搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集成光波导静态傅里叶变换微光谱仪分辨率倍增方法

李金洋 逯丹凤 祁志美

引用本文:
Citation:

集成光波导静态傅里叶变换微光谱仪分辨率倍增方法

李金洋, 逯丹凤, 祁志美

End-face reflected LiNbO3 waveguide based stationary miniature Fourier transform spectrometer with two-fold enhanced spectral resolution

Li Jin-Yang, Lu Dan-Feng, Qi Zhi-Mei
PDF
导出引用
  • 研究了铌酸锂波导静态傅里叶变换微光谱仪分辨率的影响因素, 并在此基础上提出了一种采用端面反射铌酸锂波导结构提高微光谱仪光谱分辨率的方法. 该方法容许在减小铌酸锂波导静态傅里叶变换微光谱仪尺寸的同时, 使两干涉臂间最大光程差增大1倍, 从而使其光谱分辨率实现倍增. 采用商业化铌酸锂波导电光调制器构建了一个傅里叶变换光谱仪原理样机, 并对样机在不同波长下的光谱分辨率进行了测量, 结果指出对调制器加载端面反射结构后获得的光谱分辨率是加载端面反射结构前的2倍, 与理论分析结果完全一致. 这种光波导端面反射结构制作工艺简单, 易于实现, 是一种提高集成光波导静态傅里叶微光谱仪分辨率的有效手段.
    Miniature Fourier transform spectrometer (FTS) has attracted considerable interest because of its important application in spaceborne spectroscopy and as a portable analytical tool for rapid on-site chemical/biochemical detection. In a previous paper, a stationary miniature FTS constructed with an electro-optic (EO) modulator of a LiNbO3 (LN) waveguide Mach-Zehnder interferometer (MZI) containing push-pull electrodes was demonstrated. This stationary miniature FTS is operated in the near-infrared region with either nonlinear or linear scanning of the modulating voltage. The simple and mirrorless structure renders the device compact, vibration resistant, and cost-effective. However, the spectral resolution of the proposed prototype FTS was not satisfactory due to the limited optical pathlength difference (OPD), thereby limiting the device application. To improve its spectral resolution, the factors affecting the spectral resolution of the LN waveguide-based FTS is investigated in this paper. Findings show that the spectral resolution is inversely proportional to the maximum OPD, which is proportional to the length of the EO modulating region. A simple method for two-fold enhancement of the spectral resolution of the FTS is proposed based on the end-face reflection in LN waveguide interferometer. With the end-face reflection geometry the guided mode can propagate back and forth in the LN waveguide, making the mode passing through the EO modulating region twice and consequently leading to two times enhancement of the OPD. Therefore, the end-face reflection geometry enables to double the maximum OPD of the interferometer without increasing the device size and thus to offer the device a two-fold enhanced spectral resolution according to the equation for FTS resolution. Two prototypes of FTS with and without the end-face reflection structure are prepared using the same commercial LN waveguide EO modulator. The spectral resolutions in terms of the full-width at half maximum (FWHM) at different wavelengths for the two prototypes of FTS are measured using a series of distributed feedback lasers. The FWHM measured at a specific wavelength with the end-face reflection structure is half as large as that obtained without the end-face reflection structure. Experimental results are in excellent agreement with the theoretical data, demonstrating the applicability of the end-face reflection method to the spectral resolution enhancement.
    • 基金项目: 国家自然科学基金(批准号:60978042,61377064)、北京市自然科学基金(批准号:3131001)、中国科学院科研装备研制项目(批准号:YZ201106)和国民核生化灾害防护国家重点实验室开放基金(批准号:SKLNBC2014-11)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60978042, 61377064), the Natural Science Foundation of Beijing, China (Grant No. 3131001), the Research Equipment Development Project of Chinese Academy of Sciences (Grant No. YZ201106), and the State Key Laboratory of NBC Protection for Civilian (Grant No. SKLNBC2014-11).
    [1]

    Coarer E L, Blaize S, Benech P, Stefanon I, Morand A, Lérondel G, Leblond G, Kern P, Fedeli J M, Royer P 2007 Nat. Photonics 1 473

    [2]

    Mendes L S, Oliveira F C C, Suarez P A Z, Rubim J C 2003 Anal. Chim. Acta 493 219

    [3]

    Li X X, Gao M G, Xu L, Tong J J, Wei X L, Feng M C, Jin L, Wang Y P, Shi J G 2013 Acta Phys. Sin. 62 030202 (in Chinese) [李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国 2013 物理学报 62 030202]

    [4]

    Dong L, Sun G S, Zheng L, Liu X F, Zhang F, Yan G G, Zhao W S, Wang L, Li X G, Wang Z G 2012 Chin. Phys. B 21 047802

    [5]

    Manzardo O, Herzig H P, Marxer C R, Rooij N F 1999 Opt. Lett. 24 1705

    [6]

    Wallrabe U, Solf C, Mohr J, Korvink J G 2005 Sens. Actuators A 123-124 459

    [7]

