搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁化天体准直流中非理想效应的实验室研究

陶弢

引用本文:
Citation:

磁化天体准直流中非理想效应的实验室研究

陶弢

Laboratory study of non-ideal effects in magnetically collimated astrophysical outflows

Tao Tao
PDF
HTML
导出引用
  • 磁准直是塑造天体外流形貌的重要机制, 它的有效性已经在激光等离子体实验中被无量纲验证. 本文在现有磁准直射流研究框架的基础上, 综合实验与模拟, 通过改变激光等离子体烧蚀靶材引入不同冷却和耗散强度, 以观察这些非理想效应对准直流形态的影响. 使用低原子序数靶时, 烧蚀外流和外加强磁场的相互作用满足理想磁流体条件, 外流形成了抗磁空腔和沿磁场延展的射流; 而采用高原子序数靶时, 准直结构被磁扩散破坏, 强烈的冷却使得外流停滞, 形成与靶面分离的弱准直磁化密度团. 无量纲分析表明, 磁扩散对实验室等离子体准直形态的破坏, 有可能推广解释原恒星射流在大尺度上的消散; 而强耗散等离子体展现的弱准直腔与密度堆积, 有可能用来类比行星状星云中的弱极化椭球形腔体, 以及腔体头部的发光团簇. 本文通过考察实验室磁化等离子体演化, 支持了非理想效应能够塑造天体外流的理论猜想, 对研究非相对论性天体外流形态的形成机制具有重要参考意义.
    Central outflow’s collimation by magnetic field is an important theoretical mechanism for explaining the astrophysical objects’ morphology formation, and its credibility has been tested in many laser plasma experiments in a dimensionless manner. This article introduces integrated simulation and experiment work based on the present laboratory magnetically collimated jet framework, to explore how non-ideal terms’ strength including radiative cooling and magnetic diffusion from different targets can affect the outflow shape. The interaction between outflow from a target with low atomic number and external field satisfies the ideal magneto-hydrodynamic conditions, and the outflow shape results in diamagnetic cavity and jet; on the other hand, a heavy element target brings strong magnetic diffusion that destroys the collimation structure, together with the stagnation of outflow introduced by radiative cooling, and outflow shape results in weakly collimated hemisphere near the target and a detached magnetized density clump. The detailed dimensionless analysis shows that the large-scale dissipation of jets in young stellar objects can possibly be an analog of the laboratory jet’s magnetic diffusion breakup, also similar structures like the loosely collimated lobes and bright ansaes in planetary nebula can be observed in highly diffusive laboratory outflows. This article shows for the first time that a series of non-relativistic astronomical outflows’ dynamic behaviors can be explained by the non-ideal magneto-hydrodynamic evolution of laboratory plasmas.
      通信作者: 陶弢, tt397396@mail.ustc.edu.cn
    • 基金项目: 中国科学院先导专项(批准号: XDB16000000)、国家自然科学基金(批准号: 11475171)和科学挑战计划(批准号: TZ2016005)资助的课题
      Corresponding author: Tao Tao, tt397396@mail.ustc.edu.cn
    • Funds: Project supported by Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB16000000), the National Natural Science Foundation of China (Grant No. 11475171), and Science Challenge Project, China (Grant No. TZ2016005)
    [1]

    Bally J 2016 Annu. Rev. Astron. Astrophys. 54 491Google Scholar

    [2]

    Balick B, Frank A 2002 Annu. Rev. Astron. Astrophys. 40 439Google Scholar

    [3]

    Blandford R, Payne D 1982 Mon. Not. R. Astron. Soc. 199 883Google Scholar

    [4]

    Spruit H, Foglizzo T, Stehle R 1997 Mon. Not. R. Astron. Soc. 288 333Google Scholar

    [5]

    García-Segura G 1997 Astrophys. J. Lett. 489 L189Google Scholar

    [6]

    García-Segura G, Taam R E, Ricker P M 2020 arXiv preprint arXiv: 2003.06073

    [7]

    Blondin J M, Fryxell B A, Konigl A 1990 Astrophys. J. 360 370Google Scholar

    [8]

    Fendt C, Čemeljić M 2002 Astron. Astrophys. 395 1045Google Scholar

    [9]

