搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

翼型绕流的洛伦兹力控制机理

陈耀慧 董祥瑞 陈志华 张辉 栗保明 范宝春

引用本文:
Citation:

翼型绕流的洛伦兹力控制机理

陈耀慧, 董祥瑞, 陈志华, 张辉, 栗保明, 范宝春

Control of flow around hydrofoil using the Lorentz force

Chen Yao-Hui, Dong Xiang-Rui, Chen Zhi-Hua, Zhang Hui, Li Bao-Ming, Fan Bao-Chun
PDF
导出引用
  • 在翼型上翼面壁面附近流场中形成的流向洛伦兹力,可提升翼型的升力减小阻力,然而制约其推广应用的主要瓶颈是极为低下的控制效率,为提高洛伦兹力的控制效率,需研究其控制机理. 以翼型绕流的洛伦兹力控制为例,利用双时间步Roe格式及水槽对其进行数值及实验研究. 结果表明:洛伦兹力的控制效果随着来流速度的增加而下降,升力增幅和阻力减幅与来流速度大小呈反比关系,但升力增加和阻力减小的规律不变,都是升力先急剧增加随后缓慢增加,而阻力先急剧减小然后再缓慢增加,基本原因为升力和阻力先受洛伦兹力推力的影响而分别增加和减小,随后洛伦兹力作用增加翼面壁面摩擦力,导致升力减小和阻力增加,流向洛伦兹力还导致翼型壁面压力下降,增加翼型升力和压差阻力;壁面摩擦力导致的升力降幅比壁面压力变化导致的升力增幅小,壁面压力变化起主导作用;洛伦兹力推力对阻力的降幅比压差阻力的增幅大,洛伦兹力推力起主导作用,因此阻力减小.
    The Lorentz force can be used to control the boundary layer flow of low-conduction fluids; however, its lowest control efficiency has become the main bottleneck in its engineering application. In order to enhance the control efficiency of Lorentz force, we need to study its potential control mechanism. In the present paper, the flow around hydrofoil when using Lorentz force has been simulated numerically by use of dual-time-step Roe method as well as studied experimentally in a water tank. Results show that the hydrofoil drag decreases sharply first and reincreases later, showing that the control effect of the Lorentz force is reduced with the increase of stream velocity, as well as the amplitude-change of the lift and drag; however, the lift increases continuously. The basic mechanism of this phenomenon is that the Lorentz force can form Lorentz force thrust, which increases the wall friction and decreases the pressure on the hydrofoil surface; at the incipient stage of control, the Lorentz force thrust decreases the drag and increases the lift immensely, soon afterwards, due to the action of Lorentz force, the drag increases with the increase of wall shear force and the lift increases with the decrease of upper surface pressure, so that the thrust can increase both the drag and lift.
    • 基金项目: 重点实验室基金资助(批准号:9140C300206120C30110)和中央高校基本科研业务费专项基金资助(批准号:30920130111013)资助的课题.
    • Funds: Project supported by the Key Laboratory Fund (Grant No. 9140C300206120C30110), and the Fundamental Research Funds for the Central Universities of China (Grant No. 30920130111013).
    [1]

    Thibert J, Reneaux J, Moens F, Preist J 1995 Aeronaut. J. 99 395

    [2]

    Lee S, Loth E, Babinsky H 2011 Comput. Fluids 49 233

    [3]

    Lee S J, Jang Y G 2005 J. Fluids Struct. 20 659

    [4]

    Rathnasingham R, Breuer K S 2003 J. Fluid Mech. 495 209

    [5]

    Kral L D 1999 ASME Fluids Engineering Division Newsletter Nashville, Tennessee, USA November 14–19, 1999 p3

    [6]

    Pulugundla G, Heinicke C, Karcher C, Thess A 2013 Eur. J. Mech. B: Fluids 41 23

    [7]

    Taberner A, Hogan N C, Hunter I W 2012 Med. Eng. Phys. 34 1228

    [8]

    Sun X H, Zhang H H 2011 Chin. Phys. Lett. 28 14703

    [9]

