搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于β-warping变换算子的被动声源距离估计方法

戚聿波 周士弘 张仁和 任云

引用本文:
Citation:

一种基于β-warping变换算子的被动声源距离估计方法

戚聿波, 周士弘, 张仁和, 任云

A passive source ranging method using the waveguide-invariant-warping operator

Qi Yu-Bo, Zhou Shi-Hong, Zhang Ren-He, Ren Yun
PDF
导出引用
  • 基于浅海简正波水平波数差与波导不变量之间的关系, 本文提出了一种适用于水平不变浅海声波导中接收信号自相关函数的频域卷绕变换算子. 该算子可以将接收信号自相关函数中的简正波互相关成分变换为时域上可分离的脉冲序列, 且脉冲序列的相对延迟时间包含声源距离信息. 利用已知距离的引导声源, 由单水听器记录的脉冲信号即可实现被动声源距离估计. 对仿真和实验获得的脉冲信号数据处理结果验证了该变换算子用于被动声源距离估计的有效性.
    Based on the relationship between the horizontal wavenumber difference of two modes and the waveguide invariant in a range-independent shallow water waveguide, a frequency-warping operator is proposed for the autocorrelation function of the received signal. This operator can transform the cross-correlation functions of two different modes in the signal autocorrelation function into separable impulsive sequences. With a guide source providing the dispersive characteristics of the waveguide, the source range can be extracted from the relative delay time of the impulsive sequence using a single hydrophone. The availability of the waveguide-invariant-warping operator in the passive source range estimation is verified by simulated and experimental data.
    • 基金项目: 国家自然科学基金(批准号: 11174312, 10974218, 11125420)和中国科学院百人计划基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174312, 10974218, 11125420), and the ‘100 Talents Project’ of Chinese Academy of Sciences.
    [1]

    Baraniuk R G, Jones D L 1995 IEEE Trans. Signal Processing 43 2269

    [2]

    Touzé G L, Nicolas B, Mars J I, Lacoume J 2009 IEEE Trans. Signal Processing 57 1783

    [3]

    Bonnel J, Nicolas B, Mars J I, Walker S C 2010 J. Acoust. Soc. Am. 128 719

    [4]

    Lopatka M, Touzé G L, Nicolas B, Cristol X, Mars J I, Fattaccioli D 2010 EURASIP Journal on Advances in Signal Processing 2010 304103

    [5]

    Niu H Q, Zhang R H, Li Z L, Guo Y G, He L 2013 Chin. Phys. Lett. 30 084301

    [6]

    Zhou S H, Niu H Q, Ren Y, He L 2013 Sci. Sin. Phys. Mech. Astron. 43 68 (in Chinese) [周士弘, 牛海强, 任云, 何利 2013 中国科学:物理学, 力学, 天文学 43 68]

    [7]

    Zhou S H, Qi Y B, Ren Y 2014 Sci. China-Phys. Mech. Astron. 57 225

    [8]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 物理学报 63 044303]

    [9]

    Niu H Q, Zhang R H, Li Z L 2014 Sci. China-Phys. Mech. Astron. 57 424

    [10]

    Bonnel J, Nicolas B, Mars J I, Fattaccioli D 2009 Published in OCEANS 2009, MTS/IEEE Biloxi - Marine Technology for Our Future: Global and Local Challenges Biloxi, October 26-29 2009 p497 

    [11]

    Wang N 2006 Presentation in the 9th Western Pacific Acoustics Conference Seoul, June 26-28 2006

    [12]

    Gao D Z, Wang N, Wang H Z 2010 J. Comput. Acoust. 18 245

    [13]

    D'Spain G L, Kuperman W A 1999 J. Acoust. Soc. Am. 106 2454

    [14]

    Grachev G 1993 Acoust. Phys. 39 33

    [15]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) p408

    [16]

    Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) p1

  • [1]

    Baraniuk R G, Jones D L 1995 IEEE Trans. Signal Processing 43 2269

    [2]

    Touzé G L, Nicolas B, Mars J I, Lacoume J 2009 IEEE Trans. Signal Processing 57 1783

    [3]

    Bonnel J, Nicolas B, Mars J I, Walker S C 2010 J. Acoust. Soc. Am. 128 719

    [4]

    Lopatka M, Touzé G L, Nicolas B, Cristol X, Mars J I, Fattaccioli D 2010 EURASIP Journal on Advances in Signal Processing 2010 304103

    [5]

    Niu H Q, Zhang R H, Li Z L, Guo Y G, He L 2013 Chin. Phys. Lett. 30 084301

    [6]

    Zhou S H, Niu H Q, Ren Y, He L 2013 Sci. Sin. Phys. Mech. Astron. 43 68 (in Chinese) [周士弘, 牛海强, 任云, 何利 2013 中国科学:物理学, 力学, 天文学 43 68]

    [7]

    Zhou S H, Qi Y B, Ren Y 2014 Sci. China-Phys. Mech. Astron. 57 225

    [8]

    Qi Y B, Zhou S H, Zhang R H, Zhang B, Ren Y 2014 Acta Phys. Sin. 63 044303 (in Chinese) [戚聿波, 周士弘, 张仁和, 张波, 任云 2014 物理学报 63 044303]

    [9]

    Niu H Q, Zhang R H, Li Z L 2014 Sci. China-Phys. Mech. Astron. 57 424

    [10]

    Bonnel J, Nicolas B, Mars J I, Fattaccioli D 2009 Published in OCEANS 2009, MTS/IEEE Biloxi - Marine Technology for Our Future: Global and Local Challenges Biloxi, October 26-29 2009 p497 

    [11]

    Wang N 2006 Presentation in the 9th Western Pacific Acoustics Conference Seoul, June 26-28 2006

    [12]

    Gao D Z, Wang N, Wang H Z 2010 J. Comput. Acoust. 18 245

    [13]

    D'Spain G L, Kuperman W A 1999 J. Acoust. Soc. Am. 106 2454

    [14]

    Grachev G 1993 Acoust. Phys. 39 33

    [15]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) p408

    [16]

    Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre) p1

计量
  • 文章访问数:  5408
  • PDF下载量:  311
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-06
  • 修回日期:  2014-10-23
  • 刊出日期:  2015-04-05

/

返回文章
返回