搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直流老化对CaCu3Ti4O12陶瓷介电性能的影响

赵学童 廖瑞金 李建英 王飞鹏

引用本文:
Citation:

直流老化对CaCu3Ti4O12陶瓷介电性能的影响

赵学童, 廖瑞金, 李建英, 王飞鹏

Effect of direct current degradation on dielectric property of CaCu3Ti4O12 ceramic

Zhao Xue-Tong, Liao Rui-Jin, Li Jian-Ying, Wang Fei-Peng
PDF
导出引用
  • 在电场为3.5 kV/cm的条件下, 对CaCu3Ti4O12陶瓷进行了60 h的直流老化, 研究了老化过程对CaCu3Ti4O12陶瓷介电性能和电气特性的影响. J-E特性测试结果表明, 直流老化导致CaCu3Ti4O12陶瓷击穿场强、非线性系数和势垒高度明显降低. 介电性能测试结果表明, 低频介电常数和介电损耗明显增大, 并且介电损耗随频率的变化遵从Debye弛豫理论, 可分解为直流电导损耗和弛豫损耗, 直流老化主要导致了电导损耗的增加. 在低温233 K, 介电损耗谱中出现两个弛豫峰, 其活化能分别为0.10, 0.50 eV, 认为对应着晶粒和畴界的弛豫过程, 且不随直流老化而变化. 通过电模量谱对CaCu3Ti4O12陶瓷的弛豫过程进行了表征, 发现直流老化导致的界面空间电荷在外施交变电场的作用下符合Maxwell-Wagner极化效应, 并在低频区形成新的弛豫峰. 在高温323-473 K的阻抗谱中, 晶界弛豫峰在直流老化后明显向高频移动, 其对应的活化能从1.23 eV 下降到0.72 eV, 晶界阻抗值下降了约两个数量级. 最后, 建立了CaCu3Ti4O12陶瓷的阻容电路模型, 分析了介电弛豫过程与电性能之间的关联.
    CaCu3Ti4O12 ceramic has drawn much attention due to its stable colossal dielectric permittivity and pronounced nonlinear electrical characteristics. In this work, the effects of direct current degradation on the dielectric response and electrical property of CaCu3Ti4O12 ceramic aged for 60 h under 3.5 kV/cm are investigated. The results of J-E characteristic analysis show that the breakdown field E1mA decreases from 216 V/mm to 144 V/mm and nonlinear coefficient η decreases from 4.1 to 2.1. The barrier heights of CaCu3Ti4O12 ceramics are calculated to be in a range of 293-368 K, based on the J-E curves, which decrease from 0.57 eV to 0.31 eV. It is found that the dielectric constant and dielectric loss at low frequencies are significantly increased. Based on Debye function, it is indicated that the dielectric loss is composed of direct current conductance loss and relaxation loss, especially the direct current conductance loss is enhanced by the direct current degradation. At 233 K, two relaxation peaks whose activation energies are 0.10 eV and 0.50 eV can be found, which are considered to be related to grain and domain boundary and not vary with direct current degradation. Electric modulus spectra are used to characterize the role of direct current degradation in the relaxation process of CaCu3Ti4O12 ceramic. The results show that the variation of interfacial space charges caused by direct current degradation obeys the Maxwell-Wagner polarization. It may be a key factor to lead to the increase of dielectric permittivity below 10 Hz, and a new corresponding relaxation peak θ can be observed in the modulus plot at low frequency. In the impedance spectra in 323-473 K, the relaxation peaks of grain boundary shift toward high frequency after direct current degradation. The results from the complex impedance plane show that the resistance of the grain boundary decreases by about two orders of magnitude and its activation energy drops off from 1.23 eV to 0.72 eV, while the resistance of grain decreases a little and its activation energy has no obvious variation. Therefore, it is proposed that direct current degradation should play an important role in grain boundary and affect its electrical property and dielectric response. An RC circuit model is proposed to elucidate the correlation between dielectric relaxation and electrical property of CaCu3Ti4O12 ceramic.
    • 基金项目: 国家自然科学基金青年科学基金(批准号:51407019)、中央高校基本科研业务费专项资金(批准号:106112015CDJZR155509)和访问学者基金(批准号:2007DA10512713408)资助的课题.
    • Funds: Project supported the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51407019), the Fundamental Research Funds for the Central Universities, China (Grant No. 106112015CDJZR155509), and the Visiting Scholarship Foundation of China (Grant No. 2007DA10512713408).
    [1]

