搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LuTaO4相变及结构

邢雪 王小飞 张庆礼 孙贵花 刘文鹏 孙敦陆 殷绍唐

引用本文:
Citation:

LuTaO4相变及结构

邢雪, 王小飞, 张庆礼, 孙贵花, 刘文鹏, 孙敦陆, 殷绍唐

Phase transition and structure of LuTaO4

Xing Xue, Wang Xiao-Fei, Zhang Qing-Li, Sun Gui-Hua, Liu Wen-Peng, Sun Dun-Lu, Yin Shao-Tang
PDF
导出引用
  • LuTaO4是最高密度的闪烁体基质, 研究它的结构及其相变对单晶制备具有指导意义. 用固相法制备了Lu2O3和Ta2O5摩尔比为1:1时在不同温度下形成的多晶粉末, 用X射线衍射及Rietveld全谱拟合研究了多晶粉末的物相和结构. 结果表明, Lu2O3: Ta2O5摩尔比为1:1的样品在1740 ℃时合成的物相为M'-LuTaO4, 在1800 ℃时为M'-LuTaO4和M-LuTaO4的混合物, 在1840 ℃时全部转变为M-LuTaO4. 当温度升高到2058 ℃时, 样品呈熔融状态, 对淬火得到的样品进行结构精修, 给出了M-LuTaO4, Lu3TaO7和Ta2O5的晶胞和原子坐标参数, 它们的重量比分别占78.1%, 18.9%和3.0%. 这些结果为制备以LuTaO4为基质的高密度闪烁体单晶具有参考价值.
    Since LuTaO4 is a scintillator host with the highest density, it is important to investigate the structure and phase transition for its single crystal preparation. The polycrystalline formed by the mixture of Lu2O3:Ta2O5 with the molar ratio 1:1 is prepared by solid state reaction method at different temperatures. The phase transitions and structures of the polycrystalline powders are investigated by X-ray diffraction and Rietveld refinement. The results show that the polycrystalline has a single phase M'-LuTaO4 when sample is prepared at 1740 ℃, it presents a mixture phase of M'-LuTaO4 and M-LuTaO4 at 1800 ℃, and it displays a single phase M-LuTaO4 at 1840 ℃. The sample is melted when the calcined temperature is 2058 ℃, the melt is quenched and the polycrystalline is the mixture of M-LuTaO4, Lu3TaO7 and Ta2O5, whose structural parameters, including the lattice parameters, atomic fraction coordinates, etc. are obtained by Rietveld refinement to their X-ray diffraction pattern, and the results show their weight ratios are 78.1%, 18.9% and 3.0%, respectively. These results are valuable for the single crystal growth of the heavy scintillators with the host LuTaO4.
    • 基金项目: 国家自然科学基金(批准号: 51172236, 91122021, 51272254, 51102239, 61205173)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51172236, 91122021, 51272254, 51102239, 61205173).
    [1]

    Guerassimova N, Garnier N, Dujardin C, Petrosyan A G, Pedrini C 2001 Chem. Phys. Lett. 339 197

    [2]

    Belogurov S, Bressi G, Carugno G, Moszynski M, Czarnacki W, Kapusta M, Szawlowski M 2003 Nucl. Insrum. Methods Phys. Res. A 496 385

    [3]

    Nikl M, Yoshikawa A, Vedda A, Fukuda T 2006 J. Cryst. Growth 292 416

    [4]

    Xia Y J, Guan Z S, He T 2014 Chin. Phys. B 23 087701

    [5]

    Chen X B, Li S, Ding X L, Yang X D, Liu Q L, Gao Y, Sun P, Yang G J 2014 Chin. Phys. B 23 087809

    [6]

    Issler S L, Torardi C C 1995 J. Alloys Compd. 229 54

    [7]

    Zhao J T, Wang H, Jin T T, Wang C Y, Hu G Q 2010 Materials China 10 40 (in Chinese) [赵景泰, 王红, 金腾腾, 王晨阳, 胡关钦 2010 中国材料进展 10 40]

    [8]

    Gao J Y, Zhang Q L, Sun D L, Liu W P, Yang H J, Wang X F, Yin S T 2013 Acta Phys. Sin. 62 013102 (in Chinese) [高进云, 张庆礼, 孙敦陆, 刘文鹏, 杨华军, 王小飞, 殷绍唐 2013 物理学报 62 013102]

    [9]

    Zhang Q L, Ning K J, Ding L H, Liu W P, Sun D L, Jiang H H, Yin S T 2013 Chin. Phys. B 22 067105

    [10]

    Brixner L H 1987 Mater. Chem Phys. 16 253

    [11]

    Blasse G, Bail A 1970 J. Lumin. 3 109

    [12]

    Brixner L H 1987 Inorg. Chim. Acta 140 97

    [13]

