搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自驱动Janus微球近壁运动特性实验与数值模拟研究

崔海航 谭晓君 张鸿雁 陈力

引用本文:
Citation:

自驱动Janus微球近壁运动特性实验与数值模拟研究

崔海航, 谭晓君, 张鸿雁, 陈力

Experiment and numerical study on the characteristics of self-propellant Janus microspheres near the wall

Cui Hai-Hang, Tan Xiao-Jun, Zhang Hong-Yan, Chen Li
PDF
导出引用
  • 自驱动Janus微球是形状规则但表面构成不同的特殊活性颗粒. 针对微米级Pt-SiO2型Janus 微球近壁面自驱动现象, 实验测得了微球的自驱动速度VJanus, 并观察到微球运动过程中与垂直方向存在一偏转仰角ψ, 且ψ角随H2O2溶液浓度的增大呈减小趋势. 在此基础上, 建立自驱动Janus微球的数值模型, 通过模拟得到了微球在不同浓度H2O2溶液中的偏转仰角ψ及距底面的高度δ, 模拟与实验一致. 利用这些数据进一步讨论了壁面效应对微球旋转特征时间τR的影响. 这一工作对于理解Janus 微球的运动机理及发展相关应用具有重要意义.
    Self-propellant Janus microsphere is a special class of active particles with a regular shape and irregular surface characteristic. With the self-propulsion of 2 μm diameter Pt-SiO2 Janus microsphere near the wall, we have measured the relationship of self-propellant velocity VJanus versus the observed time Δtobs. A diffusiophoretic force-dominated motion, which can be deemed as a quasi-1 D motion with the characteristics of both force free and torque free, is distinguished from the entire motion process. At the same time, it is also observed that the Janus microsphere is deflected about the vertical direction with an angle ψ. The deflection angle ψ is found to decrease with the increase of H2O2 concentration in the solution. For the 2.5%-10% H2O2 solution in this experiment, the angle ψ ranges from 20° to 7° approximately. A numerical model, involving viscous force, diffusiophoretic force and the effective gravity, is created with a reference frame, this quasi-1 D self-propellant motion can be solved to satisfy the conditions of the force and torque balance simultaneously. We have studied the changes of angle ψ and separation distance δ of the microsphere from the substrate under different conditions, including the concentrations of H2O2 solution, the material density, and the diameter of the microsphere. For the self-propulsion velocity VJanus and the deflection angle ψ, numerical results show good agreement with the published experimental observation results. Moreover, it is found that the lower density or the smaller diameter of the microsphere will generate the smaller distance δ, while the higher concentration of H2O2 in the solution will result in a larger distance δ. The predicted δ is 2-8 μm. With the obtained data, we further discuss the effect of near wall on the characteristic time τR of rotational diffusion of the Janus microsphere. Because the predicted values of δ are relative high, the near wall effect can be neglected, indicating that this effect should not be a significant factor to cause a big discrepancy of τR in different references. The present work will be beneficial to the understanding of the mechanism of self-propulsion and the development in its potential applications.
    • 基金项目: 西安建筑科技大学创新团队,国家自然科学基金应急管理项目理论物理专款(批准号:11447133)资助的课题.
    • Funds: Project supported by the Innovative Res earch Team of Xi'an University of Architecture and Technology and National Natural Science Foundation for Theoretical Physics of China for Emergency Management Projects (Grant No. 11447133).
    [1]

    Jiang S, Granick S, Schneider H J 2012 Janus Particle Synthesis, Self-assembly and Applications (USA: RSC Publishing Press) pp1-25

    [2]

    Zhang C L, Wei W, Liang F X, Yang Z Z 2013 Scientia Sinica: Chimica 42 1616 (in Chinese) [张成亮, 韦玮, 梁福鑫, 杨振忠 2013 中国科学:化学 42 1616]

    [3]

    Chernyak V G, Starikov S A, Beresnev S A 2001 Journal of Applied Mechanics and Technical Physics 42 445

    [4]

    Wang W, Duan W, Ahmed S, Mallouk T E, Sen A 2013 Nano Today 8 531

    [5]

    Wang D, Zhang W, Jiang X Y 2011 Physics 40 588 (in Chinese) [王栋, 张伟, 蒋兴宇 2011 物理 40 588]

