搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于铯原子喷泉钟的二维磁光阱研制

吴长江 阮军 陈江 张辉 张首刚

引用本文:
Citation:

应用于铯原子喷泉钟的二维磁光阱研制

吴长江, 阮军, 陈江, 张辉, 张首刚

A two-dimensional magneto-optical trap for a cesium fountain clock

Wu Chang-Jiang, Ruan Jun, Chen Jiang, Zhang Hui, Zhang Shou-Gang
PDF
导出引用
  • 理论模拟研究了二维磁光阱原子束流量与饱和蒸汽压、冷却光强、激光失谐量的关系, 构建了二维磁光阱(2D-MOT)装置, 实验上实现了大流量的慢速原子束, 其测量值为2.1 109/s.利用荧光法测量了各实验参数与流量的关系, 测量结果与数值模拟结果符合较好.
    To study the relationship of atomic beam flow with cooling intensity, laser detuning, and magnetic field gradient, the numerical simulation is performed and a two-dimensional magneto-optical trap setup is built. A low-velocity atomic beam flow is generated with a total flux of 2.1 109/s. Theoretical analysis and experimental results are in good consistence. Optimal detuning and magnetic field gradient can produce the largest atomic beam flow.
    • 基金项目: 国家自然科学基金重点项目(批准号: 10834007)、国家杰出青年科学基金(批准号: 61025023)和国家重大科研仪器设备研制专项 (批准号: 61127901)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 10834007), the National Science Fund for Distinguished Young Scholars of China (Grant No. 61025023) and the National Major Fund of Scientific Equipment and Instrument Development, China (Grant No. 61127901).
    [1]

    Wynands R, Weyers S 2005 Metrologia 42 64

    [2]

    Jefferts S R, Shirley J, Parker T E, Heavner T P, Meekhof D M, Nelson C, Levi F, Costanzo G, De Marchi A, Drullinger R, Hollberg L, Lee W D, Walls F L 2002 Metrologia 39 321

    [3]

    Guéna J, Abgrall M, Rovera D, Laurent P, Chupin B, Lours M, Santarelli G, Rosenbusch P, Tobar M E, Li R, Gibble K, Clairon A, Bize S 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 391

    [4]

    Ovchinnikov Y Marra G 2011 Metrologia 48 87

    [5]

    Tiecke T G, Gensemer S D, Ludewig A, Walraven J T M 2009 Phys. Rev. A 80 013409

    [6]

    Wang X L, Chen J, Wang Y B, Gao F, Zhang S G, Liu H F, Chang H 2011 Acta Phys. Sin. 60 103201 [王心亮, 陈洁, 王叶兵, 高峰, 张首刚, 刘海峰, 常宏 2011 物理学报 60 103201]

    [7]

    Kellogg J R, Schlippert D, Kohel J M, Thompson R J, Aveline D C, Yu N 2011 arXiv: 1107.5602v1 [physics.atom-ph]

    [8]

    Ramirez-Serrano J, Yu N, Kohel J M, Kellogg J R, Maleki L 2006 Opt. Lett. 31 682

    [9]

    Chapelet F, Gńena J, Rovera D, Laurent P, Rosenbusch P, Santarelli G, Bize S, Clairon A, Tobar M E, Abgrall M 2007 Proc. of 21th European Freq, and Time Forum Geneva, Switzerland, 2007 p111

    [10]

    Gerginov V, Nemitz N, Griebsch D, Kazda M, Li R, Gibble K, Wynands R, Weyers S 2010 Proc. of 24th European Freq. and Time Forum Noordwijk, Netherlands, 2010 p222

    [11]

    Liu Y, Wu J H, Shi B S, Guo G C 2012 Chin. Phys. Lett. 29 024205

    [12]

    Wang X L, Cheng B, Wu B, Wang Z Y, Lin Q 2011 Chin. Phys. Lett. 28 053701

    [13]

    Adams C S, Sigel M, Mlynek J 1994 Phys. Rep. 240 143

    [14]

    Miffre A, Jacquey M, Buchner M, Trenec G, Vigue J 2006 Phys. Scr. 74 15

    [15]

    Metcalf H J, van der Straten P 1999 Laser Cooling and Trapping (New York: Springer-Verlag) p345