    Liu W P, Zhang Q L, Ding L H, Sun D L, Luo J Q, Yin S T 2009 J. Alloys Compd. 474 226

    [14]

    Chen S W, Liu X L, Gu M, Ni C, Liu B, Huang S M 2013 J. Lumin. 140 1

    [15]

    Zhao Y P, Zhang Q L, Guo C X, Shi C S, Peng F, Yang H J, Sun D L, Luo J Q, Liu W P 2014 J. Lumin. 155 165

    [16]

    Yokogawa Y, Yoshimura M 1991 J. Am. Ceram. Soc. 74 2077

    [17]

    Yokogawa Y, Ishizawa N, Smiya S, Yoshimura M 1991 J. Am. Ceram. Soc. 74 2073

    [18]

    Yokogawa Y, Yoshimura M 1999 J. Am. Ceram. Soc. 82 1585

    [19]

    Siqueira K P F, Carvalho G B, Dias A 2011 Dalton Trans. 40 9454

    [20]

    Titov Y A, Sych A M, Sokolov A N, Kapshuk A A, Markiv V Y, Belyavina N M 2000 J. Alloys Compd. 311 252

    [21]

    Yokogawa Y, Yoshimura M, Smiya S 1988 Solid State Ionics 28–30 1250

    [22]

    Xiao J, Zhang Q L, Zhou W L, Tan X L, Liu W P, Yin S T, Jiang H H, Xia S D, Guo C X 2010 Acta Phys. Sin. 59 7306 (in Chinese) [肖进, 张庆礼, 周文龙, 谭晓靓, 刘文鹏, 殷绍唐, 江海河, 夏上达, 郭常新 2010 物理学报 59 7306]

    [23]

    Ning K J, Zhang Q L, Zhou P Y, Yang H J, Xu L, Sun D L, Yin S T 2012 Acta Phys. Sin. 61 128102 (in Chinese) [宁凯杰, 张庆礼, 周鹏宇, 杨华军, 许兰, 孙敦陆, 殷绍唐 2012 物理学报 61 128102]

    [24]

    Larson A C, Von D R B 1994 General Structure Analysis System (Los Alamos: Los Alamos National Laboratory) LAUR 86

  • [1]

    Guerassimova N, Garnier N, Dujardin C, Petrosyan A G, Pedrini C 2001 Chem. Phys. Lett. 339 197

    [2]

    Belogurov S, Bressi G, Carugno G, Moszynski M, Czarnacki W, Kapusta M, Szawlowski M 2003 Nucl. Insrum. Methods Phys. Res. A 496 385

    [3]

    Nikl M, Yoshikawa A, Vedda A, Fukuda T 2006 J. Cryst. Growth 292 416

    [4]

    Xia Y J, Guan Z S, He T 2014 Chin. Phys. B 23 087701

    [5]

    Chen X B, Li S, Ding X L, Yang X D, Liu Q L, Gao Y, Sun P, Yang G J 2014 Chin. Phys. B 23 087809

    [6]

    Issler S L, Torardi C C 1995 J. Alloys Compd. 229 54

    [7]

    Zhao J T, Wang H, Jin T T, Wang C Y, Hu G Q 2010 Materials China 10 40 (in Chinese) [赵景泰, 王红, 金腾腾, 王晨阳, 胡关钦 2010 中国材料进展 10 40]

    [8]

    Gao J Y, Zhang Q L, Sun D L, Liu W P, Yang H J, Wang X F, Yin S T 2013 Acta Phys. Sin. 62 013102 (in Chinese) [高进云, 张庆礼, 孙敦陆, 刘文鹏, 杨华军, 王小飞, 殷绍唐 2013 物理学报 62 013102]

    [9]

    Zhang Q L, Ning K J, Ding L H, Liu W P, Sun D L, Jiang H H, Yin S T 2013 Chin. Phys. B 22 067105

    [10]

    Brixner L H 1987 Mater. Chem Phys. 16 253

    [11]

    Blasse G, Bail A 1970 J. Lumin. 3 109

    [12]

    Brixner L H 1987 Inorg. Chim. Acta 140 97

    [13]

    Liu W P, Zhang Q L, Ding L H, Sun D L, Luo J Q, Yin S T 2009 J. Alloys Compd. 474 226

    [14]

    Chen S W, Liu X L, Gu M, Ni C, Liu B, Huang S M 2013 J. Lumin. 140 1

    [15]

    Zhao Y P, Zhang Q L, Guo C X, Shi C S, Peng F, Yang H J, Sun D L, Luo J Q, Liu W P 2014 J. Lumin. 155 165

    [16]

    Yokogawa Y, Yoshimura M 1991 J. Am. Ceram. Soc. 74 2077

    [17]

    Yokogawa Y, Ishizawa N, Smiya S, Yoshimura M 1991 J. Am. Ceram. Soc. 74 2073

    [18]