    [6]

    Kapral R 2013 The Journal of Chemical Physics 138 020901

    [7]

    Golestanian R, Liverpool T B, Ajdari A 2007 New Journal of Physics 9 126

    [8]

    Howse J R, Jones R A L, Ryan A J, Gough T, Vafabakhsh R, Golestanian R 2007 Physical Review Letters 99 048102

    [9]

    Ke H, Ye S, Carroll R L, Showalter K 2010 The Journal of Physical Chemistry A 114 5462

    [10]

    Zheng X, Ten Hagen B, Kaiser A, Wu M L, Cui H H, Silber-Li Z H, Hartmut L 2013 Physical Review E 88 032304

    [11]

    Crowdy D 2014 4th Micro and Nano Flows Conference on UCL, London, UK, Septemper 7-10, 2014

    [12]

    Crowdy D, Lee S, Samson O, Lauga E, Hosoi A E 2011 Journal of Fluid Mechanics 681 24

    [13]

    Wu M L, Zhang H Y, Zheng X, Cui H H 2014 AIP Advances 4 1326

    [14]

    WU M L, Zheng X, Cui H H, Li Z H 2014 Chinese Journal of Hydrodynamics, (A) 274 (in Chinese) [武美玲, 郑旭, 崔海航, 李战华 2014 水动力学研究与进展: A辑 274]

    [15]

    Yan Z Y 1996 Low Reynolds Number Flow Theory (Beijing: Peking University Press) pp92-112 (in Chinese) [严宗毅 1996 低雷诺兹数流动理论 (北京: 北京大学出版社)第92-112页]

  • [1]

    Jiang S, Granick S, Schneider H J 2012 Janus Particle Synthesis, Self-assembly and Applications (USA: RSC Publishing Press) pp1-25

    [2]

    Zhang C L, Wei W, Liang F X, Yang Z Z 2013 Scientia Sinica: Chimica 42 1616 (in Chinese) [张成亮, 韦玮, 梁福鑫, 杨振忠 2013 中国科学:化学 42 1616]

    [3]

    Chernyak V G, Starikov S A, Beresnev S A 2001 Journal of Applied Mechanics and Technical Physics 42 445

    [4]

    Wang W, Duan W, Ahmed S, Mallouk T E, Sen A 2013 Nano Today 8 531

    [5]

    Wang D, Zhang W, Jiang X Y 2011 Physics 40 588 (in Chinese) [王栋, 张伟, 蒋兴宇 2011 物理 40 588]

    [6]

    Kapral R 2013 The Journal of Chemical Physics 138 020901

    [7]

    Golestanian R, Liverpool T B, Ajdari A 2007 New Journal of Physics 9 126

    [8]

    Howse J R, Jones R A L, Ryan A J, Gough T, Vafabakhsh R, Golestanian R 2007 Physical Review Letters 99 048102

    [9]

    Ke H, Ye S, Carroll R L, Showalter K 2010 The Journal of Physical Chemistry A 114 5462

    [10]

    Zheng X, Ten Hagen B, Kaiser A, Wu M L, Cui H H, Silber-Li Z H, Hartmut L 2013 Physical Review E 88 032304

    [11]

    Crowdy D 2014 4th Micro and Nano Flows Conference on UCL, London, UK, Septemper 7-10, 2014

    [12]

    Crowdy D, Lee S, Samson O, Lauga E, Hosoi A E 2011 Journal of Fluid Mechanics 681 24

    [13]

    Wu M L, Zhang H Y, Zheng X, Cui H H 2014 AIP Advances 4 1326

    [14]

    WU M L, Zheng X, Cui H H, Li Z H 2014 Chinese Journal of Hydrodynamics, (A) 274 (in Chinese) [武美玲, 郑旭, 崔海航, 李战华 2014 水动力学研究与进展: A辑 274]

    [15]

    Yan Z Y 1996 Low Reynolds Number Flow Theory (Beijing: Peking University Press) pp92-112 (in Chinese) [严宗毅 1996 低雷诺兹数流动理论 (北京: 北京大学出版社)第92-112页]