    Yang C P, Li M Y, Song X P, Xiao H B, Xu L F 2012 Acta Phys. Sin. 61 197702 (in Chinese) [杨昌平, 李旻奕, 宋学平, 肖海波, 徐玲芳 2012 物理学报 61 197702]

    [2]

    Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 J. Solid State Chem. 151 323

    [3]

    Homes C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673

    [4]

    He L X, Neaton J B, Cohen M H, Vanderbilt D 2002 Phys. Rev. B 65 214112

    [5]

    Cohen M H, Neaton J B, He L X, Vandebilt D 2003 J. Appl. Phys. 94 3299

    [6]

    Fang T T, Liu C P 2005 Chem. Mater. 17 5167

    [7]

    Li W, Schwartz R W 2006 Appl. Phys. Lett. 89 242906

    [8]

    Li W, Schwartz R W, Chen A P, Zhu J S 2002 Appl. Phys. Lett. 80 2153

    [9]

    Bärner K, Luo X J, Song X P, Hang C, Chen S S, Medvedeva I V, Yang C P 2011 J. Mater. Res. 26 36

    [10]

    Luo X J, Yang C P, Song X P, Xu L F 2010 Acta Phys. Sin. 59 3516 (in Chinese) [罗晓婧, 杨昌平, 宋学平, 徐玲芳 2010 物理学报 59 3516]

    [11]

    Shao S F, Zhang J L, Zheng P, Zhong W L, Wang C L 2006 J. Appl. Phys. 99 084106

    [12]

    Fang T T, Shiau H K 2004 J. Am. Ceram. Soc. 87 2072

    [13]

    Chen L, Chen C L, Lin Y, Chen Y B, Chen X H, Bontchev R P, Park C Y, Jacobson A J 2003 Appl. Phys. Lett. 82 2317

    [14]

    Yang Y, Li S T, Ding C, Cheng P F 2011 Chin. Phys. B 20 025201

    [15]

    Zhao X T, Li J Y, Li H, Li S T 2012 J. Appl. Phys. 111 124106

    [16]

    Levinson L M, Philipp H R 1976 J. Appl. Phys. 47 1117

    [17]

    Clarke D R 1999 J. Am. Ceram. Soc. 82 485

    [18]

    Mukae K, Tsuda K, Nagasawa I 1977 Jpn. J. Appl. Phys. 16 1361

    [19]

    Chen J D, Liu Z Y 1982 Dielectric Physics (Beijing: Mechanical Industry Press) p151 (in Chinese) [陈季丹, 刘子玉 1982 电介质物理学 (北京: 机械工业出版社) 第151页]

    [20]

    Zhao X T, Liao R J, Liang N C, Yang L J, Li J, Li J Y 2014 J. Appl. Phys. 116 014103

    [21]

    Li J Y, Zhao X T, Li S T, Alim M A 2010 J. Appl. Phys. 108 104104

    [22]

    Roling B, Happe A, Funke K, Ingram M D 1997 Phys. Rev. Lett. 78 2160

    [23]

    Liu J J, Duan C G, Yin W G, Mei W N, Smith R W, Hardy J R 2004 Phys. Rev. B 70 144106

    [24]

    Sinclair D C, West A R 1989 J. Appl. Phys. 66 3850

    [25]

    Ishikawa H, Ohki Y 2008 IEEJ Trans. Fundam. Mater. 128 647

    [26]

    Liu L, Fan H, Wang L, Chen X, Fang P 2008 Philos. Mag. 88 537

    [27]

    Hong Y W, Kim J H 2004 Ceram. Int. 30 1307

    [28]

    Zhang J L, Zheng P, Wang C L, Zhao M L, Li J C, Wang J F 2005 Appl. Phys. Lett. 87 142901

  • [1]

    Yang C P, Li M Y, Song X P, Xiao H B, Xu L F 2012 Acta Phys. Sin. 61 197702 (in Chinese) [杨昌平, 李旻奕, 宋学平, 肖海波, 徐玲芳 2012 物理学报 61 197702]

    [2]

    Subramanian M A, Li D, Duan N, Reisner B A, Sleight A W 2000 J. Solid State Chem. 151 323

    [3]

    Homes C C, Vogt T, Shapiro S M, Wakimoto S, Ramirez A P 2001 Science 293 673

    [4]

    He L X, Neaton J B, Cohen M H, Vanderbilt D 2002 Phys. Rev. B 65 214112

    [5]

