搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶SiOx:C颗粒在空气中经高温煅烧后光学性质的研究

郑立仁 黄柏标 尉吉勇 戴瑛

引用本文:
Citation:

非晶SiOx:C颗粒在空气中经高温煅烧后光学性质的研究

郑立仁, 黄柏标, 尉吉勇, 戴瑛

Optical properties of amorphous SiOx:C particles calcined in air at elevated temperature

Zheng Li-Ren, Huang Bai-Biao, Wei Ji-Yong, Dai Ying
PDF
导出引用
  • 通过高温裂解法制备了非晶SiOx:C颗粒, 该颗粒在空气中经不同温度进行煅烧.利用傅里叶红外光谱、扫描电子显微镜和荧光光谱仪对SiOx:C颗粒样品的结构、 形貌和光学性质进行了研究. 结果显示: 随着煅烧温度的升高, 样品的荧光光谱的峰位发生蓝移; 当煅烧温度为500 ℃时, 样品的荧光峰蓝移到417 nm处, 且强度最强; 而且该颗粒拥有红、绿、蓝三色的荧光效应; 但经高温(600 ℃和800 ℃) 煅烧后, 样品的荧光强度大大降低. 我们认为这种现象与样品被充分氧化后其中的氧缺陷减少有关.
    Amorphous SiOx:C particles are prepared by pyrolyzing method, and then they are calcined in an air ambient at different temperatures. The structures mophologies and optical properties of samples are analyzed with FTIR spectrum, scanning electron microscopy and fluorescent microscope, respectively. The results show that the luminescence band is blue-shifted with the increase of the annealing temperature. The particles exhibit the highest photoluminescence intensity with the 417 nm peak when annealed at 500 ℃. And the particles possess red, green or blue light emissions at room temperature when irradiated with appropriate wavelengths. Upon heating at a higher temperature (600 ℃ or 800 ℃), the fluorescence intensity of the SiOx:C sample decreases. We think that the phenomenon is attributed to the reduction of the number of oxygen defects in the sample heated at high temperature.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2007CB613302)、山东省自然科学基金(批准号: ZR2012EMQ012)、晶体材料国家重点实验室(山东大学)开放课题(批准号: KF1001)和山东省泰安市科技发展计划(批准号: 20112023)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2007CB613302), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012EMQ012), the Open Subject of the State Key Laboratory of Crystal Materials (Shandong University) (Grant No. KF1001) and the Shandong Province Tai'An Science Technology Development Program, China (Grant No. 20112023).
    [1]

    Canham L T 1990 Appl. Phys. Lett. 57 1046

    [2]

    Kim T Y, Park N M, Kim K H, Sung G Y, Ok Y W, Seong T Y, Choi C J 2004 Appl. Phys. Lett. 85 5355

    [3]

    Hessel C H, Henderson E J, Veinot J G C 2006 Chem. Mater. 18 6139

    [4]

    Matthew C B, Kelly P K, Yu P R, Joseph M L, Qing S, Wyatt K M, Randy J E, Arthur J N 2007 Nano. Lett. 7 2506

    [5]

    Park J H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia S N, Sailor M J 2009 Nature Mater. 8 331

    [6]

    Heinrich J L, Curtis C L, Credo G M, Sailor M J, Kavanagh K L 1992 Science 255 66

    [7]

    Godefroo S, Hayne M, Jivanescu M, Stesmans A, Zacharias M, Lebedev O I, van Tendeloo G, Moshchalkov V V 2008 Nature Nanotech. 3 174

    [8]

    Zheng L R, Huang B B, Wei J Y 2009 Acta Phys. Sin. 58 8612 (in Chinese) [郑立仁, 黄柏标, 尉吉勇 2009 物理学报 58 8612]

    [9]

    Zheng L R, Huang B B, Wei J Y 2009 Chem. J. Chinese U. 30 250 (in Chinese) [郑立仁, 黄柏标, 尉吉勇 2009 高等学校化学学报 30 250]

    [10]

    Zheng L R, Huang B B, Wei J Y 2009 Acta Phys. Sin. 58 2306 (in Chinese) [郑立仁, 黄柏标, 尉吉勇 2009 物理学报 58 2306]

    [11]

    Peng X S, Wang X F, Zhang J, Wang Y W, Sun S H, Meng G W, Zhang L D 2002 Appl. Phys. A 74 831

    [12]

    Kar S, Chaudhuri S 2005 Solid State Commun. 133 151

    [13]

    Skuja L, Tanimura K, Itoh N 1996 J. Appl. Phys. 80 3518

    [14]