    Ataman Ç, Urey H 2009 Sens. Actuators A 151 9

    [8]

    Yu K, Lee D, Krishnamoorthy U, Park N, Solgaard O Sens. Actuators A 130-131 523

    [9]

    Chen J J, Zhu Y, Liu B, Wei W, Wang N, Zhang J 2013 Chin. Opt. Lett. 11 053003

    [10]

    Li J Y, Lu D F, Qi Z M 2014 Opt. Lett. 39 3923

    [11]

    Li J Y, Yao Y Q, Wu J J, Qi Z M 2013 Acta Optica Sinica 33 196 (in Chinese) [李金洋, 要彦清, 吴建杰, 祁志美 2013 光学学报 33 196]

    [12]

    Griffiths P R, Haseth J A D 2007 Fourier Transform Infrared Spectrometry (New York:Wiley-Interscience) pp26-30

    [13]

    Li J, Zhu J P, Zhang Y Y, Liu H, Hou X 2013 Acta Phys. Sin. 62 024205 (in Chinese) [李杰, 朱京平, 张云尧, 刘宏, 侯洵 2013 物理学报 62 024205]

    [14]

    Kauppinen J K 1984 Appl. Spectrosc. 38 778

    [15]

    Lacan A, Bréon F M, Rosak A, Brachet F, Roucayrol L, Etcheto P, Casteras C, Salan Y 2010 Opt. Express 18 8311

    [16]

    Jovanov V, Bunte E, Stiebig H, Knipp D 2011 Opt. Lett. 36 274

    [17]

    Kauppinen J K, Moffatt D J, Cameron D G, Mantsch H H 1981 Appl. Opt. 20 1866

    [18]

    Li J Y, Lu D F, Qi Z M 2014 Acta Phys. Sin. 63 077801 (in Chinese) [李金洋, 逯丹凤, 祁志美 2014 物理学报 63 077801]

    [19]

    Wu Y K, Wang W S 2008 J. Lightwave Technol. 26 286

  • [1]

    Coarer E L, Blaize S, Benech P, Stefanon I, Morand A, Lérondel G, Leblond G, Kern P, Fedeli J M, Royer P 2007 Nat. Photonics 1 473

    [2]

    Mendes L S, Oliveira F C C, Suarez P A Z, Rubim J C 2003 Anal. Chim. Acta 493 219

    [3]

    Li X X, Gao M G, Xu L, Tong J J, Wei X L, Feng M C, Jin L, Wang Y P, Shi J G 2013 Acta Phys. Sin. 62 030202 (in Chinese) [李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国 2013 物理学报 62 030202]

    [4]

    Dong L, Sun G S, Zheng L, Liu X F, Zhang F, Yan G G, Zhao W S, Wang L, Li X G, Wang Z G 2012 Chin. Phys. B 21 047802

    [5]

    Manzardo O, Herzig H P, Marxer C R, Rooij N F 1999 Opt. Lett. 24 1705

    [6]

    Wallrabe U, Solf C, Mohr J, Korvink J G 2005 Sens. Actuators A 123-124 459

    [7]

    Ataman Ç, Urey H 2009 Sens. Actuators A 151 9

    [8]

    Yu K, Lee D, Krishnamoorthy U, Park N, Solgaard O Sens. Actuators A 130-131 523

    [9]

    Chen J J, Zhu Y, Liu B, Wei W, Wang N, Zhang J 2013 Chin. Opt. Lett. 11 053003

    [10]

    Li J Y, Lu D F, Qi Z M 2014 Opt. Lett. 39 3923

    [11]

    Li J Y, Yao Y Q, Wu J J, Qi Z M 2013 Acta Optica Sinica 33 196 (in Chinese) [李金洋, 要彦清, 吴建杰, 祁志美 2013 光学学报 33 196]

    [12]

    Griffiths P R, Haseth J A D 2007 Fourier Transform Infrared Spectrometry (New York:Wiley-Interscience) pp26-30

    [13]

    Li J, Zhu J P, Zhang Y Y, Liu H, Hou X 2013 Acta Phys. Sin. 62 024205 (in Chinese) [李杰, 朱京平, 张云尧, 刘宏, 侯洵 2013 物理学报 62 024205]

    [14]

    Kauppinen J K 1984 Appl. Spectrosc. 38 778

    [15]

    Lacan A, Bréon F M, Rosak A, Brachet F, Roucayrol L, Etcheto P, Casteras C, Salan Y 2010 Opt. Express 18 8311

    [16]

    Jovanov V, Bunte E, Stiebig H, Knipp D 2011 Opt. Lett. 36 274

    [17]

    Kauppinen J K, Moffatt D J, Cameron D G, Mantsch H H 1981 Appl. Opt. 20 1866

    [18]

    Li J Y, Lu D F, Qi Z M 2014 Acta Phys. Sin. 63 077801 (in Chinese) [李金洋, 逯丹凤, 祁志美 2014 物理学报 63 077801]

    [19]