    [16]

    Chaudhuri S, Roy S, Unnikrishnan C S 2006 Phys. Rev. A 74 023406

    [17]

    Lindquist K, Stephens M, Wieman C 1992 Phys. Rev. A 46 4082

    [18]

    Catani J, Maioli P, De Sarlo L, Minardi F, Inguscio M 2006 Phys. Rev. A 73 033415

    [19]

    Schoser J, Batar A, Low R, Schweikhard V, Grabowski A, Ovchinnikov Yu B, Pfau T 2002 Phys. Rev. A 66 023410

  • [1]

    Wynands R, Weyers S 2005 Metrologia 42 64

    [2]

    Jefferts S R, Shirley J, Parker T E, Heavner T P, Meekhof D M, Nelson C, Levi F, Costanzo G, De Marchi A, Drullinger R, Hollberg L, Lee W D, Walls F L 2002 Metrologia 39 321

    [3]

    Guéna J, Abgrall M, Rovera D, Laurent P, Chupin B, Lours M, Santarelli G, Rosenbusch P, Tobar M E, Li R, Gibble K, Clairon A, Bize S 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 391

    [4]

    Ovchinnikov Y Marra G 2011 Metrologia 48 87

    [5]

    Tiecke T G, Gensemer S D, Ludewig A, Walraven J T M 2009 Phys. Rev. A 80 013409

    [6]

    Wang X L, Chen J, Wang Y B, Gao F, Zhang S G, Liu H F, Chang H 2011 Acta Phys. Sin. 60 103201 [王心亮, 陈洁, 王叶兵, 高峰, 张首刚, 刘海峰, 常宏 2011 物理学报 60 103201]

    [7]

    Kellogg J R, Schlippert D, Kohel J M, Thompson R J, Aveline D C, Yu N 2011 arXiv: 1107.5602v1 [physics.atom-ph]

    [8]

    Ramirez-Serrano J, Yu N, Kohel J M, Kellogg J R, Maleki L 2006 Opt. Lett. 31 682

    [9]

    Chapelet F, Gńena J, Rovera D, Laurent P, Rosenbusch P, Santarelli G, Bize S, Clairon A, Tobar M E, Abgrall M 2007 Proc. of 21th European Freq, and Time Forum Geneva, Switzerland, 2007 p111

    [10]

    Gerginov V, Nemitz N, Griebsch D, Kazda M, Li R, Gibble K, Wynands R, Weyers S 2010 Proc. of 24th European Freq. and Time Forum Noordwijk, Netherlands, 2010 p222

    [11]

    Liu Y, Wu J H, Shi B S, Guo G C 2012 Chin. Phys. Lett. 29 024205

    [12]

    Wang X L, Cheng B, Wu B, Wang Z Y, Lin Q 2011 Chin. Phys. Lett. 28 053701

    [13]

    Adams C S, Sigel M, Mlynek J 1994 Phys. Rep. 240 143

    [14]

    Miffre A, Jacquey M, Buchner M, Trenec G, Vigue J 2006 Phys. Scr. 74 15

    [15]

    Metcalf H J, van der Straten P 1999 Laser Cooling and Trapping (New York: Springer-Verlag) p345

    [16]

    Chaudhuri S, Roy S, Unnikrishnan C S 2006 Phys. Rev. A 74 023406

    [17]

    Lindquist K, Stephens M, Wieman C 1992 Phys. Rev. A 46 4082

    [18]

    Catani J, Maioli P, De Sarlo L, Minardi F, Inguscio M 2006 Phys. Rev. A 73 033415

    [19]

    Schoser J, Batar A, Low R, Schweikhard V, Grabowski A, Ovchinnikov Yu B, Pfau T 2002 Phys. Rev. A 66 023410

