搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

数字显微全息重建图像的景深扩展研究

阳静 吴学成 吴迎春 姚龙超 陈玲红 邱坤赞 岑可法

引用本文:
Citation:

数字显微全息重建图像的景深扩展研究

阳静, 吴学成, 吴迎春, 姚龙超, 陈玲红, 邱坤赞, 岑可法

Study on extending the depth of field in reconstructed image for a micro digital hologram

Yang Jing, Wu Xue-Cheng, Wu Ying-Chun, Yao Long-Chao, Chen Ling-Hong, Qiu Kun-Zan, Cen Ke-Fa
PDF
导出引用
  • 显微物镜的景深问题限制数字显微全息在大纵深视场中的应用. 本文充分利用数值重建的特点, 采取低频和高频系数子图上的最大亮度梯度的局部方差作为聚焦判据, 在小波分解域内对显微全息重建图像的景深扩展问题进行了研究. 对倾斜的连续物体碳纤维进行三维重建, 分析了重建距离与直径测量误差的关系. 以超声波雾化器生成的微液滴颗粒场为例, 对离散颗粒场的重建图像进行了景深扩展. 利用基于广义洛伦兹-米散射理论的模型分别模拟1-15 m 的非透明与透明离散颗粒的显微全息图, 分析了该方法重建的颗粒场的纵深定位误差与夫琅禾费系数的关系, 对比了非透明与透明颗粒纵深定位误差的异同点. 实验和模拟结果显示出该方法对于连续物体和离散颗粒场的显微全息重建图像的景深扩展能力, 且能由此准确重建物体信息.
    Digital micro holography offers an in-situ, non-contact and three-dimensional way to explore the microscopic world. However, as it is difficult to focalize the whole object in one single reconstructed image, the application of digital micro holography to cases with a large longitudinal object volume is limited by the microscopes depth of field. By extending the depth of field in reconstructed micro holograms in the wavelet domain, this paper fully takes advantage of numerical reconstruction algorithms to solve this problem. First, a recorded hologram is rebuilt using the wavelet transform approach by setting up an appropriate longitudinal interval to obtain a series of reconstructed hologram planes. Then each plane is decomposed with wavelet into its sub-images of both high and low frequencies. Furthermore, the local variance of the maximum intensity gradients of the high- and low-frequency coefficients is calculated and utilized as the focus criterion. Finally, the image planes are fused into a single one with the depth of field extended to a large extent. The feasibility and robustness of this reconstruction procedure for both continuum and particle fields are investigated. One of the demonstrations is made in an experiment of a tilted continuum:carbon fiber. It is different from most of the previous applications where the interrogated is the particles and where the area involved is parallel to the CCD. The carbon fiber gets successfully reconstructed in three dimensions, and the measurement errors of its diameter are presented together with the reconstruction distances. Another is an experiment of a dispersed particle field:micro transparent particles are generated by an ultrasonic atomizer, for which the reconstruction procedure achieves an extended depth of field. In addition, a numerical model based on generalized Lorenz-Mie theory is used to simulate the holograms of both opaque and transparent particles of 1-15 m in diameter. Variations of the longitudinal location errors with the Fraunhofer number are analyzed, and comparisons are made between the results of opaque and transparent particles. Both the experimental and simulation outcomes show that this reconstruction procedure is a reliable one to acquire an extended-depth-of-field hologram for both the continuum and the dispersed particle fields, and then to accurately measure the objects.
    • 基金项目: 国家自然科学基金(批准号:51176162)和国家自然科学基金重大项目(批准号:51390491)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51176162), and the Key Program of the National Natural Science Foundation of China (Grant No. 51390491).
    [1]

    Matrecano M, Paturzo M, Ferraro P 2014 Opt. Eng. 53 112317

    [2]

    Bergoënd I, Colomb T, Pavillon N, Emery Y, Depeursinge C 2009 Conference on Modeling Aspects in Optical Metrology II Munich, Germany, June 15-16, 2009 p73901C

    [3]

    Zhang Y Z, Wang D Y, Wang Y X, Tao S Q 2011 Chin. Phys. Lett. 28 114209

    [4]

    Matrecano M, Paturzo M, Finizio A, Ferraro P 2013 Opt. Lett. 38 896

    [5]

    Wang J, Zhao J L, Di J L, Rauf A, Yang W Z, Wang X L 2014 J. Appl. Phys. 115 173106

    [6]

    Leseberg D, Frère C 1988 Appl. Opt. 27 3020

    [7]