    Cohen M H, Neaton J B, He L X, Vandebilt D 2003 J. Appl. Phys. 94 3299

    [6]

    Fang T T, Liu C P 2005 Chem. Mater. 17 5167

    [7]

    Li W, Schwartz R W 2006 Appl. Phys. Lett. 89 242906

    [8]

    Li W, Schwartz R W, Chen A P, Zhu J S 2002 Appl. Phys. Lett. 80 2153

    [9]

    Bärner K, Luo X J, Song X P, Hang C, Chen S S, Medvedeva I V, Yang C P 2011 J. Mater. Res. 26 36

    [10]

    Luo X J, Yang C P, Song X P, Xu L F 2010 Acta Phys. Sin. 59 3516 (in Chinese) [罗晓婧, 杨昌平, 宋学平, 徐玲芳 2010 物理学报 59 3516]

    [11]

    Shao S F, Zhang J L, Zheng P, Zhong W L, Wang C L 2006 J. Appl. Phys. 99 084106

    [12]

    Fang T T, Shiau H K 2004 J. Am. Ceram. Soc. 87 2072

    [13]

    Chen L, Chen C L, Lin Y, Chen Y B, Chen X H, Bontchev R P, Park C Y, Jacobson A J 2003 Appl. Phys. Lett. 82 2317

    [14]

    Yang Y, Li S T, Ding C, Cheng P F 2011 Chin. Phys. B 20 025201

    [15]

    Zhao X T, Li J Y, Li H, Li S T 2012 J. Appl. Phys. 111 124106

    [16]

    Levinson L M, Philipp H R 1976 J. Appl. Phys. 47 1117

    [17]

    Clarke D R 1999 J. Am. Ceram. Soc. 82 485

    [18]

    Mukae K, Tsuda K, Nagasawa I 1977 Jpn. J. Appl. Phys. 16 1361

    [19]

    Chen J D, Liu Z Y 1982 Dielectric Physics (Beijing: Mechanical Industry Press) p151 (in Chinese) [陈季丹, 刘子玉 1982 电介质物理学 (北京: 机械工业出版社) 第151页]

    [20]

    Zhao X T, Liao R J, Liang N C, Yang L J, Li J, Li J Y 2014 J. Appl. Phys. 116 014103

    [21]

    Li J Y, Zhao X T, Li S T, Alim M A 2010 J. Appl. Phys. 108 104104

    [22]

    Roling B, Happe A, Funke K, Ingram M D 1997 Phys. Rev. Lett. 78 2160

    [23]

    Liu J J, Duan C G, Yin W G, Mei W N, Smith R W, Hardy J R 2004 Phys. Rev. B 70 144106

    [24]

    Sinclair D C, West A R 1989 J. Appl. Phys. 66 3850

    [25]

    Ishikawa H, Ohki Y 2008 IEEJ Trans. Fundam. Mater. 128 647

    [26]

    Liu L, Fan H, Wang L, Chen X, Fang P 2008 Philos. Mag. 88 537

    [27]

    Hong Y W, Kim J H 2004 Ceram. Int. 30 1307

    [28]

    Zhang J L, Zheng P, Wang C L, Zhao M L, Li J C, Wang J F 2005 Appl. Phys. Lett. 87 142901