    Salh R, von Czarnowski A, Fitting H J 2005 Phys. Status Solidi 2 580

    [15]

    Fitting H-J, Salh R, Schmidt B 2008 J. Non-Cryst. Solids. 354 1697

    [16]

    Fitting H-J, Salh R, Schmidt B 2007 Semiconductors 41 453

    [17]

    Lau S P, Marshall J M, Dyes T E 1995 Phil. Mag. B 72 323

    [18]

    Choi K, Uchida Y, Matsumura M 1996 Jpn. J. Appl. Phys. 35 1648

    [19]

    Liao L S, Bao X M, Zheng X Q, Li N S, Min N B 1996 Appl. Phys. Lett. 68 850

    [20]

    Rebohle L, Lehmann J, Prucnal S, Kanjilal A, Nazarov A, Tyagulskii I, Skorupa W, Helm M 2008 Appl. Phys. Lett. 93 071908

    [21]

    Ogi T, Kaihatsu Y, Iskandar F, Wang W N, Okuyama K 2008 Adv. Mater. 20 3235

    [22]

    Bhusari D M, Kshirsagar S T 1993 J. Appl. Phys. 73 15

    [23]

    Wang L, Xu J, Ma T F, Li W, Huang X F, Chen K J 1999 J. Alloys Compds. 290 273

    [24]

    Inagaki N, Tasaka S, Ake H 1994 Polym. Bull. 33 709

    [25]

    Locovsky G, Manitini M J, Srivastava J K, Irene E A 1987 J. Vac. Sci. Technol. B 5 530

  • [1]

    Canham L T 1990 Appl. Phys. Lett. 57 1046

    [2]

    Kim T Y, Park N M, Kim K H, Sung G Y, Ok Y W, Seong T Y, Choi C J 2004 Appl. Phys. Lett. 85 5355

    [3]

    Hessel C H, Henderson E J, Veinot J G C 2006 Chem. Mater. 18 6139

    [4]

    Matthew C B, Kelly P K, Yu P R, Joseph M L, Qing S, Wyatt K M, Randy J E, Arthur J N 2007 Nano. Lett. 7 2506

    [5]

    Park J H, Gu L, von Maltzahn G, Ruoslahti E, Bhatia S N, Sailor M J 2009 Nature Mater. 8 331

    [6]

    Heinrich J L, Curtis C L, Credo G M, Sailor M J, Kavanagh K L 1992 Science 255 66

    [7]

    Godefroo S, Hayne M, Jivanescu M, Stesmans A, Zacharias M, Lebedev O I, van Tendeloo G, Moshchalkov V V 2008 Nature Nanotech. 3 174

    [8]

    Zheng L R, Huang B B, Wei J Y 2009 Acta Phys. Sin. 58 8612 (in Chinese) [郑立仁, 黄柏标, 尉吉勇 2009 物理学报 58 8612]

    [9]

    Zheng L R, Huang B B, Wei J Y 2009 Chem. J. Chinese U. 30 250 (in Chinese) [郑立仁, 黄柏标, 尉吉勇 2009 高等学校化学学报 30 250]

    [10]

    Zheng L R, Huang B B, Wei J Y 2009 Acta Phys. Sin. 58 2306 (in Chinese) [郑立仁, 黄柏标, 尉吉勇 2009 物理学报 58 2306]

    [11]

    Peng X S, Wang X F, Zhang J, Wang Y W, Sun S H, Meng G W, Zhang L D 2002 Appl. Phys. A 74 831

    [12]

    Kar S, Chaudhuri S 2005 Solid State Commun. 133 151

    [13]

    Skuja L, Tanimura K, Itoh N 1996 J. Appl. Phys. 80 3518

    [14]

    Salh R, von Czarnowski A, Fitting H J 2005 Phys. Status Solidi 2 580

    [15]

    Fitting H-J, Salh R, Schmidt B 2008 J. Non-Cryst. Solids. 354 1697

    [16]

    Fitting H-J, Salh R, Schmidt B 2007 Semiconductors 41 453

    [17]

    Lau S P, Marshall J M, Dyes T E 1995 Phil. Mag. B 72 323

    [18]

    Choi K, Uchida Y, Matsumura M 1996 Jpn. J. Appl. Phys. 35 1648

    [19]

    Liao L S, Bao X M, Zheng X Q, Li N S, Min N B 1996 Appl. Phys. Lett. 68 850

    [20]

    Rebohle L, Lehmann J, Prucnal S, Kanjilal A, Nazarov A, Tyagulskii I, Skorupa W, Helm M 2008 Appl. Phys. Lett. 93 071908