  • [1] 杜立杰, 陈靖雯, 王荣明. 基于C14H31O3P-Ti3C2/Au肖特基结的自驱动近红外探测器. 物理学报, 2023, 72(13): 138502. doi: 10.7498/aps.72.20230480
    [2] 曹春蕾, 徐进良, 叶文力. 周期性爆沸诱导的液滴自驱动. 物理学报, 2021, 70(24): 244703. doi: 10.7498/aps.70.20211386
    [3] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征. 物理学报, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [4] 张福建, 陈悦, 高翔, 刘珍, 张忠强. 楔形铜基底-单层石墨烯覆层表面液滴自驱动研究. 物理学报, 2021, 70(20): 200202. doi: 10.7498/aps.70.20210905
    [5] 张忠强, 范晋伟, 张福建, 程广贵, 丁建宁. 水流在旋转黑磷纳米管内轴向驱动特性. 物理学报, 2020, 69(11): 110201. doi: 10.7498/aps.69.20200116
    [6] 谈溥川, 赵超超, 樊瑜波, 李舟. 自驱动柔性生物医学传感器的研究进展. 物理学报, 2020, 69(17): 178704. doi: 10.7498/aps.69.20201012
    [7] 张红, 宗奕吾, 杨明成, 赵坤. 自驱动的Janus微球在具有不同障碍物的表面上的运动行为研究. 物理学报, 2019, 68(13): 134702. doi: 10.7498/aps.68.20190711
    [8] 华昀峰, 章林溪. 自驱动颗粒体系中的熵力. 物理学报, 2017, 66(19): 190701. doi: 10.7498/aps.66.190701
    [9] 周锐, 吴梦雪, 沈飞, 洪明辉. 基于近场光学的微球超分辨显微效应. 物理学报, 2017, 66(14): 140702. doi: 10.7498/aps.66.140702
    [10] 黄衍堂, 彭隆祥, 庄世坚, 李强龙, 廖廷俤, 许灿华, 段亚凡. 掺钕微球的受激辐射激光和自受激拉曼散射. 物理学报, 2017, 66(24): 244208. doi: 10.7498/aps.66.244208
    [11] 周光雨, 陈力, 张鸿雁, 崔海航. 基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力. 物理学报, 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
    [12] 王雷磊, 崔海航, 张静, 郑旭, 王磊, 陈力. 不同粒径Janus微球的自驱动:实验及驱动机制对比. 物理学报, 2016, 65(22): 220201. doi: 10.7498/aps.65.220201
    [13] 娄利飞, 潘青彪, 吴志华. 基于石墨烯用于微弱能量获取的柔性微结构研究. 物理学报, 2014, 63(15): 158501. doi: 10.7498/aps.63.158501
    [14] 李永进, 宋志国, 李臣, 万荣华, 邱建备, 杨正文, 尹兆益, 王雪, 王齐, 周大成, 杨勇. 结构自还原效应对铋掺碱土金属硅磷铝硼玻璃超宽带近红外发光的影响. 物理学报, 2013, 62(11): 117801. doi: 10.7498/aps.62.117801
    [15] 吕庆荣, 方庆清, 刘艳美. 纳米结构CoxFe3-xO4多孔微球的磁性及交换偏置效应研究. 物理学报, 2011, 60(4): 047501. doi: 10.7498/aps.60.047501
    [16] 陈德彝, 王忠龙. 白交叉关联色噪声驱动的线性振子的扩散. 物理学报, 2010, 59(1): 111-115. doi: 10.7498/aps.59.111
    [17] 张冬仙, 刘 超, 章海军. 微纳米尺度红外光热膨胀效应及新型光热驱动方法研究. 物理学报, 2008, 57(5): 3107-3112. doi: 10.7498/aps.57.3107
    [18] 强稳朝. 自引力旋转球的整体变形几何. 物理学报, 2001, 50(9): 1643-1647. doi: 10.7498/aps.50.1643
    [19] 夏蒙棼, 仇韵清. 单波驱动飞行粒子随机扩散. 物理学报, 1986, 35(1): 7-16. doi: 10.7498/aps.35.7
    [20] 夏蒙棼, 仇韵清. 静电波驱动的空间扩散. 物理学报, 1985, 34(3): 322-331. doi: 10.7498/aps.34.322
计量
  • 文章访问数:  4658
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-25
  • 修回日期:  2015-01-15
  • 刊出日期:  2015-07-05

/

返回文章
返回