    Peng C, Gao Y 2012 Acta Astronaut. 77 12

    [10]

    Groenesteijn J, Lammerink T S J, Wiegerink R J, Haneveld J, Lötters J C 2012 Sens. Actuators A 186 48

    [11]

    Lee F Y, Tang T L, Fang W 2011 Procedia Engineering 25 689

    [12]

    Jiang H Y, Ren Y K, Ao H R, Antonio R 2008 Chin. Phys. B 17 4541

    [13]

    Henoch C, Stace J 1995 Phys. Fluids 7 1371

    [14]

    Berger T W, Kim J, Lee C, Lim J 2000 Phys. Fluids 12 631

    [15]

    Breuer K S, Park J, Henoch C 2004 Phys. Fluids 16 897

    [16]

    Mei D J, Fan B C, Chen Y H, Ye J F 2010 Acta Phys. Sin. 59 8335 (in Chinese) [梅栋杰, 范宝春, 陈耀慧, 叶经方 2010 物理学报 59 8335]

    [17]

    Mei D J, Fan B C, Huang L P, Dong G 2010 Acta Phys. Sin. 59 6786 (in Chinese) [梅栋杰, 范宝春, 黄乐萍, 董刚 2010 物理学报 59 6786]

    [18]

    Mei D J, Fan B C, Chen Y H, Ye J F 2011 Acta Mech. Sin. 43 653 (in Chinese) [梅栋杰, 范宝春, 陈耀慧, 叶经方 2011 力学学报 43 653]

    [19]

    Weier T, Fey U, Gerbeth G, Mutschke G, Avilov V 2000 ERCOFTAC bulletin 44 36

    [20]

    Weier T, Gerbeth G, Mutschke G, Platacis E, Lielausis O 1998 Exp. Therm Fluid Sci. 16 84

    [21]

    Kim S J, Lee C M 2000 Exp. Fluids 28 252

    [22]

    Kim J 2003 Phys. Fluids 15 1093

    [23]

    Kim S J, Lee C M 2001 Fluid Dyn. Res. 29 47

    [24]

    Zhang H, Fan B, Chen Z 2011 Chin. Phys. Lett. 28 124701

    [25]

    Zhang H, Fan B, Li H 2011 Sci. China Phys. Mech. Astron. 54 2248

    [26]

    Zhang H, Fan B C, Chen Z H, Chen S, Li H Z 2013 Chin. Phys. B 22 104701

    [27]

    Choi H, Moin P, Kim J 1994 J. Fluid Mech. 262 75

    [28]

    Pang J, Choi K S 2004 Phys. Fluids 16 L35

    [29]

    Du Y, Symeonidis V, Karniadakis G 2002 J. Fluid Mech. 457 1

    [30]

    Mutschke G, Gerbeth G, Albrecht T, Grundmann R 2006 Eur. J. Mech. B: Fluids 25 137

    [31]

    Shatrov V, Gerbeth G 2007 Phys. Fluids 19 035109

    [32]

    Chen Y H, Fan B C, Chen Z H, Zhou B M 2008 Acta Phys. Sin. 57 648 (in Chinese) [陈耀慧, 范宝春, 陈志华, 周本谋 2008 物理学报 57 648]

    [33]

    Rogers S E, Kwak D 1990 AIAA J. 28 253

    [34]

    Rogers S E, Kwak D, Kiris C 1991 AIAA J. 29 603

  • [1]

    Thibert J, Reneaux J, Moens F, Preist J 1995 Aeronaut. J. 99 395

    [2]

    Lee S, Loth E, Babinsky H 2011 Comput. Fluids 49 233

    [3]

    Lee S J, Jang Y G 2005 J. Fluids Struct. 20 659

    [4]

    Rathnasingham R, Breuer K S 2003 J. Fluid Mech. 495 209

    [5]

    Kral L D 1999 ASME Fluids Engineering Division Newsletter Nashville, Tennessee, USA November 14–19, 1999 p3

    [6]