    Wu Y K, Wang W S 2008 J. Lightwave Technol. 26 286

  • [1] 马涛, 马家赫, 刘恒, 田永生, 刘少晖, 王芳. 一种电光可调的铌酸锂/钠基表面等离子体定向耦合器. 物理学报, 2022, 71(5): 054205. doi: 10.7498/aps.71.20211217
    [2] 曾祥昱, 王薇, 刘诚, 单昌功, 谢宇, 胡启后, 孙友文, PolyakovAlexander Viktorovich. 利用地基高分辨率傅里叶变换红外光谱技术探测大气氟氯烃气体CCl2F2的时空变化特征. 物理学报, 2021, 70(20): 200201. doi: 10.7498/aps.70.20210640
    [3] 张腾, 李大为, 王韬, 崔勇, 张天雄, 王丽, 张杰, 徐光. 基于铌酸锂双折射晶体的皮秒拍瓦激光系统光谱整形. 物理学报, 2021, 70(8): 084202. doi: 10.7498/aps.70.20201719
    [4] 王洪亮, 吕金光, 梁静秋, 梁中翥, 秦余欣, 王维彪. 中波红外微型静态傅里叶变换光谱仪的设计与分析. 物理学报, 2018, 67(6): 060702. doi: 10.7498/aps.67.20172599
    [5] 狄慧鸽, 华杭波, 张佳琪, 张战飞, 华灯鑫, 高飞, 汪丽, 辛文辉, 赵恒. 高光谱分辨率激光雷达鉴频器的设计与分析. 物理学报, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [6] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱. 物理学报, 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [7] 陈成, 梁静秋, 梁中翥, 吕金光, 秦余欣, 田超, 王维彪. 准直系统热光学效应对静态傅里叶变换红外光谱仪光谱复原的影响研究. 物理学报, 2015, 64(13): 130703. doi: 10.7498/aps.64.130703
    [8] 田园, 孙友文, 谢品华, 刘诚, 刘文清, 刘建国, 李昂, 胡仁志, 王薇, 曾议. 地基高分辨率傅里叶变换红外光谱反演环境大气中的CH4浓度变化. 物理学报, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [9] 李金洋, 逯丹凤, 祁志美. 铌酸锂波导电光重叠积分因子的波长依赖特性分析. 物理学报, 2014, 63(7): 077801. doi: 10.7498/aps.63.077801
    [10] 陈火耀, 刘正坤, 王庆博, 易涛, 杨国洪, 洪义麟, 付绍军. 软X射线全息平焦场光栅的条纹弯曲现象及其对光谱分辨率的影响. 物理学报, 2014, 63(23): 234203. doi: 10.7498/aps.63.234203
    [11] 侯建平, 赵晨阳, 杨楠, 郝建苹, 赵建林. 微纳光纤端面反射特性的实验测量方法. 物理学报, 2013, 62(14): 144216. doi: 10.7498/aps.62.144216
    [12] 李杰, 朱京平, 张云尧, 刘宏, 侯洵. 光谱分辨率可调的新型干涉成像光谱技术研究. 物理学报, 2013, 62(2): 024205. doi: 10.7498/aps.62.024205
    [13] 吕金光, 梁静秋, 梁中翥. 空间调制傅里叶变换光谱仪分束器色散特性研究. 物理学报, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [14] 吕金光, 梁静秋, 梁中翥. 窄带傅里叶变换光谱仪中平稳高斯噪声的理论分析. 物理学报, 2012, 61(7): 070704. doi: 10.7498/aps.61.070704
    [15] 王波, 梁中翥, 孔延梅, 梁静秋, 付建国, 郑莹, 朱万彬, 吕金光, 王维彪, 裴舒, 张军. 用于微型光谱仪的硅基多级微反射镜设计与制作研究. 物理学报, 2010, 59(2): 907-912. doi: 10.7498/aps.59.907
    [16] 相里斌, 袁艳, 吕群波. 傅里叶变换光谱成像仪光谱传递函数研究. 物理学报, 2009, 58(8): 5399-5405. doi: 10.7498/aps.58.5399
    [17] 师丽红, 阎文博. 纯铌酸锂晶体红外光谱的低温研究. 物理学报, 2009, 58(7): 4987-4991. doi: 10.7498/aps.58.4987
    [18] 杜华栋, 黄思训, 石汉青. 高光谱分辨率遥感资料通道最优选择方法及试验. 物理学报, 2008, 57(12): 7685-7692. doi: 10.7498/aps.57.7685
    [19] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 1.5μm波段基于级联二阶非线性的铌酸锂光波导全光波长变换的理论分析. 物理学报, 2002, 51(1): 91-98. doi: 10.7498/aps.51.91
    [20] 麦振洪, 周堂. 铌酸锶钠锂单晶折射率及透光曲线的测量. 物理学报, 1981, 30(9): 1259-1263. doi: 10.7498/aps.30.1259
计量
  • 文章访问数:  5072
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-17
  • 修回日期:  2014-12-05
  • 刊出日期:  2015-06-05

/

返回文章
返回