    Remington B A, Arnett D, et al. 1999 Science 284 1488Google Scholar

    [10]

    Drake R 1999 J. Geophys. Res. Space Phys. 104 14505Google Scholar

    [11]

    Takabe H 2001 Prog. Theor. Phys. Supp. 143 202Google Scholar

    [12]

    Lebedev S, Chittenden J, Beg F, et al. 2002 Astrophys. J. 564 113Google Scholar

    [13]

    Albertazzi B, Ciardi A, Nakatsutsumi M, et al. 2014 Science 346 325Google Scholar

    [14]

    Behera N, Singh R, Kumar A 2015 Phys. Lett. A 379 2215Google Scholar

    [15]

    Ramsey J P, Clarke D A 2019 Mon. Not. R. Astron. Soc. 484 2364Google Scholar

    [16]

    Fryxell B, Olson K, Ricker P, Timmes F, Zingale M, Lamb D, MacNeice P, Rosner R, Truran J, Tufo H 2000 Astrophys. J. Suppl. S. 131 273Google Scholar

    [17]

    Braginskii S 1965 Rev. Plasma Phys. 1 205

    [18]

    Heltemes T, Moses G 2012 Comput. Phys. Commun. 183 2629Google Scholar

    [19]

    Eidmann K 1994 Laser Part. Beams 12 223Google Scholar

    [20]

    Fabbro R, Max C, Fabre E 1985 Phys. Fluids 28 1463Google Scholar

    [21]

    Huba J D 2006 Nrl plasma formulary. Tech. rep. Naval Research Lab Washington DC Plasma Physic Div.

    [22]

    Ryutov D, Drake R, Kane J, Liang E, Remington B, Wood-Vasey W 1999 Astrophys. J. 518 821Google Scholar

    [23]

    Ryutov D, Drake R, Remington B 2000 Astrophys. J. Suppl. S. 127 465Google Scholar

    [24]

    Lee C F, Li Z Y, Codella C, Ho P T, Podio L, Hirano N, Shang H, Turner N J, Zhang Q 2018 Astrophys. J. 856 14Google Scholar

    [25]

    Le Gouellec V J, Hull C L, Maury A J, et al. 2019 Astrophys. J. 885 106Google Scholar

    [26]

    Witt A N, Vijh U P, Hobbs L, Aufdenberg J P, Thorburn J A, York D G 2009 Astrophys. J. 693 1946Google Scholar

    [27]

    Vlemmings W 2013 Proc. Int. Astron. Union 9 389

    [28]

    Sahai R, Vlemmings W, Gledhill T, et al. 2017 Astrophys. J. Lett. 835 L13Google Scholar

    [29]

    Shakura N I, Sunyaev R A 1973 Astron. Astrophys. 24 337

    [30]

    Frank A, Gardiner T A, Delemarter G, Lery T, Betti R 1999 Astrophys. J. 524 947Google Scholar

  • 图 1  激光打击固体靶产生等离子体在8 T磁场中的电子密度时间演化, 按三列分别为相对激光上升沿延时5 ns、10 ns、15 ns. 使用的靶材料有(a) PE碳氢靶; (b) Si硅靶; (c) Ta钽靶. 激光沿R = 0轴由上至下入射, 聚焦于柱形靶水平端面中心R = 0, Z = 0处. 初始磁场方向与激光平行, 并均匀充满计算域

    Fig. 1.  Electron density evolution of laser-ablated solid target plasma embedded in 8 Tesla of external magnetic field, three rows correspond to 5 ns, 10 ns, 15 ns delay from laser rising edge respectively. Solid target materials are (a) Polyethylene target; (b) silicon target; (c) tantalum target. Laser incident along R = 0 axis from top to the bottom, focus at the center of the flat end surface of target cylinder where R = 0 and Z = 0. Initial field is parallel to the laser direction, and uniformly distributed across the domain.

    图 2  硅等离子外流的纹影成像, 相对激光上升沿延时10 ns. 灰度图计数随当地等离子体密度梯度增加而增加

    Fig. 2.  Schlieren image of the silicon plasma outflow, 10 ns delay relative to the rising edge of laser. Gray scale count increase as the local plasma density gradient becomes larger.