    Pulugundla G, Heinicke C, Karcher C, Thess A 2013 Eur. J. Mech. B: Fluids 41 23

    [7]

    Taberner A, Hogan N C, Hunter I W 2012 Med. Eng. Phys. 34 1228

    [8]

    Sun X H, Zhang H H 2011 Chin. Phys. Lett. 28 14703

    [9]

    Peng C, Gao Y 2012 Acta Astronaut. 77 12

    [10]

    Groenesteijn J, Lammerink T S J, Wiegerink R J, Haneveld J, Lötters J C 2012 Sens. Actuators A 186 48

    [11]

    Lee F Y, Tang T L, Fang W 2011 Procedia Engineering 25 689

    [12]

    Jiang H Y, Ren Y K, Ao H R, Antonio R 2008 Chin. Phys. B 17 4541

    [13]

    Henoch C, Stace J 1995 Phys. Fluids 7 1371

    [14]

    Berger T W, Kim J, Lee C, Lim J 2000 Phys. Fluids 12 631

    [15]

    Breuer K S, Park J, Henoch C 2004 Phys. Fluids 16 897

    [16]

    Mei D J, Fan B C, Chen Y H, Ye J F 2010 Acta Phys. Sin. 59 8335 (in Chinese) [梅栋杰, 范宝春, 陈耀慧, 叶经方 2010 物理学报 59 8335]

    [17]

    Mei D J, Fan B C, Huang L P, Dong G 2010 Acta Phys. Sin. 59 6786 (in Chinese) [梅栋杰, 范宝春, 黄乐萍, 董刚 2010 物理学报 59 6786]

    [18]

    Mei D J, Fan B C, Chen Y H, Ye J F 2011 Acta Mech. Sin. 43 653 (in Chinese) [梅栋杰, 范宝春, 陈耀慧, 叶经方 2011 力学学报 43 653]

    [19]

    Weier T, Fey U, Gerbeth G, Mutschke G, Avilov V 2000 ERCOFTAC bulletin 44 36

    [20]

    Weier T, Gerbeth G, Mutschke G, Platacis E, Lielausis O 1998 Exp. Therm Fluid Sci. 16 84

    [21]

    Kim S J, Lee C M 2000 Exp. Fluids 28 252

    [22]

    Kim J 2003 Phys. Fluids 15 1093

    [23]

    Kim S J, Lee C M 2001 Fluid Dyn. Res. 29 47

    [24]

    Zhang H, Fan B, Chen Z 2011 Chin. Phys. Lett. 28 124701

    [25]

    Zhang H, Fan B, Li H 2011 Sci. China Phys. Mech. Astron. 54 2248

    [26]

    Zhang H, Fan B C, Chen Z H, Chen S, Li H Z 2013 Chin. Phys. B 22 104701

    [27]

    Choi H, Moin P, Kim J 1994 J. Fluid Mech. 262 75

    [28]

    Pang J, Choi K S 2004 Phys. Fluids 16 L35

    [29]

    Du Y, Symeonidis V, Karniadakis G 2002 J. Fluid Mech. 457 1

    [30]

    Mutschke G, Gerbeth G, Albrecht T, Grundmann R 2006 Eur. J. Mech. B: Fluids 25 137

    [31]

    Shatrov V, Gerbeth G 2007 Phys. Fluids 19 035109

    [32]

    Chen Y H, Fan B C, Chen Z H, Zhou B M 2008 Acta Phys. Sin. 57 648 (in Chinese) [陈耀慧, 范宝春, 陈志华, 周本谋 2008 物理学报 57 648]

    [33]

    Rogers S E, Kwak D 1990 AIAA J. 28 253

    [34]

