搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

背景辐射对被动测距精度影响分析及实验研究

张瑜 刘秉琦 闫宗群 华文深 李刚

引用本文:
Citation:

背景辐射对被动测距精度影响分析及实验研究

张瑜, 刘秉琦, 闫宗群, 华文深, 李刚

Influence of background radiation on the precision of passive ranging

Zhang Yu, Liu Bing-Qi, Yan Zong-Qun, Hua Wen-Shen, Li Gang
PDF
导出引用
  • 为了分析背景辐射对基于氧气吸收被动测距精度的影响, 利用高光谱成像光谱仪作为测量设备, 卤钨灯作为目标, 进行了实验研究.首先, 介绍了基于氧气吸收被动测距技术的基本原理; 接着, 利用高光谱成像仪采集了夜间不同距离下的卤钨灯目标光谱分布, 根据氧气吸收被动测距原理, 计算了目标的氧气吸收率, 建立了氧气吸收率与路径关系的模型; 然后采集并计算了晴天2360 m处目标在不同时刻下的氧气吸收率分布, 根据所建模型, 利用白天测得的氧气吸收率数据解算距离并分析测距误差, 最终获得背景辐射对被动测距误差的影响.结果表明: 依据所建立的模型, 白天测距误差最大6.74%, 并且随着太阳高度角变小, 所处背景变暗, 误差逐渐变小, 到夜间时最小相对误差仅1.10%, 可达到较高测距精度.
    Experimental program is designed to analyze the influence of background radiation on the accuracy of passive ranging based on oxygen spectral absorption; an acousto-optic tunable hyper spectral imaging spectrometer is used as the measuring device and a halogen light as the target. Firstly, the basic principles and experimental program of passive ranging technology based on oxygen absorption are introduced; then the halogen light spectral distribution at different distances during the night is collected using the acousto-optic tunable hyper spectral imaging spectrometer. Oxygen absorption rate is calculated and the relationship model between the oxygen absorption rate and the path is established according to the principle of oxygen spectrum absorption passive ranging. Then the oxygen absorption rate of the target is collected and calculated at the distance of 2360 m for different time. The measuring ranges during the day are solved by the model and the errors are analyzed, the influence of background radiation on the passive ranging is gained finally. Results show that according to the model, the maximum ranging error is 6.74% during the daytime, and the error becomes smaller with the elevation angle of the sun becoming smaller and the background darker. The results give 1.10% ranging error during the nighttime.
    [1]

    Kalyuzhny N M, Alexandrov S N, Asanov E E 2002 Telecommunications and Radio Engin. 58 138

    [2]

    Lu Y, Feng Y S, Ling Y S, Qiao Y 2012 Optics and Precision Engineering 20 2680 (in Chinese) [路远, 冯云松, 凌永顺, 乔亚 2012 光学精密工程 20 2680]

    [3]

    Yang D G, Xiao S P 2009 Infrared and Laser Engineering 38 946 (in Chinese) [杨德贵, 肖顺平 2009 红外与激光工程 38 946]

    [4]

    Hawks M R 2006 Ph.D. Dissertation (Ohio: Air Force Institute of Technology)

    [5]

    Anderson J R, Szczukowski L M, Abel B R, Johnson K E, Zavala E O 2009 Project Air Cyclops (Ohio: Air Force Institute of Technology)

    [6]

    Anderson J R 2010 M.S. Thesis (Ohio: Air Force Institute of Technology)

    [7]

    Vincent R A 2011 M.S. Thesis (Ohio: Air Force Institute of Technology)

    [8]

    An Y Q, Li J H, Wang Z B, Wang Z B 2013 Acta Phys.Sin 62 144210 (in Chinese) [安永泉, 李晋华, 王志斌, 王召巴 2013 物理学报 62 144210]

    [9]

    Yan Z Q, Liu B Q, Hua W S, Zhang Y 2013 Optics and Precision Engineering 21 2744 (in Chinese) [闫宗群, 刘秉琦, 华文深, 张瑜 2013 光学精密工程 21 2744]

    [10]

    Wang Z B, Zong P F, Li X 2013 Chinese Journal of Lasers 40 0815002 (in Chinese) [王志斌, 宗鹏飞, 李晓 2013 中国激光 40 0815002]

    [11]