  • [1] 陈娇娇, 孙羽, 温金录, 胡水明. 稳定的高亮度低速亚稳态氦原子束流. 物理学报, 2021, 70(13): 133201. doi: 10.7498/aps.70.20201833
    [2] 张乾毅, 韦华健, 李华兵. 基于晶格玻尔兹曼方法的多段淋巴管模型. 物理学报, 2021, 70(21): 210501. doi: 10.7498/aps.70.20210514
    [3] 左冠华, 杨晨, 赵俊祥, 田壮壮, 朱诗尧, 张玉驰, 张天才. 基于参量放大器的铯原子D2线明亮偏振压缩光源的产生. 物理学报, 2020, 69(1): 014207. doi: 10.7498/aps.69.20191009
    [4] 管勇, 刘丹丹, 王心亮, 张辉, 施俊如, 白杨, 阮军, 张首刚. 绝热跃迁方法测量铯喷泉钟冷原子碰撞频移. 物理学报, 2020, 69(14): 140601. doi: 10.7498/aps.69.20191800
    [5] 王倩, 魏荣, 王育竹. 原子喷泉频标:原理与发展. 物理学报, 2018, 67(16): 163202. doi: 10.7498/aps.67.20180540
    [6] 阮军, 王叶兵, 常宏, 姜海峰, 刘涛, 董瑞芳, 张首刚. 时间频率基准装置的研制现状. 物理学报, 2015, 64(16): 160308. doi: 10.7498/aps.64.160308
    [7] 许忻平, 张海潮, 王育竹. 一种实现冷原子束聚集的微磁透镜新方案. 物理学报, 2012, 61(22): 223701. doi: 10.7498/aps.61.223701
    [8] 孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明. 利用激光冷却原子束测量氦原子精密光谱. 物理学报, 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [9] 程存峰, 杨国民, 蒋蔚, 潘虎, 孙羽, 刘安雯, 成国胜, 胡水明. 激光冷却获得高亮度的亚稳态惰性气体原子束和原子阱. 物理学报, 2011, 60(10): 103701. doi: 10.7498/aps.60.103701
    [10] 张宝武, 张萍萍, 马艳, 李同保. 铬原子束横向一维激光冷却的蒙特卡罗方法仿真. 物理学报, 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [11] 孔维姝, 胡林, 张兴刚, 岳国联. 颗粒堆的体积分数与制备流量关系的实验研究. 物理学报, 2010, 59(1): 411-416. doi: 10.7498/aps.59.411
    [12] 张宝武, 张文涛, 马 艳, 李同保. 大预准直狭缝的铬原子束一维多普勒激光准直. 物理学报, 2008, 57(9): 5485-5490. doi: 10.7498/aps.57.5485
    [13] 周蜀渝, 徐 震, 周善钰, 王育竹. 以慢原子束方式进行原子转移的双磁光阱系统. 物理学报, 2007, 56(1): 165-169. doi: 10.7498/aps.56.165
    [14] 马 艳, 张宝武, 郑春兰, 马珊珊, 李佛生, 王占山, 李同保. 激光准直Cr原子束的实验研究. 物理学报, 2006, 55(8): 4086-4090. doi: 10.7498/aps.55.4086
    [15] 石建平, 陈旭南, 高洪涛, 陈献忠. 原子束计算全息技术的原理与实现. 物理学报, 2003, 52(4): 844-848. doi: 10.7498/aps.52.844
    [16] 高鸿奕, 陈建文, 谢红兰, 陈敏, 肖体乔, 朱佩平, 徐至展. 原子束多光束干涉实验的一种方法. 物理学报, 2002, 51(8): 1696-1699. doi: 10.7498/aps.51.1696
    [17] 李佛生, 蔡惟泉, 王育竹. 原子束中慢波波谱的观察. 物理学报, 1999, 48(2): 227-234. doi: 10.7498/aps.48.227
    [18] 张原, 朱熙文, 梅刚华. Eu原子束通过选态磁铁时的偏转特性. 物理学报, 1995, 44(5): 685-692. doi: 10.7498/aps.44.685
    [19] 刘亮, 陈洪新, 王育竹. 高效率激光冷却原子束. 物理学报, 1993, 42(11): 1762-1765. doi: 10.7498/aps.42.1762
    [20] 朱熙文. 通过极化原子束的磁偏转实现激光同位素浓缩. 物理学报, 1984, 33(11): 1605-1609. doi: 10.7498/aps.33.1605
计量
  • 文章访问数:  5568
  • PDF下载量:  1009
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-20
  • 修回日期:  2012-11-14
  • 刊出日期:  2013-03-05

/

返回文章
返回