搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C在不同位置掺杂(n,n)型BN纳米管的密度泛函研究

王艳丽 苏克和 颜红侠 王欣

引用本文:
Citation:

C在不同位置掺杂(n,n)型BN纳米管的密度泛函研究

王艳丽, 苏克和, 颜红侠, 王欣

Investigation of C atom doped armchair (n, n) single walled BN nanotubes with density functional theory

Wang Yan-Li, Su Ke-He, Yan Hong-Xia, Wang Xin
PDF
导出引用
  • 用密度泛函B3LYP/3-21G(d)方法,并利用周期边界条件,研究了C原子在不同位置掺杂的(n,n)型BN纳米管的结构与性质. 揭示了几何结构特征、能量、稳定性和能带结构的变化规律. 研究了C 原子在B位或N 位置分别掺杂的BN 纳米管的模型(掺杂浓度x=1/(4n),n=3–9),部分B位掺杂管发生了变形,而所有N位掺杂管则几乎不变形,而且N 位比B位的掺杂能更低(管更稳定),B位掺杂管的能隙为1.054–2.411 eV,N掺杂管的能隙为0.252–1.207 eV,所有掺杂管都是半导体,所有掺杂管都具有直接带隙.
    Structures and properties of single walled (n,n) BN nanotubes doped with the C atom at different positions are studied by the DFT B3LYP/3-21G(d) theoretical method combined with the one-dimensional (1D) periodic boundary conditions. Their structure parameters, energies, stabilities, band structures and the energy gaps are explored. For the BN nanotubes doped with the C atom at different positions, the C atom concentrations x=1/4n (n=3–9) are examined. It is found that the N site tubes are almost undistorted and more stable. The band gaps are within 1.054–2.411 eV for the C atom doped at the B sites, and those are narrower and within 0.252–1.207 eV for the N sites. All of the doped tubes are shown to be semiconducting and have direct gaps.
    • 基金项目: 国家自然科学基金(批准号:50572089)和西北工业大学基础基金(批准号:JC201269)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50572089) and the Basic Research Foundation of Northwestern Polytechnical University, China (Grant No. JC201269).
    [1]

    Yoshiyuki M, Angel R, Marvin L C, Steven G L 1994 Phys. Rev. B 50 4976

    [2]

    Blase X, Charlier J C, Vita A D, Car R 1997 Phys. Lett. 70 197

    [3]

    Chen Y, Barnard J C, Palmer R E, Watanabe M O, Sasaki T 1999 Phys. Rev. Lett. 83 2406

    [4]

    Bai X D, Guo J D, Yu J, Wang E G, Yuan J, Zhou W Z 2000 Appl. Phys. Lett. 76 2624

    [5]

    Bai X D, Wang E G, Yu J, Yang H 2000 Appl. Phys. Lett. 77 67

    [6]

    Terrones M, Benito A M, Manteca-Diego C, Hsu W K, Osman O I, Hare J P, Reid D G, Terrones H, Cheetham A K, Prassides K, Kroto H W, Walton D R M 1996 Chem. Phys. Lett. 257 576

    [7]

    Louchev O A, Sato Y, Kanda H, Bando Y 2000 Appl. Phys. Lett. 77 1446

    [8]

    Azevedo S, Rosas A, Machado M, Kaschny J R, Chacham H 2013 J. Solid State Chem. 197 254

    [9]

    Li F, Xia Y Y, Zhao M W, Liu X D, Huang B, Ji Y J, Song C 2006 Phys. Lett. A 357 369

    [10]

    Guo C S, Fan W J, Zhang R Q 2006 Solid State Commun. 137 246

    [11]

    Mahmoud M 2009 Physica E 41 883

    [12]

    Zhao J X, Dai B Q 2004 Mater. Chem. Phys. 88 244

    [13]

    Wang Y L, Su K H, Wang X, Liu Y 2011 Acta Phys. Sin. 60 098111 (in Chinese) [王艳丽, 苏克和, 王欣, 刘艳 2011 物理学报 60 098111]

    [14]

    Wang Y L, Zhang J P, Su K H, Wang X, Liu Y, Sun X 2012 Chin. Phys. B 12 060301

    [15]

    Wang Y L, Su K H, Wang X, Liu Y, Ren H J, Xiao J 2012 Chem. Phys. Lett. 532 90

    [16]

    Frisch M J, Trucks G W, Schlegel H B, et al 2009 Gaussian 09 Revision A.02, Gaussian, Inc., Wallingford CT, 2009

    [17]

    Truhlar D G, Isaacson A D, Garrett B C 1985 Theory of Chemical Reaction Dynamics (New York: New York Press) p65

  • [1]

    Yoshiyuki M, Angel R, Marvin L C, Steven G L 1994 Phys. Rev. B 50 4976

    [2]

    Blase X, Charlier J C, Vita A D, Car R 1997 Phys. Lett. 70 197

    [3]

    Chen Y, Barnard J C, Palmer R E, Watanabe M O, Sasaki T 1999 Phys. Rev. Lett. 83 2406

    [4]

    Bai X D, Guo J D, Yu J, Wang E G, Yuan J, Zhou W Z 2000 Appl. Phys. Lett. 76 2624

    [5]

    Bai X D, Wang E G, Yu J, Yang H 2000 Appl. Phys. Lett. 77 67

    [6]

    Terrones M, Benito A M, Manteca-Diego C, Hsu W K, Osman O I, Hare J P, Reid D G, Terrones H, Cheetham A K, Prassides K, Kroto H W, Walton D R M 1996 Chem. Phys. Lett. 257 576

    [7]

    Louchev O A, Sato Y, Kanda H, Bando Y 2000 Appl. Phys. Lett. 77 1446

    [8]

    Azevedo S, Rosas A, Machado M, Kaschny J R, Chacham H 2013 J. Solid State Chem. 197 254

    [9]

    Li F, Xia Y Y, Zhao M W, Liu X D, Huang B, Ji Y J, Song C 2006 Phys. Lett. A 357 369

    [10]

    Guo C S, Fan W J, Zhang R Q 2006 Solid State Commun. 137 246

    [11]

    Mahmoud M 2009 Physica E 41 883

    [12]

    Zhao J X, Dai B Q 2004 Mater. Chem. Phys. 88 244

    [13]

    Wang Y L, Su K H, Wang X, Liu Y 2011 Acta Phys. Sin. 60 098111 (in Chinese) [王艳丽, 苏克和, 王欣, 刘艳 2011 物理学报 60 098111]

    [14]

    Wang Y L, Zhang J P, Su K H, Wang X, Liu Y, Sun X 2012 Chin. Phys. B 12 060301

    [15]

    Wang Y L, Su K H, Wang X, Liu Y, Ren H J, Xiao J 2012 Chem. Phys. Lett. 532 90

    [16]

    Frisch M J, Trucks G W, Schlegel H B, et al 2009 Gaussian 09 Revision A.02, Gaussian, Inc., Wallingford CT, 2009

    [17]

    Truhlar D G, Isaacson A D, Garrett B C 1985 Theory of Chemical Reaction Dynamics (New York: New York Press) p65

计量
  • 文章访问数:  5239
  • PDF下载量:  343
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-08
  • 修回日期:  2013-11-01
  • 刊出日期:  2014-02-05

/

返回文章
返回