics Symp., Phoenix, April 25-30, 2004 p557

    [6]

    Li L, Xue J, Ahmad M, Brillhart M 2006 Proceeding of the Electronic Components and Technology Conf., San Diego, May30- June 02, 2006 p1590

    [7]

    Peng C T, Liu C M, Lin J C, Cheng H C, Chiang K N 2004 IEEE Trans. On Components and Packaging Technologies 27 684

    [8]

    Shimoto T, Kikuchi K, Baba K, Matsui K, Honda H, Kata K 2004 Microelectronic Reliability 44 515

    [9]

    Mercado L L, Kuo S M, Goldberg C, Frear D 2003 IEEE Transactions on advanced packaging 26 433

    [10]

    Tsukada Y, Mashimoto Y 1992 Proceeding of the Surface Mount International Conf., San Jose, August 30-Sept.3, 1992 p294

    [11]

    Lu Y D, He X Q, En Y F, Wang X, Zhuang Z Q 2010 Acta Phys. Sin. 59 3438 (in Chinese)[陆裕东, 何小琦, 恩云飞, 王歆, 庄志强 2010 物理学报 59 3438]

    [12]

    Komain Z, Amin N, Cheah A Y, Jalar A 2008 Proceeding of the 33rd International Electronics Manufacturing Technology Conf., Penang, Nov. 4-6, 2008 p1

    [13]

    Andideh E, Blaine J, Block C, Jin B, Scherban T, Sun B 2001 Proceeding of the IEEE International Interconnect Technology Conf., Burlingame, June 4-6, 2001 p257

    [14]

    Tsao P H, Huang C, Lii M J, Tsai N S 2004 Proceeding of the Electronic Components and Technology Conf., Las Vegas, June 1- 4, 2004 p767

    [15]

    Mercado L L, Goldberg C, Kuo S M, Lee T Y, Pozder S K 2003 IEEE Transactions on Device and Material Reliability 3 111

    [16]

    Wang G T, Groothuis S, Merrill C, Ho P S 2004 Intersociety Conf. on Thermal Phenomena Las Vegas, June1-4, 2004 p211

    [17]

    Uchibori C J, Lee M 2009 Proceeding of the IEEE International Interconnect Technology Conf., Sapporo, June 1-3, 2009 p217

  • [1]

    Shimoto T, Kikuchi K 2003 NEC Research & Development 44 213

    [2]

    Wang G T, Groothuis S, Ho P S 2003 Proceeding of the Electronic Components and Technology Conf., New Orleans, May27- 30, 2003 p727

    [3]

    Ho P S, Wang G T, Ding M, Zhao J H, Dai X 2004 Microelectronics Reliability 44 719

    [4]

    Banijamali B, Mohammed I, Savalia P 2009 Proceeding of the Electronic Components and Technology Conf., San Diego, May26-29, 2009 p293

    [5]

    Wang G T, Groothuis S, Ho P S 2004 Proceeding of the 42nd Annual Int. Reliability Physics Symp., Phoenix, April 25-30, 2004 p557

    [6]

    Li L, Xue J, Ahmad M, Brillhart M 2006 Proceeding of the Electronic Components and Technology Conf., San Diego, May30- June 02, 2006 p1590

    [7]

    Peng C T, Liu C M, Lin J C, Cheng H C, Chiang K N 2004 IEEE Trans. On Components and Packaging Technologies 27 684

    [8]

    Shimoto T, Kikuchi K, Baba K, Matsui K, Honda H, Kata K 2004 Microelectronic Reliability 44 515

    [9]

    Mercado L L, Kuo S M, Goldberg C, Frear D 2003 IEEE Transactions on advanced packaging 26 433

    [10]

    Tsukada Y, Mashimoto Y 1992 Proceeding of the Surface Mount International Conf., San Jose, August 30-Sept.3, 1992 p294

    [11]

    Lu Y D, He X Q, En Y F, Wang X, Zhuang Z Q 2010 Acta Phys. Sin. 59 3438 (in Chinese)[陆裕东, 何小琦, 恩云飞, 王歆, 庄志强 2010 物理学报 59 3438]

    [12]

    Komain Z, Amin N, Cheah A Y, Jalar A 2008 Proceeding of the 33rd International Electronics Manufacturing Technology Conf., Penang, Nov. 4-6, 2008 p1

    [13]

    Andideh E, Blaine J, Block C, Jin B, Scherban T, Sun B 2001 Proceeding of the IEEE International Interconnect Technology Conf., Burlingame, June 4-6, 2001 p257

    [14]

    Tsao P H, Huang C, Lii M J, Tsai N S 2004 Proceeding of the Electronic Components and Technology Conf., Las Vegas, June 1- 4, 2004 p767

    [15]

    Mercado L L, Goldberg C, Kuo S M, Lee T Y, Pozder S K 2003 IEEE Transactions on Device and Material Reliability 3 111

    [16]

    Wang G T, Groothuis S, Merrill C, Ho P S 2004 Intersociety Conf. on Thermal Phenomena Las Vegas, June1-4, 2004 p211

    [17]

    Uchibori C J, Lee M 2009 Proceeding of the IEEE International Interconnect Technology Conf., Sapporo, June 1-3, 2009 p217