    Rogers S E, Kwak D, Kiris C 1991 AIAA J. 29 603

  • [1] 贺啸秋, 熊永亮, 彭泽瑞, 徐顺. 旋转肥皂泡热对流能量耗散与边界层特性的数值模拟. 物理学报, 2022, 71(20): 204701. doi: 10.7498/aps.71.20220693
    [2] 陆昌根, 沈露予, 朱晓清. 压力梯度对壁面局部吹吸边界层感受性的影响研究. 物理学报, 2019, 68(22): 224701. doi: 10.7498/aps.68.20190684
    [3] 艾旭鹏, 倪宝玉. 流体黏性及表面张力对气泡运动特性的影响. 物理学报, 2017, 66(23): 234702. doi: 10.7498/aps.66.234702
    [4] 代尚军, 吴思进, 王晓东, 史祎诗. 融合散斑干涉技术的阵列式洛伦兹力微颗粒探测方法. 物理学报, 2017, 66(20): 208102. doi: 10.7498/aps.66.208102
    [5] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性. 物理学报, 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [6] 陆昌根, 沈露予. 无限薄平板边界层前缘感受性过程的数值研究. 物理学报, 2016, 65(19): 194701. doi: 10.7498/aps.65.194701
    [7] 李芳, 赵刚, 刘维新, 张殊, 毕红时. 仿生射流孔形状减阻性能数值模拟及实验研究. 物理学报, 2015, 64(3): 034703. doi: 10.7498/aps.64.034703
    [8] 谷云庆, 牟介刚, 代东顺, 郑水华, 蒋兰芳, 吴登昊, 任芸, 刘福庆. 基于蚯蚓背孔射流的仿生射流表面减阻性能研究. 物理学报, 2015, 64(2): 024701. doi: 10.7498/aps.64.024701
    [9] 尹纪富, 尤云祥, 李巍, 胡天群. 电磁力控制湍流边界层分离圆柱绕流场特性数值分析. 物理学报, 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [10] 胡格丽, 倪志鹏, 王秋良. 结合振动控制的柱面纵向梯度线圈目标场设计方法. 物理学报, 2014, 63(1): 018301. doi: 10.7498/aps.63.018301
    [11] 陈林, 唐登斌, Chaoqun Liu. 转捩边界层中流向条纹的新特性. 物理学报, 2011, 60(9): 094702. doi: 10.7498/aps.60.094702
    [12] 莫嘉琪, 刘树德, 唐荣荣. 一类奇摄动非线性方程Robin问题激波的位置. 物理学报, 2010, 59(7): 4403-4408. doi: 10.7498/aps.59.4403
    [13] 樊飞, 班春燕, 王洋, 巴启先, 崔建忠. 普通铸造和低频电磁铸造7050铝合金电阻率-温度特性的研究. 物理学报, 2009, 58(1): 638-643. doi: 10.7498/aps.58.638
    [14] 李钢, 李轶明, 徐燕骥, 张翼, 李汉明, 聂超群, 朱俊强. 介质阻挡放电等离子体对近壁区流场的控制的实验研究. 物理学报, 2009, 58(6): 4026-4033. doi: 10.7498/aps.58.4026
    [15] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶. 物理学报, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [16] 陈耀慧, 范宝春, 陈志华, 周本谋. 翼型绕流电磁控制的实验和数值研究. 物理学报, 2008, 57(2): 648-653. doi: 10.7498/aps.57.648
    [17] 李睿劬, 李存标. 平板边界层中湍流的发生与混沌动力学之间的联系. 物理学报, 2002, 51(8): 1743-1749. doi: 10.7498/aps.51.1743
    [18] 龚安龙, 李睿劬, 李存标. 平板边界层转捩过程中低频信号的产生. 物理学报, 2002, 51(5): 1068-1074. doi: 10.7498/aps.51.1068
    [19] 江体乾. 关于非牛顿型流体边界层的研究. 物理学报, 1962, 18(4): 224-226. doi: 10.7498/aps.18.224
    [20] 林鸿荪. 片流边界层中气流及热转移. 物理学报, 1954, 10(1): 71-88. doi: 10.7498/aps.10.71
计量
  • 文章访问数:  5437
  • PDF下载量:  406
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-14
  • 修回日期:  2013-10-23
  • 刊出日期:  2014-02-05

/

返回文章
返回