    Li J H, Wang Z B, Chen Y Y, Zong P F, Zhang P F 2013 Laser & Infrared 43 1142 (in Chinese) [李晋华, 王志斌, 陈媛媛, 宗鹏飞, 张鹏飞 2013 激光与红外 43 1142]

    [12]

    Zhang Z X, Shu X Z, Chu J H, Li Z 2012 J.Infrared Millim. Waves 31 203

    [13]

    Zong P F, Wang Z B, Zhang J L, Chen Y Y 2013 Laser Technology 37 174 (in Chinese) [宗鹏飞, 王志斌, 张记龙, 陈媛媛 2013 激光技术 37 174]

    [14]

    Yan Z Q, Liu B Q, Hua W S 2013 Optik 124 6450

    [15]

    Liu Z M, Liu W Q, Gao M G, Tong J J, Zhang T S, Xu L, Wei X L 2008 Chin. Phys. B 17 4184

    [16]

    Zhu X F, Lin Z X, Liu L M, Shao J Y, Gong W 2014 Acta Phys. Sin 63 174203 (in Chinese) [朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威 2014 物理学报 63 174203]

  • [1]

    Kalyuzhny N M, Alexandrov S N, Asanov E E 2002 Telecommunications and Radio Engin. 58 138

    [2]

    Lu Y, Feng Y S, Ling Y S, Qiao Y 2012 Optics and Precision Engineering 20 2680 (in Chinese) [路远, 冯云松, 凌永顺, 乔亚 2012 光学精密工程 20 2680]

    [3]

    Yang D G, Xiao S P 2009 Infrared and Laser Engineering 38 946 (in Chinese) [杨德贵, 肖顺平 2009 红外与激光工程 38 946]

    [4]

    Hawks M R 2006 Ph.D. Dissertation (Ohio: Air Force Institute of Technology)

    [5]

    Anderson J R, Szczukowski L M, Abel B R, Johnson K E, Zavala E O 2009 Project Air Cyclops (Ohio: Air Force Institute of Technology)

    [6]

    Anderson J R 2010 M.S. Thesis (Ohio: Air Force Institute of Technology)

    [7]

    Vincent R A 2011 M.S. Thesis (Ohio: Air Force Institute of Technology)

    [8]

    An Y Q, Li J H, Wang Z B, Wang Z B 2013 Acta Phys.Sin 62 144210 (in Chinese) [安永泉, 李晋华, 王志斌, 王召巴 2013 物理学报 62 144210]

    [9]

    Yan Z Q, Liu B Q, Hua W S, Zhang Y 2013 Optics and Precision Engineering 21 2744 (in Chinese) [闫宗群, 刘秉琦, 华文深, 张瑜 2013 光学精密工程 21 2744]

    [10]

    Wang Z B, Zong P F, Li X 2013 Chinese Journal of Lasers 40 0815002 (in Chinese) [王志斌, 宗鹏飞, 李晓 2013 中国激光 40 0815002]

    [11]

    Li J H, Wang Z B, Chen Y Y, Zong P F, Zhang P F 2013 Laser & Infrared 43 1142 (in Chinese) [李晋华, 王志斌, 陈媛媛, 宗鹏飞, 张鹏飞 2013 激光与红外 43 1142]

    [12]

    Zhang Z X, Shu X Z, Chu J H, Li Z 2012 J.Infrared Millim. Waves 31 203

    [13]

    Zong P F, Wang Z B, Zhang J L, Chen Y Y 2013 Laser Technology 37 174 (in Chinese) [宗鹏飞, 王志斌, 张记龙, 陈媛媛 2013 激光技术 37 174]

    [14]

    Yan Z Q, Liu B Q, Hua W S 2013 Optik 124 6450

    [15]

    Liu Z M, Liu W Q, Gao M G, Tong J J, Zhang T S, Xu L, Wei X L 2008 Chin. Phys. B 17 4184

    [16]

    Zhu X F, Lin Z X, Liu L M, Shao J Y, Gong W 2014 Acta Phys. Sin 63 174203 (in Chinese) [朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威 2014 物理学报 63 174203]

