搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微观结构的Cu互连电迁移失效研究

吴振宇 杨银堂 柴常春 刘莉 彭杰 魏经天

引用本文:
Citation:

基于微观结构的Cu互连电迁移失效研究

吴振宇, 杨银堂, 柴常春, 刘莉, 彭杰, 魏经天

A microstructure-based study on electromigration in Cu interconnects

Wu Zhen-Yu, Yang Yin-Tang, Chai Chang-Chun, Liu Li, Peng Jie, Wei Jing-Tian
PDF
导出引用
  • 提出了一种基于微观晶粒尺寸分布的Cu互连电迁移失效寿命模型. 结合透射电子显微镜和统计失效分析技术, 研究了Cu互连电迁移失效尺寸缩小和临界长度效应及其物理机制. 研究表明, 当互连线宽度减小, 其平均晶粒尺寸下降并导致互连电迁移寿命降低. 小于临界长度的互连线无法提供足够的空位使得铜晶粒耗尽而发生失效. 当互连长度大于该临界长度时, 在整个电迁移测试时间内, 部分体积较小的阴极端铜晶粒出现耗尽情况. 随着互连长度的增加该失效比例迅速增大, 电迁移失效寿命减小. 当互连长度远大于扩散长度时, 失效时间主要取决于铜晶粒的尺寸, 且失效寿命和比例随晶粒尺寸变化呈现饱和的波动状态.
    A microstructure-based electromigration model of Cu interconnects is proposed. Mechanisms of scaling and critical length effects of Cu electromigration are studied by transmission electron microscopy and statistical failure analysis. The results show that the lifetime of electromigration is reduced with Cu grain size decreasing when the width of interconnect is scaled down. Electromigration failure is not observed when the interconnect length is smaller than the critical length due to insufficient vacancies for voiding the whole Cu grains. Some small grains are vacated at the cathode end when the interconnect length is larger than the critical length during the testing. The proportion of failures increases and the lifetime decreases with interconnect length increasing. The failure time is dependent mainly on Cu grain size, and the failure lifetime and failure proportion fluctuate with grain size varying when the interconnect length is beyond the diffusion length.
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 60806034)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 60806034).
    [1]

    Rosenberg R, Edelstein D C, Hu C K, Rodbell K P 2000 Annu. Rev. Mater. Sci. 30 229

    [2]

    Tu K N 2003 J. Appl. Phys. 94 5451

    [3]

    Hau-Riege C S 2004 Microelectron. Reliab. 44 195

    [4]

    Hu C K, Gignac L, Rosenberg R 2006 Microelectron. Reliab. 46 213

    [5]

    Hau-Riege C S, Thompson C V 2001 Appl. Phys. Lett. 78 3451

    [6]

    Hu C K, Gignac L, Rosenberg R, Liniger E, Rubino J, Sambucetti C, Stamper A, Domenicucci A, Chen X 2003 Microelectron. Eng. 70 406

    [7]

    Chai Y, Chan P C H, Fu Y Y, Chuang Y C, Liu C Y 2008 IEEE Elec. Dev. Lett. 29 1001

    [8]

    Ogawa E T, Bierwag A J, Lee K D, Matsuhashi H, Justison P R, Ramamurthi A N, Ho P S, Blaschke V A, Griffiths D, Nelsen A, Breen M, Havemann R H 2001 Appl. Phys. Lett. 78 2652

    [9]

    Tu K N, Yeh C C, Liu C Y, Chen C 2001 Appl. Phys. Lett. 76 988

    [10]

    Shao W, Vairagara A V, Tung C H, Xie Z L, Krishnamoorthy A, Mhaisalkar S G 2005 Surf. Coat. Technol. 198 257

    [11]

    Wu W, Yuan J S, Kang S H, Oates A S 2001 Solid State Electron. 45 2051

    [12]

    Korhonen M A, B?rgesen P, Tu K N, Li C Y 1993 J. Appl. Phys. 73 3790

    [13]

    Korhonen M A, B?rgesen P, Brown D D, Li C Y 1993 J. Appl. Phys. 74 4995

    [14]

    Lin M H, Chang K P, Su K C, Wang T H 2007 Microelectron. Reliab. 47 2100

    [15]

    Nelson W 1982 Applied Life Data Analysis (New York:Wiley)

    [16]

    Vairagar A V, Mhaisalkar S G, Krishnamoorthy A 2004 Microelectro. Reliab. 44 747

    [17]

    Blech I A 1976 J. Appl. Phys. 47 1203

    [18]

    Lee K D, Ogawa E T, Matsuhashi H, Justison P R, Ko K S, Ho P S, Blaschke V A 2001 Appl. Phys. Lett. 79 3236 018501-5

  • [1]

    Rosenberg R, Edelstein D C, Hu C K, Rodbell K P 2000 Annu. Rev. Mater. Sci. 30 229

    [2]

    Tu K N 2003 J. Appl. Phys. 94 5451

    [3]

    Hau-Riege C S 2004 Microelectron. Reliab. 44 195

    [4]

    Hu C K, Gignac L, Rosenberg R 2006 Microelectron. Reliab. 46 213

    [5]

    Hau-Riege C S, Thompson C V 2001 Appl. Phys. Lett. 78 3451

    [6]

    Hu C K, Gignac L, Rosenberg R, Liniger E, Rubino J, Sambucetti C, Stamper A, Domenicucci A, Chen X 2003 Microelectron. Eng. 70 406

    [7]

    Chai Y, Chan P C H, Fu Y Y, Chuang Y C, Liu C Y 2008 IEEE Elec. Dev. Lett. 29 1001

    [8]

    Ogawa E T, Bierwag A J, Lee K D, Matsuhashi H, Justison P R, Ramamurthi A N, Ho P S, Blaschke V A, Griffiths D, Nelsen A, Breen M, Havemann R H 2001 Appl. Phys. Lett. 78 2652

    [9]

    Tu K N, Yeh C C, Liu C Y, Chen C 2001 Appl. Phys. Lett. 76 988

    [10]

    Shao W, Vairagara A V, Tung C H, Xie Z L, Krishnamoorthy A, Mhaisalkar S G 2005 Surf. Coat. Technol. 198 257

    [11]

    Wu W, Yuan J S, Kang S H, Oates A S 2001 Solid State Electron. 45 2051

    [12]

    Korhonen M A, B?rgesen P, Tu K N, Li C Y 1993 J. Appl. Phys. 73 3790

    [13]

    Korhonen M A, B?rgesen P, Brown D D, Li C Y 1993 J. Appl. Phys. 74 4995

    [14]

    Lin M H, Chang K P, Su K C, Wang T H 2007 Microelectron. Reliab. 47 2100

    [15]

    Nelson W 1982 Applied Life Data Analysis (New York:Wiley)

    [16]

    Vairagar A V, Mhaisalkar S G, Krishnamoorthy A 2004 Microelectro. Reliab. 44 747

    [17]

    Blech I A 1976 J. Appl. Phys. 47 1203

    [18]

    Lee K D, Ogawa E T, Matsuhashi H, Justison P R, Ko K S, Ho P S, Blaschke V A 2001 Appl. Phys. Lett. 79 3236 018501-5

计量
  • 文章访问数:  6045
  • PDF下载量:  966
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-02-10
  • 修回日期:  2011-04-21
  • 刊出日期:  2012-01-05

/

返回文章
返回