    De Nicola S, Finizio A, Pierattini G, Ferraro P, Alfieri D 2005 Opt. Exp. 13 9935

    [8]

    Gao X, Li C, Fang G Y 2014 Chin. Phys. B 23 028401

    [9]

    Xie H M, Wang Q H, Kishimoto S, Dai F L 2007 J. Appl. Phys. 101 103511

    [10]

    Wang J G, Bu J, Wang M W, Yang Y, Yuan X C 2012 Opt. Lett. 37 4534

    [11]

    Wu Y L, Yang Y, Zhai H C, Ma Z H, Ge Q, Deng L J 2013 Acta Phys. Sin. 62 084203 (in Chinese) [吴永丽, 杨勇, 翟宏琛, 马忠洪, 盖琦, 邓丽军 2013 物理学报 62 084203]

    [12]

    Chen L P, Lue X X 2009 Chin. Phys. B 18 189

    [13]

    Wu X C, Wu Y C, Zhou B W, Wang Z H, Gao X, Grehan G, Cen K F 2013 Appl. Opt. 52 5065

    [14]

    Hua L L, Xu N, Yang G 2014 Chin. Phys. B 23 064201

    [15]

    Shen G X, Wei R J 2005 Opt. Laser. Eng. 43 1039

    [16]

    Lu Q N, Chen Y L, Yuan R, Ge B Z, Gao Y, Zhang Y M 2009 Appl. Opt. 48 7000

    [17]

    Ferraro P, Grilli S, Alfieri D, De Nicola S, Finizio A, Pierattini G, Javidi B, Coppola G, Striano V 2005 Opt. Exp. 13 6738

    [18]

    Yu L F, Cai L L 2001 J. Opt. Soc. Am. A 18 1033

    [19]

    Ma L H, Wang H, Li Y, Jin H Z 2004 J. Opt. A 6 396

    [20]

    Wu Y C, Wu X C, Yang J, Wang Z H, Gao X, Zhou B W, Chen L H, Qiu K Z, Grehan G, Cen K F 2014 Appl. Opt. 53 556

    [21]

    Chen W, Quan C, Tay C J 2009 Appl. Phys. Lett. 95 201103

    [22]

    Wu Y C, Wu X C, Wang Z H, Grehan G, Chen L H, Cen K F 2011 Appl. Opt. 50 H297

    [23]

    Wu X C, Grehan G, Meunier-Guttin-Cluzel S, Chen L H, Cen K F 2009 Opt. Lett. 34 857

    [24]

    Sheng J, Malkiel E, Katz J 2006 Appl. Opt. 45 3893

    [25]

    Wang H Y, Zhang Z H, Liao W, Song X F, Guo Z J, Liu F F 2012 Acta Phys. Sin. 61 044208 (in Chinese) [王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞 2012 物理学报 61 044208]

    [26]

    Meinhart C D, Wereley S T, Gray M H B 2000 Meas. Sci. Technol. 11 809

    [27]

    Li J C 2012 Acta Phys. Sin. 61 134203 (in Chinese) [李俊昌 2012 物理学报 61 134203]

    [28]

    Wu X C, Pu X G, Pu S L, Yuan Z F, Cen K F 2009 J. Chem. Ind. Eng. 60 310 (in Chinese) [吴学成, 浦兴国, 浦世亮, 袁镇福, 岑可法 2009 化工学报 60 310]

    [29]

    Malek M, Coëtmellec S, Allano D, Lebrun D 2003 Opt. Commun. 223 263

    [30]

    Wu Y, Wu X, Saengkaew S, Meunier-Guttin-Cluzel S, Chen L, Qiu K, Gao X, Grehan G, Cen K F 2013 Opt. Commun. 305 247

    [31]

    Xu F, Ren K F, Cai X S 2006 Appl. Opt. 45 4990

  • [1]

    Matrecano M, Paturzo M, Ferraro P 2014 Opt. Eng. 53 112317

    [2]

    Bergoënd I, Colomb T, Pavillon N, Emery Y, Depeursinge C 2009 Conference on Modeling Aspects in Optical Metrology II Munich, Germany, June 15-16, 2009 p73901C

    [3]

    Zhang Y Z, Wang D Y, Wang Y X, Tao S Q 2011 Chin. Phys. Lett. 28 114209

    [4]

    Matrecano M, Paturzo M, Finizio A, Ferraro P 2013 Opt. Lett. 38 896

    [5]

