搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深过冷液态Al-Ni合金中枝晶与共晶生长机理

杨尚京 王伟丽 魏炳波

引用本文:
Citation:

深过冷液态Al-Ni合金中枝晶与共晶生长机理

杨尚京, 王伟丽, 魏炳波

Growth mechanisms of dendrites and eutectics within undercooled liquid Al-Ni alloys

Yang Shang-Jing, Wang Wei-Li, Wei Bing-Bo
PDF
导出引用
  • 在自由落体条件下实现了液态Al-4 wt.%Ni亚共晶、Al-5.69 wt.%Ni共晶和Al-8 wt.%Ni过共晶合金的深过冷与快速凝固. 计算表明, (Al+Al3Ni)规则纤维状共晶的共生区是4.8–15 wt.%Ni成分范围内不闭合区域, 且强烈偏向Al3Ni相一侧. 实验发现, 随液滴直径的减小, 合金熔体冷却速率和过冷度增大, (Al)和Al3Ni相枝晶与其共晶的竞争生长引发了Al-Ni 共晶型合金微观组织演化. 在快速凝固过程中, Al-4 wt.%Ni亚共晶合金发生完全溶质截留效应, 从而形成亚稳单相固溶体. 当过冷度超过58K时, Al-5.69 wt.%Ni 共晶合金呈现从纤维状共晶向初生(Al) 枝晶为主的亚共晶组织演变. 若过冷度连续增大, Al-8 wt.%Ni过共晶合金可以形成全部纤维状共晶组织, 并且最终演变为粒状共晶.
    Al-4 wt.%Ni (hypoeutectic), Al-5.69 wt.%Ni (eutectic) and Al-8 wt.%Ni (hypereutectic) liquid alloys are highly undercooled and rapidly solidified under free fall condition. Theoretical calculations indicate that the coupled zone of (Al+Al3 Ni) fibrous eutectic is an unclosed region in the composition range from 4.8 to 15 wt.% Ni, which is strongly skewed towards the Al3 Ni phase side. It is found that the cooling rate and undercooling of liquid alloys would increase as the droplet size decreases. Then the microstructural evolution of Al-Ni alloys will be induced by the competitive growth of (Al) dendrite, Al3 Ni dendrite, and (Al+Al3 Ni) eutectic. During the rapid solidification of Al-4 wt.%Ni hypoeutectic alloy, complete solute trapping effect occurs and then causes the formation of metastable segregationless (Al) solid solution phase. When the droplet undercooling exceeds 58 K, the structural morphology of Al-5.69 wt.%Ni eutectic alloy shows a transition from (Al+Al3 Ni) fibrous eutectic to primary phase (Al)-dominated hypoeutectic structure. As the undercooling increases further, the fibrous eutectic becomes the unique microstructure of Al-8 wt.%Ni hypereutectic alloy, and finally evolves into a kind of granular eutectic.
    • 基金项目: 国家自然科学基金(批准号: 51371150, 51271150, 51101123)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51271150, 51371150, 51101123).
    [1]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [2]

    Matthews T S, Sawyer C, Ogletree D F, Liliental-Weber Z, Chrzan D C, Wu J Q 2012 Phy. Rev. Lett. 108 096102

    [3]

    Wu M W, Xiong S M 2011 Acta Phys. Sin. 60 058103 (in Chinese) [吴孟武, 熊守美 2011 物理学报 60 058103]

    [4]

    Pasturel A, Tasci E S, Sluiter M H F, Jakse N 2010 Phys. Rev. B 81

    [5]

    Yang Y J, Wang J C, Zhang Y X, Zhu Y C, Yang G C 2009 Acta Phys. Sin. 2797 [杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓 2009 物理学报 58 2797]

    [6]

    Park J M, Sohn S W, Kim D H, Kim K B, Kim W T, Eckert J 2008 Appl. Phys. Lett. 92 091910

    [7]

    Lu Y P, Lin X, Yang G C, Li J J, Zhou Y H 2008 J. Appl. Phys. 104 013535

    [8]

    Zhou S, Li J F, Liu L, Zhou Y H 2009 Chin. Phys. B 18 1674

    [9]

    Zhu Y C, Wang J C, Yang G C, Zhao D W 2007 Chin. Phys. 16 805

    [10]

    Lv Y J, Wei B B 2003 Chin. Phys. Lett. 20 1379

    [11]

    Yang T Y, Wu S K, Shiue R K 2001 Intermetallics 9 341

    [12]

    Chrifi-Alaoui F Z, Nassik M, Mahdouk K, Gachon J C 2004 J. Alloy. Compd. 364 121

    [13]