    图 3  硅和钽靶等离子体在10 ns延时左右的电子面密度飞秒干涉诊断.

    Fig. 3.  Electron area number density of Silicon and Tantalum target around 10 ns delay, obtained by femtosecond interferometry.

    图 4  等离子体外流在5 ns延迟时刻, 对称轴上的纵向流速(+Z为正方向)、电子温度、平均电离度数值, 单幅图含碳氢、硅、钽靶结果

    Fig. 4.  Line-out plot of plasma poloidal velocity (positive value along +Z direction), electron density and average ionization along outflow symmetry axis at 5 ns delay, individual values from CH, silicon and tantalum are included.

    图 5  计算域内10 ns时的洛伦兹力(左半伪彩, 数值为负表示指向腔内)、磁力线状态(左半流线)、辐射能量密度(右半伪彩). 靶材依次为(a)碳氢靶; (b)硅靶; (c)钽靶. 虚线标识的是靶等离子体的边界

    Fig. 5.  The Lorentz force (pseudocolor image on the left half, negative value indicates force pointing towards inside of the cavity), magnetic field lines (streamlines on the left half) and radiation energy density (pseudocolor image on the right half) status inside the simulation domain at 10 ns. Target materials are (a) Polyethylene; (b) silicon; (c) tantalum respectively. Dashed lines indicate the boundary of target materials.

    图 6  (a)典型原恒星系统HH34的射电观测图像, 大角度外流包裹着准直射流, 射流从核心星近区发出, 延伸至2.0 × 104 au距离消散(原图版权归属于ESO, 本文作者添加注释); (b)拥有点对称双极化腔体的行星状星云M2-9, 内侧椭球腔顶部有增强的发光结构“ansaes”(原图版权归属于ESA/Hubble & NASA, Judy Schmidt, 本文作者添加注释); (c)实验室等离子体从抗磁射流到磁化密度堆积的转变, 部分结构与天体形态有相似性

    Fig. 6.  (a) Radio observation of a classical young stellar object HH34, the collimated jet is embedded inside a wide-angle outflow component, the jet originated from the inner region near the central star and extend 2.0 × 104 au of distance before termination (original image by ESO, annotated by author of this article); (b) planetary nebula M2-9 possesses a pair of point-symmetry bi-polar lobe cavities, with bright “ansaes” at the inside tips of the elliptical cavity shells (original image by ESA/Hubble & NASA, Acknowledgement: Judy Schmidt, annotated by author of this article); (c) laboratory plasma transformation from diamagnetic jet to magnetized density clump, structures show similarity with astrophysical objects.

    表 1  实验室等离子体与相关天体外流动力学参数及无量纲参数对比

    Table 1.  Dynamics and dimensionless parameters comparison between laboratory plasma and related astronomical outflows

    参数名称碳氢靶硅靶钽靶YSOPN
    空间尺度/cm0.10.10.1
    特征流速/km·s–1300250100100500
    磁场强度/Gauss8.0 × 1048.0 × 1048.0 × 1040.010.01
    离子密度/cm–32.0 × 10175.0 × 10163.0 × 1017106106
    温度/eV12080200.030.01
    离子拉莫尔半径Li/cm0.010.0060.0051.8 × 1031.0 × 103
    电子碰撞时间τe/s1.0 × 10–106.0 × 10–101.0 × 10–121.6 × 10–43.7 × 10–5
    特征冷却时间τcool/s1.6 × 10–62.8 × 10–79.0 × 10–9
    冷却强度/C470700.9~1 $ \ll 1 $
    磁雷诺数Rm100120.42.244
    Peclet数Pe0.150.961221.0 × 10116.9 × 1014
    下载: 导出CSV
  • [1]

    Bally J 2016 Annu. Rev. Astron. Astrophys. 54 491Google Scholar

    [2]

    Balick B, Frank A 2002 Annu. Rev. Astron. Astrophys. 40 439Google Scholar

    [3]

    Blandford R, Payne D 1982 Mon. Not. R. Astron. Soc. 199 883Google Scholar

    [4]

    Spruit H, Foglizzo T, Stehle R 1997 Mon. Not. R. Astron. Soc. 288 333Google Scholar

    [5]

    García-Segura G 1997 Astrophys. J. Lett. 489 L189Google Scholar

    [6]