  • [1] 郭建飞, 李浩, 王梓名, 钟鸣浩, 常帅军, 欧树基, 马海伦, 刘莉. 非钳位感性开关测试下双沟槽4H-SiC 功率MOSFET失效机理研究. 物理学报, 2022, 71(13): 137302. doi: 10.7498/aps.71.20220095
    [2] 周斌, 黄云, 恩云飞, 付志伟, 陈思, 姚若河. 热-电应力下Cu/Ni/SnAg1.8/Cu倒装铜柱凸点界面行为及失效机理. 物理学报, 2018, 67(2): 028101. doi: 10.7498/aps.67.20171950
    [3] 宋云菲, 王贞福, 李特, 杨国文. 808 nm半导体激光芯片电光转换效率的温度特性机理研究. 物理学报, 2017, 66(10): 104202. doi: 10.7498/aps.66.104202
    [4] 骆扬, 王亚楠. 物理型硬件木马失效机理及检测方法. 物理学报, 2016, 65(11): 110602. doi: 10.7498/aps.65.110602
    [5] 牛海莎, 牛燕雄, 刘宁, 刘雯文, 王彩丽. 外腔镜非线性运动对激光回馈应力测量系统精度的影响及修正. 物理学报, 2015, 64(8): 084208. doi: 10.7498/aps.64.084208
    [6] 郭春生, 万宁, 马卫东, 张燕峰, 熊聪, 冯士维. 恒定温度应力加速实验失效机理一致性快速判别方法. 物理学报, 2013, 62(6): 068502. doi: 10.7498/aps.62.068502
    [7] 梁培, 刘阳, 王乐, 吴珂, 董前民, 李晓艳. 表面悬挂键导致硅纳米线掺杂失效机理的第一性原理研究. 物理学报, 2012, 61(15): 153102. doi: 10.7498/aps.61.153102
    [8] 黄毅泽, 李毅, 王海方, 俞晓静, 张虎, 张伟, 朱慧群, 孙若曦, 周晟, 张宇明. 双光纤光栅外腔半导体激光器相干失效研究. 物理学报, 2012, 61(1): 014201. doi: 10.7498/aps.61.014201
    [9] 钟广明, 杜晓晴, 唐杰灵, 董向坤, 雷小华, 陈伟民. 影响倒装焊LED芯片电流分布均匀性的因素分析. 物理学报, 2012, 61(12): 127803. doi: 10.7498/aps.61.127803
    [10] 张福平, 杜金梅, 刘雨生, 刘艺, 刘高旻, 贺红亮. PZT 95/5陶瓷电致失效机理研究. 物理学报, 2011, 60(5): 057701. doi: 10.7498/aps.60.057701
    [11] 薛正群, 黄生荣, 张保平, 陈朝. GaN基白光发光二极管失效机理分析. 物理学报, 2010, 59(7): 5002-5009. doi: 10.7498/aps.59.5002
    [12] 陆裕东, 何小琦, 恩云飞, 王歆, 庄志强. 倒装芯片上金属布线/凸点互连结构中原子的定向扩散. 物理学报, 2010, 59(5): 3438-3444. doi: 10.7498/aps.59.3438
    [13] 白宇浩, 云国宏, 那日苏. 外应力对铁磁/反铁磁体系交换偏置的影响及阶跃现象. 物理学报, 2009, 58(7): 4962-4969. doi: 10.7498/aps.58.4962
    [14] 吴振宇, 杨银堂, 柴常春, 李跃进, 汪家友, 刘 彬. 通孔尺寸对铜互连应力迁移失效的影响. 物理学报, 2008, 57(6): 3730-3734. doi: 10.7498/aps.57.3730
    [15] 荣建红, 云国宏. 外应力场下双层铁磁薄膜中的铁磁共振性质. 物理学报, 2007, 56(9): 5483-5488. doi: 10.7498/aps.56.5483
    [16] 潘 靖, 周 岚, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的自旋波. 物理学报, 2007, 56(6): 3521-3526. doi: 10.7498/aps.56.3521
    [17] 李宝兴, 叶美英, 褚巧燕, 俞 健. 玻璃微流控芯片表面改性的微观机理研究. 物理学报, 2007, 56(6): 3446-3452. doi: 10.7498/aps.56.3446
    [18] 潘 靖, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的交换偏置. 物理学报, 2006, 55(6): 3032-3037. doi: 10.7498/aps.55.3032
    [19] 潘 靖, 马 梅, 周 岚, 胡经国. 外应力场下铁磁/反铁磁双层膜系统的铁磁共振性质. 物理学报, 2006, 55(2): 897-903. doi: 10.7498/aps.55.897
    [20] 何宝平, 郭红霞, 龚建成, 王桂珍, 罗尹虹, 李永宏. 浮栅ROM集成电路空间低剂量率辐射失效时间预估. 物理学报, 2004, 53(9): 3125-3129. doi: 10.7498/aps.53.3125
计量
  • 文章访问数:  6433
  • PDF下载量:  481
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-08-24
  • 修回日期:  2011-11-15
  • 刊出日期:  2012-06-05

/

返回文章
返回