    Wang J, Zhao J L, Di J L, Rauf A, Yang W Z, Wang X L 2014 J. Appl. Phys. 115 173106

    [6]

    Leseberg D, Frère C 1988 Appl. Opt. 27 3020

    [7]

    De Nicola S, Finizio A, Pierattini G, Ferraro P, Alfieri D 2005 Opt. Exp. 13 9935

    [8]

    Gao X, Li C, Fang G Y 2014 Chin. Phys. B 23 028401

    [9]

    Xie H M, Wang Q H, Kishimoto S, Dai F L 2007 J. Appl. Phys. 101 103511

    [10]

    Wang J G, Bu J, Wang M W, Yang Y, Yuan X C 2012 Opt. Lett. 37 4534

    [11]

    Wu Y L, Yang Y, Zhai H C, Ma Z H, Ge Q, Deng L J 2013 Acta Phys. Sin. 62 084203 (in Chinese) [吴永丽, 杨勇, 翟宏琛, 马忠洪, 盖琦, 邓丽军 2013 物理学报 62 084203]

    [12]

    Chen L P, Lue X X 2009 Chin. Phys. B 18 189

    [13]

    Wu X C, Wu Y C, Zhou B W, Wang Z H, Gao X, Grehan G, Cen K F 2013 Appl. Opt. 52 5065

    [14]

    Hua L L, Xu N, Yang G 2014 Chin. Phys. B 23 064201

    [15]

    Shen G X, Wei R J 2005 Opt. Laser. Eng. 43 1039

    [16]

    Lu Q N, Chen Y L, Yuan R, Ge B Z, Gao Y, Zhang Y M 2009 Appl. Opt. 48 7000

    [17]

    Ferraro P, Grilli S, Alfieri D, De Nicola S, Finizio A, Pierattini G, Javidi B, Coppola G, Striano V 2005 Opt. Exp. 13 6738

    [18]

    Yu L F, Cai L L 2001 J. Opt. Soc. Am. A 18 1033

    [19]

    Ma L H, Wang H, Li Y, Jin H Z 2004 J. Opt. A 6 396

    [20]

    Wu Y C, Wu X C, Yang J, Wang Z H, Gao X, Zhou B W, Chen L H, Qiu K Z, Grehan G, Cen K F 2014 Appl. Opt. 53 556

    [21]

    Chen W, Quan C, Tay C J 2009 Appl. Phys. Lett. 95 201103

    [22]

    Wu Y C, Wu X C, Wang Z H, Grehan G, Chen L H, Cen K F 2011 Appl. Opt. 50 H297

    [23]

    Wu X C, Grehan G, Meunier-Guttin-Cluzel S, Chen L H, Cen K F 2009 Opt. Lett. 34 857

    [24]

    Sheng J, Malkiel E, Katz J 2006 Appl. Opt. 45 3893

    [25]

    Wang H Y, Zhang Z H, Liao W, Song X F, Guo Z J, Liu F F 2012 Acta Phys. Sin. 61 044208 (in Chinese) [王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞 2012 物理学报 61 044208]

    [26]

    Meinhart C D, Wereley S T, Gray M H B 2000 Meas. Sci. Technol. 11 809

    [27]

    Li J C 2012 Acta Phys. Sin. 61 134203 (in Chinese) [李俊昌 2012 物理学报 61 134203]

    [28]

    Wu X C, Pu X G, Pu S L, Yuan Z F, Cen K F 2009 J. Chem. Ind. Eng. 60 310 (in Chinese) [吴学成, 浦兴国, 浦世亮, 袁镇福, 岑可法 2009 化工学报 60 310]

    [29]

    Malek M, Coëtmellec S, Allano D, Lebrun D 2003 Opt. Commun. 223 263

    [30]

    Wu Y, Wu X, Saengkaew S, Meunier-Guttin-Cluzel S, Chen L, Qiu K, Gao X, Grehan G, Cen K F 2013 Opt. Commun. 305 247

    [31]