    García-Segura G, Taam R E, Ricker P M 2020 arXiv preprint arXiv: 2003.06073

    [7]

    Blondin J M, Fryxell B A, Konigl A 1990 Astrophys. J. 360 370Google Scholar

    [8]

    Fendt C, Čemeljić M 2002 Astron. Astrophys. 395 1045Google Scholar

    [9]

    Remington B A, Arnett D, et al. 1999 Science 284 1488Google Scholar

    [10]

    Drake R 1999 J. Geophys. Res. Space Phys. 104 14505Google Scholar

    [11]

    Takabe H 2001 Prog. Theor. Phys. Supp. 143 202Google Scholar

    [12]

    Lebedev S, Chittenden J, Beg F, et al. 2002 Astrophys. J. 564 113Google Scholar

    [13]

    Albertazzi B, Ciardi A, Nakatsutsumi M, et al. 2014 Science 346 325Google Scholar

    [14]

    Behera N, Singh R, Kumar A 2015 Phys. Lett. A 379 2215Google Scholar

    [15]

    Ramsey J P, Clarke D A 2019 Mon. Not. R. Astron. Soc. 484 2364Google Scholar

    [16]

    Fryxell B, Olson K, Ricker P, Timmes F, Zingale M, Lamb D, MacNeice P, Rosner R, Truran J, Tufo H 2000 Astrophys. J. Suppl. S. 131 273Google Scholar

    [17]

    Braginskii S 1965 Rev. Plasma Phys. 1 205

    [18]

    Heltemes T, Moses G 2012 Comput. Phys. Commun. 183 2629Google Scholar

    [19]

    Eidmann K 1994 Laser Part. Beams 12 223Google Scholar

    [20]

    Fabbro R, Max C, Fabre E 1985 Phys. Fluids 28 1463Google Scholar

    [21]

    Huba J D 2006 Nrl plasma formulary. Tech. rep. Naval Research Lab Washington DC Plasma Physic Div.

    [22]

    Ryutov D, Drake R, Kane J, Liang E, Remington B, Wood-Vasey W 1999 Astrophys. J. 518 821Google Scholar

    [23]

    Ryutov D, Drake R, Remington B 2000 Astrophys. J. Suppl. S. 127 465Google Scholar

    [24]

    Lee C F, Li Z Y, Codella C, Ho P T, Podio L, Hirano N, Shang H, Turner N J, Zhang Q 2018 Astrophys. J. 856 14Google Scholar

    [25]

    Le Gouellec V J, Hull C L, Maury A J, et al. 2019 Astrophys. J. 885 106Google Scholar

    [26]

    Witt A N, Vijh U P, Hobbs L, Aufdenberg J P, Thorburn J A, York D G 2009 Astrophys. J. 693 1946Google Scholar

    [27]

    Vlemmings W 2013 Proc. Int. Astron. Union 9 389

    [28]

    Sahai R, Vlemmings W, Gledhill T, et al. 2017 Astrophys. J. Lett. 835 L13Google Scholar

    [29]

    Shakura N I, Sunyaev R A 1973 Astron. Astrophys. 24 337

    [30]

    Frank A, Gardiner T A, Delemarter G, Lery T, Betti R 1999 Astrophys. J. 524 947Google Scholar