    Yokogawa Y, Yoshimura M 1999 J. Am. Ceram. Soc. 82 1585

    [19]

    Siqueira K P F, Carvalho G B, Dias A 2011 Dalton Trans. 40 9454

    [20]

    Titov Y A, Sych A M, Sokolov A N, Kapshuk A A, Markiv V Y, Belyavina N M 2000 J. Alloys Compd. 311 252

    [21]

    Yokogawa Y, Yoshimura M, Smiya S 1988 Solid State Ionics 28–30 1250

    [22]

    Xiao J, Zhang Q L, Zhou W L, Tan X L, Liu W P, Yin S T, Jiang H H, Xia S D, Guo C X 2010 Acta Phys. Sin. 59 7306 (in Chinese) [肖进, 张庆礼, 周文龙, 谭晓靓, 刘文鹏, 殷绍唐, 江海河, 夏上达, 郭常新 2010 物理学报 59 7306]

    [23]

    Ning K J, Zhang Q L, Zhou P Y, Yang H J, Xu L, Sun D L, Yin S T 2012 Acta Phys. Sin. 61 128102 (in Chinese) [宁凯杰, 张庆礼, 周鹏宇, 杨华军, 许兰, 孙敦陆, 殷绍唐 2012 物理学报 61 128102]

    [24]

    Larson A C, Von D R B 1994 General Structure Analysis System (Los Alamos: Los Alamos National Laboratory) LAUR 86

  • [1] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程. 物理学报, 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [2] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [3] 陈连平, 陈贻斌, 曹俊. Ca0.64WO4:Eu0.24陶瓷的高温相变机理及其对发光性能的影响. 物理学报, 2014, 63(21): 218102. doi: 10.7498/aps.63.218102
    [4] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变. 物理学报, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [5] 刘丹阳, 王亚伟, 王仙, 何昆, 张兴娟, 杨春信. 氧相变换热器内压力波动的混沌特性分析. 物理学报, 2012, 61(15): 150506. doi: 10.7498/aps.61.150506
    [6] 余本海, 陈东. α-, β-和γ-Si3N4 高压下的电子结构和相变: 第一性原理研究. 物理学报, 2012, 61(19): 197102. doi: 10.7498/aps.61.197102
    [7] 孙光爱, 王虹, 汪小琳, 陈波, 常丽丽, 刘耀光, 盛六四, Woo W, Kang MY. 原位中子衍射研究两相NiTi合金的微力学相互作用和相变机理. 物理学报, 2012, 61(22): 226102. doi: 10.7498/aps.61.226102
    [8] 岳廷, 何灏, 张星, 李广. La0.55Ca0.45MnO3的电子密度分布变温X射线衍射测量. 物理学报, 2011, 60(5): 057501. doi: 10.7498/aps.60.057501
    [9] 季正华, 曾祥华, 岑洁萍, 谭明秋. ZnSe相变、电子结构的第一性原理计算. 物理学报, 2010, 59(2): 1219-1224. doi: 10.7498/aps.59.1219
    [10] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响. 物理学报, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [11] 邵建立, 秦承森, 王裴. 动态压缩下马氏体相变力学性质的微观研究. 物理学报, 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [12] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用. 物理学报, 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [13] 明保全, 王矜奉, 臧国忠, 王春明, 盖志刚, 杜 鹃, 郑立梅. 铌酸钾钠基无铅压电陶瓷的X射线衍射与相变分析. 物理学报, 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
    [14] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [15] 王 晖, 刘金芳, 何 燕, 陈 伟, 王 莺, L. Gerward, 蒋建中. 高压下纳米锗的状态方程与相变. 物理学报, 2007, 56(11): 6521-6525. doi: 10.7498/aps.56.6521
    [16] 谈国太, 陈正豪. La1-xTexMnO3晶格结构的X射线粉末衍射分析. 物理学报, 2007, 56(3): 1702-1706. doi: 10.7498/aps.56.1702
    [17] 刘 红, 王 慧. 双轴性向列相液晶的相变理论. 物理学报, 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
    [18] 汪金芝, 方庆清. 纳米Zn0.6CoxFe2.4-xO4晶粒的结构相变与磁性研究. 物理学报, 2004, 53(9): 3186-3190. doi: 10.7498/aps.53.3186
    [19] 羊新胜, 陈 敏, 王 豫. Tb4O7掺杂的WO3陶瓷的高温热电现象. 物理学报, 2003, 52(6): 1545-1548. doi: 10.7498/aps.52.1545
    [20] 郭立平, 成之绪, 韩甫田, 柳 义, 赵志祥. 粉末衍射谱图分解的模拟退火法. 物理学报, 2003, 52(11): 2842-2848. doi: 10.7498/aps.52.2842
计量
  • 文章访问数:  4524
  • PDF下载量:  375
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-02
  • 修回日期:  2014-08-20
  • 刊出日期:  2014-12-05

/

返回文章
返回