    Xu F, Ren K F, Cai X S 2006 Appl. Opt. 45 4990

  • [1] 钟志, 赵婉婷, 单明广, 刘磊. 远心同-离轴混合数字全息高分辨率重建方法. 物理学报, 2021, 70(15): 154202. doi: 10.7498/aps.70.20210190
    [2] 张益溢, 吴佳琛, 郝然, 金尚忠, 曹良才. 基于数字全息的血红细胞显微成像技术. 物理学报, 2020, 69(16): 164201. doi: 10.7498/aps.69.20200357
    [3] 李芳, 王明清, 郑明, 卢苇, 于庆南, 贾燕, 吴坚. 一种有效解决离轴数字全息相图倾斜畸变的数字参考平面方法. 物理学报, 2018, 67(9): 094202. doi: 10.7498/aps.67.20172528
    [4] 李四维, 吴晶晶, 张赛文, 李恒, 陈丹妮, 于斌, 屈军乐. 用于大景深单分子定位显微的多功能全息相位片的设计及数值模拟. 物理学报, 2018, 67(17): 174202. doi: 10.7498/aps.67.20180569
    [5] 赵应春, 张秀英, 袁操今, 聂守平, 朱竹青, 王林, 李杨, 贡丽萍, 冯少彤. 基于涡旋光照明的暗场数字全息显微方法研究. 物理学报, 2014, 63(22): 224202. doi: 10.7498/aps.63.224202
    [6] 袁飞, 袁操今, 聂守平, 朱竹青, 马青玉, 李莹, 朱文艳, 冯少彤. 双Lloyd镜数字全息显微测量术. 物理学报, 2014, 63(10): 104207. doi: 10.7498/aps.63.104207
    [7] 范锋, 栗军香, 宋修法, 朱巧芬, 王华英. 基于Hilbert变换实现数字全息高精度相位重建. 物理学报, 2014, 63(19): 194207. doi: 10.7498/aps.63.194207
    [8] 石炳川, 朱竹青, 王晓雷, 席思星, 贡丽萍. 像面数字全息的重建相位误差分析和改善. 物理学报, 2014, 63(24): 244201. doi: 10.7498/aps.63.244201
    [9] 王华英, 刘飞飞, 宋修法, 廖薇, 赵宝群, 于梦杰, 刘佐强. 高质量等曲率物参光像面数字全息显微系统. 物理学报, 2013, 62(2): 024207. doi: 10.7498/aps.62.024207
    [10] 王华英, 于梦杰, 刘飞飞, 江亚男, 宋修法, 高亚飞. 基于同态信号处理的数字全息广义线性重建算法研究. 物理学报, 2013, 62(23): 234207. doi: 10.7498/aps.62.234207
    [11] 王华英, 刘飞飞, 廖薇, 宋修法, 于梦杰, 刘佐强. 优化的数字全息显微成像系统. 物理学报, 2013, 62(5): 054208. doi: 10.7498/aps.62.054208
    [12] 周斌武, 吴学成, 吴迎春, 阳静, Gérard Gréhan, 岑可法. 数字显微全息中记录参数对颗粒测量影响的数值模拟. 物理学报, 2013, 62(20): 204203. doi: 10.7498/aps.62.204203
    [13] 王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞. 无透镜傅里叶变换显微数字全息成像系统的焦深. 物理学报, 2012, 61(4): 044208. doi: 10.7498/aps.61.044208
    [14] 李俊昌. 数字全息重建图像的焦深研究. 物理学报, 2012, 61(13): 134203. doi: 10.7498/aps.61.134203
    [15] 徐先锋, 韩立立, 袁红光. 两步相移数字全息物光重建误差分析与校正. 物理学报, 2011, 60(8): 084206. doi: 10.7498/aps.60.084206
    [16] 李俊昌, 彭祖杰, Tankam Patrice, Picart Pascal. 散射光彩色数字全息光学系统及波面重建算法研究. 物理学报, 2010, 59(7): 4646-4655. doi: 10.7498/aps.59.4646
    [17] 周文静, 胡文涛, 郭路, 徐强胜, 于瀛洁. 少量投影数字全息层析重建实验研究. 物理学报, 2010, 59(12): 8499-8511. doi: 10.7498/aps.59.8499
    [18] 李俊昌, 樊则宾. 彩色数字全息的非插值波面重建算法研究. 物理学报, 2010, 59(4): 2457-2461. doi: 10.7498/aps.59.2457
    [19] 李俊昌, 张亚萍, 许蔚. 高质量数字全息波面重建系统研究. 物理学报, 2009, 58(8): 5385-5391. doi: 10.7498/aps.58.5385
    [20] 罗来龙. 碳纤维混凝土中的隧道电流. 物理学报, 2005, 54(6): 2540-2544. doi: 10.7498/aps.54.2540
计量
  • 文章访问数:  5662
  • PDF下载量:  399
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-24
  • 修回日期:  2014-12-12
  • 刊出日期:  2015-06-05

/

返回文章
返回