  • [1] 徐明, 徐立清, 赵海林, 李颖颖, 钟国强, 郝保龙, 马瑞瑞, 陈伟, 刘海庆, 徐国盛, 胡建生, 万宝年, EAST团队. EAST反磁剪切qmin$\approx $2条件下磁流体力学不稳定性及内部输运垒物理实验结果简述. 物理学报, 2023, 72(21): 215204. doi: 10.7498/aps.72.20230721
    [2] 李尚卿, 王伟民, 李玉同. 基于OpenFOAM的磁流体求解器的开发和应用. 物理学报, 2022, 71(11): 119501. doi: 10.7498/aps.71.20212432
    [3] 史慧敏, 莫润阳, 王成会. 磁流体管内“泡对”在磁声复合场中的振荡行为. 物理学报, 2022, 71(8): 084302. doi: 10.7498/aps.71.20212150
    [4] 徐佳伟, 许传喜, 张瑞田, 朱小龙, 冯文天, 赵冬梅, 梁贵云, 郭大龙, 高永, 张少锋, 苏茂根, 马新文. 态选择电荷交换实验测量以及对天体物理软X射线发射模型的检验. 物理学报, 2021, 70(8): 080702. doi: 10.7498/aps.70.20201685
    [5] 石启陈, 赵志杰, 张焕好, 陈志华, 郑纯. 流向磁场抑制Kelvin-Helmholtz不稳定性机理研究. 物理学报, 2021, 70(15): 154702. doi: 10.7498/aps.70.20202024
    [6] 沙莎, 张焕好, 陈志华, 郑纯, 吴威涛, 石启陈. 纵向磁场抑制Richtmyer-Meshkov不稳定性机理. 物理学报, 2020, 69(18): 184701. doi: 10.7498/aps.69.20200363
    [7] 张扬, 薛创, 丁宁, 刘海风, 宋海峰, 张朝辉, 王贵林, 孙顺凯, 宁成, 戴自换, 束小建. 聚龙一号装置磁驱动准等熵压缩实验的一维磁流体力学模拟. 物理学报, 2018, 67(3): 030702. doi: 10.7498/aps.67.20171920
    [8] 赵勇, 蔡露, 李雪刚, 吕日清. 基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器. 物理学报, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [9] 陈木凤, 李翔, 牛小东, 李游, Adnan, 山口博司. 两个非磁性颗粒在磁流体中的沉降现象研究. 物理学报, 2017, 66(16): 164703. doi: 10.7498/aps.66.164703
    [10] 杨政权, 李成, 雷奕安. 锥形腔等离子体压缩的磁流体模拟. 物理学报, 2016, 65(20): 205201. doi: 10.7498/aps.65.205201
    [11] 耿滔, 吴娜, 董祥美, 高秀敏. 基于磁流体光子晶体的可调谐近似零折射率研究. 物理学报, 2016, 65(1): 014213. doi: 10.7498/aps.65.014213
    [12] 裴晓星, 仲佳勇, 张凯, 郑无敌, 梁贵云, 王菲鹿, 李玉同, 赵刚. 实验室天体物理的验证特例:W43A磁喷流. 物理学报, 2014, 63(14): 145201. doi: 10.7498/aps.63.145201
    [13] 苗银萍, 姚建铨. 基于磁流体填充微结构光纤的温度特性研究. 物理学报, 2013, 62(4): 044223. doi: 10.7498/aps.62.044223
    [14] 唐洁, 吴学兵. 基于Logistic回归模型的Blazar天体的分类. 物理学报, 2011, 60(11): 119801. doi: 10.7498/aps.60.119801
    [15] 刘桂雄, 徐晨, 张沛强, 吴庭万. 永磁体在磁流体中的磁力学建模及自悬浮位置可控性. 物理学报, 2009, 58(3): 2005-2010. doi: 10.7498/aps.58.2005
    [16] 刘桂雄, 蒲尧萍, 徐 晨. 磁流体中Helmholtz和Kelvin力的界定. 物理学报, 2008, 57(4): 2500-2503. doi: 10.7498/aps.57.2500
    [17] 刘 云, 张 雄, 郑永刚, 王孝民, 鲍玉英. Blazar天体的光变和偏振. 物理学报, 2007, 56(9): 5558-5563. doi: 10.7498/aps.56.5558
    [18] 乔秀梅, 张国平, 张覃鑫. 模拟卢瑟福实验室的实验以检验理论模拟. 物理学报, 2006, 55(3): 1181-1185. doi: 10.7498/aps.55.1181
    [19] 夏江帆, 张军, 张杰. 用激光等离子体实验对天体物理动力学过程进行模拟的可行性研究. 物理学报, 2001, 50(5): 994-1000. doi: 10.7498/aps.50.994
    [20] 金展, 张杰. 对天体等离子体中铝发射谱的理论研究. 物理学报, 2001, 50(2): 365-368. doi: 10.7498/aps.50.365
计量
  • 文章访问数:  4005
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-15
  • 修回日期:  2020-06-18
  • 上网日期:  2020-10-16
  • 刊出日期:  2020-10-05

/

返回文章
返回