    [21]

    Ogi T, Kaihatsu Y, Iskandar F, Wang W N, Okuyama K 2008 Adv. Mater. 20 3235

    [22]

    Bhusari D M, Kshirsagar S T 1993 J. Appl. Phys. 73 15

    [23]

    Wang L, Xu J, Ma T F, Li W, Huang X F, Chen K J 1999 J. Alloys Compds. 290 273

    [24]

    Inagaki N, Tasaka S, Ake H 1994 Polym. Bull. 33 709

    [25]

    Locovsky G, Manitini M J, Srivastava J K, Irene E A 1987 J. Vac. Sci. Technol. B 5 530

  • [1] 陈隆, 陈成克, 李晓, 胡晓君. 氧化对单颗粒层纳米金刚石薄膜硅空位发光和微结构的影响. 物理学报, 2019, 68(16): 168101. doi: 10.7498/aps.68.20190422
    [2] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [3] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅. Au的金属颗粒对二硫化钼发光增强. 物理学报, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [4] 曲艳东, 孔祥清, 李晓杰, 闫鸿浩. 热处理对爆轰合成的纳米TiO2混晶的结构相变的影响. 物理学报, 2014, 63(3): 037301. doi: 10.7498/aps.63.037301
    [5] 潘书万, 陈松岩, 周笔, 黄巍, 李成, 赖虹凯, 王加贤. 硅基硒纳米颗粒的发光特性研究. 物理学报, 2013, 62(17): 177802. doi: 10.7498/aps.62.177802
    [6] 方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能. 物理学报, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [7] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究. 物理学报, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [8] 郑立仁, 黄柏标, 尉吉勇. 不同气氛下SiOx纳米线的制备及形貌、红外、光致发光研究. 物理学报, 2009, 58(4): 2306-2312. doi: 10.7498/aps.58.2306
    [9] 潘孝军, 张振兴, 王 涛, 李 晖, 谢二庆. 溅射制备纳米晶GaN∶Er薄膜的室温发光特性. 物理学报, 2008, 57(6): 3786-3790. doi: 10.7498/aps.57.3786
    [10] 缪竞威, 王培禄, 朱洲森, 袁学东, 王 虎, 杨朝文, 师勉恭, 缪 蕾, 孙威立, 张 静, 廖雪花. 氮团簇离子注入单晶硅的光致发光谱研究. 物理学报, 2008, 57(4): 2174-2178. doi: 10.7498/aps.57.2174
    [11] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [12] 彭智伟, 王玲玲, 刘晃清, 黄维清, 邹炳锁. Gd2O3:Eu3+纳米晶的燃烧合成及光致发光性质. 物理学报, 2007, 56(2): 1162-1166. doi: 10.7498/aps.56.1162
    [13] 袁艳红, 侯 洵, 高 恒. 超声处理对ZnO薄膜光致发光特性的影响. 物理学报, 2006, 55(1): 446-449. doi: 10.7498/aps.55.446
    [14] 王英龙, 卢丽芳, 闫常瑜, 褚立志, 周 阳, 傅广生, 彭英才. 具有窄光致发光谱的纳米Si晶薄膜的激光烧蚀制备. 物理学报, 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [15] 纪爱玲, 马利波, 刘 澂, 王永谦. 纳米Si-SiOx和Si-SiNx复合薄膜的低温制备及其发光特性. 物理学报, 2004, 53(11): 3818-3822. doi: 10.7498/aps.53.3818
    [16] 徐波, 余庆选, 吴气虹, 廖源, 王冠中, 方容川. 应力和掺杂对Mg:GaN薄膜光致发光光谱影响的研究. 物理学报, 2004, 53(1): 204-209. doi: 10.7498/aps.53.204
    [17] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响. 物理学报, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [18] 邵 军. Ti掺杂ZnTe体材料的优化光致发光光谱. 物理学报, 2003, 52(7): 1743-1747. doi: 10.7498/aps.52.1743
    [19] 梁二军, 晁明举. 激光诱导多孔硅晶格畸变的Raman光谱和光致发光谱研究. 物理学报, 2001, 50(11): 2241-2246. doi: 10.7498/aps.50.2241
    [20] 林碧霞, 傅竹西, 贾云波, 廖桂红. 非掺杂ZnO薄膜中紫外与绿色发光中心. 物理学报, 2001, 50(11): 2208-2211. doi: 10.7498/aps.50.2208
计量
  • 文章访问数:  4902
  • PDF下载量:  534
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-07
  • 修回日期:  2012-05-22
  • 刊出日期:  2012-11-05

/

返回文章
返回