  • [1] 方波浪, 武俊杰, 王晟, 吴振杰, 李天植, 张洋, 杨鹏翎, 王建国. 基于物理信息神经网络的金属表面吸收率测量方法. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231453
    [2] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电模拟. 物理学报, 2022, 71(2): 025201. doi: 10.7498/aps.71.20211150
    [3] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电的模拟研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211150
    [4] 洪文鹏, 兰景瑞, 李浩然, 李博宇, 牛晓娟, 李艳. 基于时域有限差分法的核壳双金属纳米颗粒光吸收率反转行为. 物理学报, 2021, 70(20): 207801. doi: 10.7498/aps.70.20210602
    [5] 郝倩倩, 宗梦雨, 张振, 黄浩, 张峰, 刘杰, 刘丹华, 苏良碧, 张晗. 基于铋纳米片可饱和吸收被动调Q中红外单晶光纤激光器. 物理学报, 2020, 69(18): 184205. doi: 10.7498/aps.69.20200337
    [6] 李宁, 吕晓静, 翁春生. 基于光强与吸收率非线性同步拟合的吸收光谱测量方法. 物理学报, 2018, 67(5): 057801. doi: 10.7498/aps.67.20171905
    [7] 郑鑫, 武鹏飞, 饶瑞中. 天光背景下混浊大气中成像质量的分析方法. 物理学报, 2018, 67(8): 088701. doi: 10.7498/aps.67.20172625
    [8] 赵静, 余辉龙, 刘伟伟, 郭婧. 砷化镓光电阴极光谱响应与吸收率关系分析. 物理学报, 2017, 66(22): 227801. doi: 10.7498/aps.66.227801
    [9] 李晓曼, 张明辉, 张海刚, 朴胜春, 刘亚琴, 周建波. 一种基于模态匹配的浅海波导中宽带脉冲声源的被动测距方法. 物理学报, 2017, 66(9): 094302. doi: 10.7498/aps.66.094302
    [10] 李晓曼, 朴胜春, 张明辉, 刘亚琴, 周建波. 一种基于单水听器的浅海水下声源被动测距方法. 物理学报, 2017, 66(18): 184301. doi: 10.7498/aps.66.184301
    [11] 王冬, 郭良浩, 刘建军, 戚聿波. 一种基于warping变换的浅海脉冲声源被动测距方法. 物理学报, 2016, 65(10): 104302. doi: 10.7498/aps.65.104302
    [12] 朱良明, 李风华, 孙梅, 陈德胜. 基于频带分解和距离加权的单矢量水听器浅海被动测距方法研究. 物理学报, 2015, 64(15): 154303. doi: 10.7498/aps.64.154303
    [13] 李晋华, 王召巴, 王志斌, 张敏娟, 曹俊卿. 氧气A带吸收系数的温度依赖关系研究. 物理学报, 2014, 63(21): 214204. doi: 10.7498/aps.63.214204
    [14] 安永泉, 李晋华, 王志斌, 王召巴. 基于大气氧光谱吸收特性的单目单波段被动测距. 物理学报, 2013, 62(14): 144210. doi: 10.7498/aps.62.144210
    [15] 苏法刚, 梁静秋, 梁中翥, 朱万彬. 光辐射吸收材料表面形貌与吸收率关系研究. 物理学报, 2011, 60(5): 057802. doi: 10.7498/aps.60.057802
    [16] 司福祺, 谢品华, 窦科, 詹铠, 刘宇, 徐晋, 刘文清. 被动多轴差分吸收光谱大气气溶胶光学厚度监测方法研究. 物理学报, 2010, 59(4): 2867-2872. doi: 10.7498/aps.59.2867
    [17] 张端明, 李 莉, 李智华, 关 丽, 侯思普, 谭新玉. 靶材吸收率变化与烧蚀过程熔融前靶材温度分布. 物理学报, 2005, 54(3): 1283-1289. doi: 10.7498/aps.54.1283
    [18] 丁晓彬, 董晨钟. 超重元素Bh(Z=107)的激发态结构和共振吸收率的理论预言. 物理学报, 2004, 53(10): 3326-3329. doi: 10.7498/aps.53.3326
    [19] 蔺秀川, 邵天敏. 利用集总参数法测量材料对激光的吸收率. 物理学报, 2001, 50(5): 856-859. doi: 10.7498/aps.50.856
    [20] 傅柔励. Hg1-xCdxTe的低频吸收带. 物理学报, 1986, 35(10): 1299-1305. doi: 10.7498/aps.35.1299
计量
  • 文章访问数:  4878
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-10
  • 修回日期:  2014-07-22
  • 刊出日期:  2015-02-05

/

返回文章
返回