    Silva B L, Araujo J C, Silva W S, Goulart P R, Garcia A, Spinelli J E 2011 Phil. Mag. Lett. 91 337

    [14]

    Chang J, Wang H P, Wei B 2008 Phil. Mag. Lett. 88 821

    [15]

    Nishiyama N, Takenaka, Inoue A 2006 Appl. Phys. Lett. 88 121908

    [16]

    Liu J, Zhao J Z, Hu Z Q 2006 Appl. Phys. Lett. 89 031903

    [17]

    Trivedi R, Magnin P, Kurz W 1987 Acta Metall. 35 971

    [18]

    Lipton J, Kurz W, Trivedi R 1987 Acta Metall. 35 957

    [19]

    Boetinger W J, Coriell S R, Trivedi R 1987 in: R. Mehrabian (Eds.), Proceedings of the Fourth Conference on Rapid Solidification Processing, Principles and Technologies, Claitors, Baton Rouge p13

    [20]

    Yan N, Wang W L, Dai F P, Wei B 2011 Acta Phys. Sin. 60 034602 (in Chinese) [闫娜, 王伟丽, 代富平, 魏炳波 2011 物理学报 60 034602]

    [21]

    Tournier S, Vinet B, Pasturel A, Ansara I, Desre P J 1998 Phys. Rev. B 57 3340

    [22]

    Cortella L, Vinet B, Desre P J, Pasturel A, Paxton A T, Vanschilfgaarde M 1993 Phy. Rev. Lett. 70 1469

    [23]

    Levi C G, Mehrabian R 1990 Metall. Trans. 21 59

    [24]

    Aziz M J 1982 J. Appl. Phys. 53 1158

  • [1]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906

    [2]

    Matthews T S, Sawyer C, Ogletree D F, Liliental-Weber Z, Chrzan D C, Wu J Q 2012 Phy. Rev. Lett. 108 096102

    [3]

    Wu M W, Xiong S M 2011 Acta Phys. Sin. 60 058103 (in Chinese) [吴孟武, 熊守美 2011 物理学报 60 058103]

    [4]

    Pasturel A, Tasci E S, Sluiter M H F, Jakse N 2010 Phys. Rev. B 81

    [5]

    Yang Y J, Wang J C, Zhang Y X, Zhu Y C, Yang G C 2009 Acta Phys. Sin. 2797 [杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓 2009 物理学报 58 2797]

    [6]

    Park J M, Sohn S W, Kim D H, Kim K B, Kim W T, Eckert J 2008 Appl. Phys. Lett. 92 091910

    [7]

    Lu Y P, Lin X, Yang G C, Li J J, Zhou Y H 2008 J. Appl. Phys. 104 013535

    [8]

    Zhou S, Li J F, Liu L, Zhou Y H 2009 Chin. Phys. B 18 1674

    [9]

    Zhu Y C, Wang J C, Yang G C, Zhao D W 2007 Chin. Phys. 16 805

    [10]

    Lv Y J, Wei B B 2003 Chin. Phys. Lett. 20 1379

    [11]

    Yang T Y, Wu S K, Shiue R K 2001 Intermetallics 9 341

    [12]

    Chrifi-Alaoui F Z, Nassik M, Mahdouk K, Gachon J C 2004 J. Alloy. Compd. 364 121

    [13]

    Silva B L, Araujo J C, Silva W S, Goulart P R, Garcia A, Spinelli J E 2011 Phil. Mag. Lett. 91 337

    [14]

    Chang J, Wang H P, Wei B 2008 Phil. Mag. Lett. 88 821

    [15]

    Nishiyama N, Takenaka, Inoue A 2006 Appl. Phys. Lett. 88 121908

    [16]

    Liu J, Zhao J Z, Hu Z Q 2006 Appl. Phys. Lett. 89 031903

    [17]

    Trivedi R, Magnin P, Kurz W 1987 Acta Metall. 35 971

    [18]

    Lipton J, Kurz W, Trivedi R 1987 Acta Metall. 35 957

    [19]

    Boetinger W J, Coriell S R, Trivedi R 1987 in: R. Mehrabian (Eds.), Proceedings of the Fourth Conference on Rapid Solidification Processing, Principles and Technologies, Claitors, Baton Rouge p13

    [20]

    Yan N, Wang W L, Dai F P, Wei B 2011 Acta Phys. Sin. 60 034602 (in Chinese) [闫娜, 王伟丽, 代富平, 魏炳波 2011 物理学报 60 034602]