  • [1] 杨如霞, 卢玉明, 曾丽竹, 张禄佳, 李冠男. 钆掺杂对0.7BiFe0.95Ga0.05O3-0.3BaTiO3陶瓷的结构、介电性能和多铁性能的影响. 物理学报, 2020, 69(10): 107701. doi: 10.7498/aps.69.20200175
    [2] 黄禹田, 王煜, 朱敏敏, 吕婷, 杨洪春, 李翔, 王秀章, 刘美风, 李少珍. (1-x)Sr3Sn2O7+xCa3Mn2O7陶瓷合成及其光电性能. 物理学报, 2018, 67(15): 154203. doi: 10.7498/aps.67.20180954
    [3] 成鹏飞, 王辉, 李盛涛. CaCu3Ti4O12陶瓷的介电特性与弛豫机理. 物理学报, 2013, 62(5): 057701. doi: 10.7498/aps.62.057701
    [4] 周静, 刘存金, 李儒, 陈文. 异质界面对Ca(Mg1/3Nb2/3)O3/CaTiO3叠层薄膜结构和介电性能的影响. 物理学报, 2012, 61(6): 067401. doi: 10.7498/aps.61.067401
    [5] 李智敏, 施建章, 卫晓黑, 李培咸, 黄云霞, 李桂芳, 郝跃. 掺铝3C-SiC电子结构的第一性原理计算及其微波介电性能. 物理学报, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [6] 杨昌平, 李旻奕, 宋学平, 肖海波, 徐玲芳. 氧含量对CaCu3Ti4O12巨介电常数和介电过程的影响. 物理学报, 2012, 61(19): 197702. doi: 10.7498/aps.61.197702
    [7] 陈超, 江向平, 卫巍, 李小红, 魏红斌, 宋福生. (K0.45Na0.55)NbO3无铅压电晶体的生长形态与介电性能研究. 物理学报, 2011, 60(10): 107704. doi: 10.7498/aps.60.107704
    [8] 丁南, 唐新桂, 匡淑娟, 伍君博, 刘秋香, 何琴玉. 锰掺杂对Ba(Zr, Ti)O3陶瓷压电与介电性能的影响. 物理学报, 2010, 59(9): 6613-6619. doi: 10.7498/aps.59.6613
    [9] 罗晓婧, 杨昌平, 宋学平, 徐玲芳. 巨介电常数氧化物CaCu3Ti4O12的介电和阻抗特性. 物理学报, 2010, 59(5): 3516-3522. doi: 10.7498/aps.59.3516
    [10] 单丹, 朱珺钏, 金灿, 陈小兵. B位等价掺杂SrBi4Ti4O15铁电材料的性能研究. 物理学报, 2009, 58(10): 7235-7240. doi: 10.7498/aps.58.7235
    [11] 杨雁, 李盛涛. CaCu3Ti4O12陶瓷的微观结构及直流导电特性. 物理学报, 2009, 58(9): 6376-6380. doi: 10.7498/aps.58.6376
    [12] 卫永霞, 钱晓梅, 俞笑竹, 叶 超, 宁兆元, 梁荣庆. O2掺杂对SiCOH低k薄膜结构与电学性能的影响. 物理学报, 2007, 56(2): 1172-1176. doi: 10.7498/aps.56.1172
    [13] 赵苏串, 李国荣, 张丽娜, 王天宝, 丁爱丽. Na0.25K0.25Bi0.5TiO3无铅压电陶瓷的介电特性研究. 物理学报, 2006, 55(7): 3711-3715. doi: 10.7498/aps.55.3711
    [14] 黄集权, 洪兰秀, 韩高荣, 翁文剑, 杜丕一. Fe-Ni-BaTiO3复合材料的介电行为及其机理研究. 物理学报, 2006, 55(7): 3664-3669. doi: 10.7498/aps.55.3664
    [15] 邵守福, 郑 鹏, 张家良, 钮效鵾, 王春雷, 钟维烈. CaCu3Ti4O12陶瓷的微观结构和电学性能. 物理学报, 2006, 55(12): 6661-6666. doi: 10.7498/aps.55.6661
    [16] 马建华, 孙璟兰, 孟祥建, 林 铁, 石富文, 褚君浩. SrTiO3金属-绝缘体-半导体结构的介电与界面特性. 物理学报, 2005, 54(3): 1390-1395. doi: 10.7498/aps.54.1390
    [17] 张丽娜, 赵苏串, 郑嘹赢, 李国荣, 殷庆瑞. 复合层状Bi7Ti4NbO21铁电陶瓷的结构与介电和压电性能研究. 物理学报, 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [18] 赵彦立, 焦正宽, 曹光旱. CaCu3Ti4O12块材和薄膜的巨介电常数. 物理学报, 2003, 52(6): 1500-1504. doi: 10.7498/aps.52.1500
    [19] 刘鹏, 姚熹. La调节Pb(Zr,Sn,Ti)O_3反铁电陶瓷的相变与电学性质. 物理学报, 2002, 51(7): 1621-1627. doi: 10.7498/aps.51.1621
    [20] 刘鹏, 边小兵, 张良莹, 姚熹. (PbBa)(Zr,Sn,Ti)O_3反铁电/弛豫型铁电相界陶瓷的相变与介电、热释电性质. 物理学报, 2002, 51(7): 1628-1633. doi: 10.7498/aps.51.1628
计量
  • 文章访问数:  4487
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-10
  • 修回日期:  2015-02-03
  • 刊出日期:  2015-06-05

/

返回文章
返回