    [21]

    Tournier S, Vinet B, Pasturel A, Ansara I, Desre P J 1998 Phys. Rev. B 57 3340

    [22]

    Cortella L, Vinet B, Desre P J, Pasturel A, Paxton A T, Vanschilfgaarde M 1993 Phy. Rev. Lett. 70 1469

    [23]

    Levi C G, Mehrabian R 1990 Metall. Trans. 21 59

    [24]

    Aziz M J 1982 J. Appl. Phys. 53 1158

  • [1] 金英捷, 耿德路, 林茂杰, 胡亮, 魏炳波. 静电悬浮条件下液态Zr60Ni25Al15合金的热物理性质与快速凝固机制. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20232002
    [2] 徐山森, 常健, 翟斌, 朱先念, 魏炳波. 液态五元Zr57Cu20Al10Ni8Ti5合金的微观结构演变与非晶形成机制. 物理学报, 2023, 72(22): 226401. doi: 10.7498/aps.72.20231169
    [3] 武博文, 胡亮, 耿德路, 魏炳波. 液态Zr35Al23Ni22Gd20合金的亚稳相分离与双相非晶形成机理. 物理学报, 2023, 72(21): 216401. doi: 10.7498/aps.72.20231002
    [4] 徐山森, 常健, 吴宇昊, 沙莎, 魏炳波. 液态五元Ni-Zr-Ti-Al-Cu合金快速凝固过程的高速摄影研究. 物理学报, 2019, 68(19): 196401. doi: 10.7498/aps.68.20190910
    [5] 徐小花, 陈明文, 王自东. 各向异性表面张力对定向凝固中共晶生长形态稳定性的影响. 物理学报, 2018, 67(11): 118103. doi: 10.7498/aps.67.20180186
    [6] 李路远, 阮莹, 魏炳波. 液态三元Fe-Cr-Ni合金中快速枝晶生长与溶质分布规律. 物理学报, 2018, 67(14): 146101. doi: 10.7498/aps.67.20180062
    [7] 朱海哲, 阮莹, 谷倩倩, 闫娜, 代富平. 落管中Ni-Fe-Ti合金的快速凝固机理及其磁学性能. 物理学报, 2017, 66(13): 138101. doi: 10.7498/aps.66.138101
    [8] 陈克萍, 吕鹏, 王海鹏. 微重力条件下Cu-Zr共晶合金的液固相变研究. 物理学报, 2017, 66(6): 068101. doi: 10.7498/aps.66.068101
    [9] 谷倩倩, 阮莹, 代富平. 微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响. 物理学报, 2017, 66(10): 106401. doi: 10.7498/aps.66.106401
    [10] 魏绍楼, 黄陆军, 常健, 杨尚京, 耿林. 液态Ti-Al合金的深过冷与快速枝晶生长. 物理学报, 2016, 65(9): 096101. doi: 10.7498/aps.65.096101
    [11] 王小娟, 阮莹, 洪振宇. Al-Cu-Ge合金的热物理性质与快速凝固规律研究. 物理学报, 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [12] 闫娜, 王伟丽, 代富平, 魏炳波. 三元Co-Cu-Pb偏晶合金的快速凝固组织形成规律研究. 物理学报, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [13] 李志强, 王伟丽, 翟薇, 魏炳波. 快速凝固Fe62.1Sn27.9Si10合金的分层组织和偏晶胞形成机理. 物理学报, 2011, 60(10): 108101. doi: 10.7498/aps.60.108101
    [14] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [15] 殷涵玉, 鲁晓宇. 深过冷Cu60Sn30Pb10偏晶合金的快速凝固. 物理学报, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [16] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [17] 梅策香, 阮 莹, 代富平, 魏炳波. 深过冷Ag-Cu-Ge三元共晶合金的相组成与凝固特征. 物理学报, 2007, 56(2): 988-993. doi: 10.7498/aps.56.988
    [18] 臧渡洋, 王海鹏, 魏炳波. 深过冷三元Ni-Cu-Co合金的快速枝晶生长. 物理学报, 2007, 56(8): 4804-4809. doi: 10.7498/aps.56.4804
    [19] 刘向荣, 王 楠, 魏炳波. 无容器条件下Cu-Pb偏晶的快速生长. 物理学报, 2005, 54(4): 1671-1678. doi: 10.7498/aps.54.1671
    [20] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能. 物理学报, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
计量
  • 文章访问数:  6425
  • PDF下载量:  702
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-21
  • 修回日期:  2014-10-02
  • 刊出日期:  2015-03-05

/

返回文章
返回